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We introduce and analyze the viscosity approximation algorithm for solving the split common fixed point problem for the strictly
pseudononspreading mappings in Hilbert spaces. Our results improve and develop previously discussed feasibility problems and
related results.

1. Introduction

Throughout this paper, we always assume that 𝐻 is a real
Hilbert space with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖. Let 𝐼
denote the identity operator on𝐻. Let𝐻

1
and𝐻

2
be two real

Hilbert spaces and let𝐴 : 𝐻
1
→ 𝐻
2
be a bounded linear ope-

rator. Given closed convex subsets 𝐶 and 𝑄 of 𝐻
1
and 𝐻

2
,

respectively.
The split feasibility problem (SFP) (Censor and Elfving

1994 [1]), modeling phase retrieval problems, is to find a point
𝑥
∗ with the property

𝑥
∗
∈ 𝐶, 𝐴𝑥

∗
∈ 𝐷. (1)

Recently, it has been found that the SFP can also be used
to model the intensity-modulated radiation therapy [2–8]. A
special case of the SFP (1) is the convexly constrained linear
problem:

𝐴𝑥 = 𝑏, 𝑥 ∈ 𝐶. (2)

This problem, due to its applications in many applied disci-
plines, has extensively been investigated in the literature ever
since Landweber [9] introduced his iterative method in 1951.

Note that the split feasibility problem (1) can be formu-
lated as fixed point equation by using the fact

𝑥
∗
= 𝑃
𝐶
(𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴) 𝑥

∗
, (3)

where 𝑃
𝐶
and 𝑃

𝑄
are the projections onto 𝐶 and 𝑄, respec-

tively, 𝛾 > 0 is any positive constant, and 𝐴∗ denotes the
adjoint of 𝐴; that is, 𝑥∗ solves the SFP (1) if and only if 𝑥∗
solves the fixed point equation (3) (see [10] for more details).
This implies that we can use fixed point algorithms to solve
SFP.

In 2002, Byrne [2] proposed his CQ algorithm to solve
(1). The sequence {𝑥

𝑛
} is generated by the following iteration

scheme:

𝑥
𝑛+1

= 𝑃
𝐶
(𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴) 𝑥

𝑛
, 𝑛 ∈ 𝑁, (4)

where 𝛾 ∈ (0, 2/𝜆), with 𝜆 being the spectral radius of the
operator 𝐴∗𝐴.

The CQ algorithm (4) is a special case of the K-M algo-
rithm. Due to the fixed point formulation (2) of the SFP,
Moudafi [11] applied the K-M algorithm to the operator
𝑃
𝐶
(𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
)𝐴) to obtain a sequence given by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
− 𝛼
𝑛
𝑃
𝐶
(𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴) 𝑥

𝑛
,

𝑛 ∈ 𝑁,

(5)

where 𝛾 ∈ (0, 2/𝜆), with 𝜆 being the spectral radius of the
operator 𝐴∗𝐴, and the sequence {𝛼

𝑛
} satisfies the condition

∑
∞

𝑛=1
𝛼
𝑛
(1 − 𝛼

𝑛
) = +∞; he proved weak convergence result of

the algorithm (5) in Hilbert spaces.
In 2009, Censor and Segal [12] considered the following

algorithm to be solved (1).
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Algorithm 1. Initialization: let 𝑥∗ ∈ 𝐻
1
= 𝑅
𝑛 be arbitrary.

Iterative step: for 𝑛 ∈ 𝑁 let

𝑥
𝑛+1

= 𝑈 (𝑥
𝑛
+ 𝛾𝐴
∗
((𝑉 − 𝐼)𝐴𝑥

𝑛
)) , 𝑛 ∈ 𝑁, (6)

where 𝛾 ∈ (0, 2/𝜆)with 𝜆 being the spectral radius of the ope-
rator 𝐴∗𝐴 and 𝑈,𝑉 be a single pair of directed operators.

In 2010,Moudafi [13] extended theAlgorithm 1 and intro-
duced the following algorithmwith weak convergence for the
split common fixed point problem.

Algorithm 2. Initialization: let 𝑥∗ ∈ 𝐻
1
= 𝑅
𝑛 be arbitrary.

Iterative step: for 𝑛 ∈ 𝑁 let

𝑢
𝑛
= 𝑥
𝑛
+ 𝛾𝛽𝐴

∗
(𝑉 − 𝐼)𝐴𝑥

𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑈 (𝑢
𝑛
) , 𝑛 ∈ 𝑁,

(7)

where 𝛽 ∈ (0, 1), 𝛼
𝑛
∈ (0, 1), and 𝛾 ∈ (0, 1/𝜆𝛽) with 𝜆 being

the spectral radius of the operator 𝐴∗𝐴 and 𝑈,𝑉 be a pair of
quasi-nonexpansive operators.

In 2012, Zhao and He [14] continue to consider the split
common fixed point problem with quasi-nonexpansive ope-
rators and to use the following algorithm to obtain the strong
convergence of the viscositymethod for solving the split com-
mon fixed point problem.

Algorithm 3. Initialization: let 𝑥∗ ∈ 𝐻
1
= 𝑅
𝑛 be arbitrary.

Iterative step: for 𝑛 ∈ 𝑁 let

𝑇 = 𝑈 (𝐼 + 𝛾𝐴
∗
(𝑉 − 𝐼)𝐴)

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
)

× ((1 − 𝜔
𝑛
) 𝑥
𝑛
+ 𝜔
𝑛
𝑇𝑥
𝑛
) , 𝑛 ∈ 𝑁,

(8)

where 𝑓 : 𝐻 → 𝐻 is a contractive mapping with constant
𝛽 ∈ (0, 1), 𝛼

𝑛
∈ (0, 1), and 𝛾 ∈ (0, 1/𝜆) with 𝜆 being the spe-

ctral radius of the operator 𝐴∗𝐴 and 𝑈,𝑉 be a pair of quasi-
nonexpansive operators.

Motivated and inspired byCensor and Segal [12],Moudafi
[11], andZhao andHe [14], we introduce the following relaxed
algorithm.

Algorithm 4. Initialization: let 𝑥∗ ∈ 𝐻
1
= 𝑅
𝑛 be arbitrary.

Iterative step: for 𝑛 ∈ 𝑁 let

𝑇 = 𝑈 (𝐼 + 𝛾𝐴
∗
(𝑉 − 𝐼)𝐴)

𝑥
𝑛+1

= 𝛼
𝑛
𝜎𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐵)

× ((1 − 𝜔
𝑛
) 𝑥
𝑛
+ 𝜔
𝑛
𝑇𝑥
𝑛
) , 𝑛 ∈ 𝑁,

(9)

where 𝑓 : 𝐻 → 𝐻 is a contractive mapping with constant
𝛽 ∈ (0, 1), 𝐵 : 𝐻 → 𝐻 is 𝜂-strongly monotone and bound-
edly Lipschitzian, 𝛼

𝑛
∈ (0, 1), and 𝛾 ∈ (0, 1/𝜆) with 𝜆 being

the spectral radius of the operator 𝐴∗𝐴 and 𝑈,𝑉 be a pair of

𝑖
-strictly pseudononspreading mappings 𝑖 = 1, 2.

This paper establishes the strong convergence of the
sequence given by (9) to the unique solution of solving the
split common fixed point problem and the following varia-
tional inequality problem VIP(𝜇𝐵 − 𝜎𝑓, 𝑇):

find 𝑥∗ ∈ Γ such that ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥∗, V − 𝑥∗⟩ ≥ 0,

V ∈ Γ.
(10)

2. Preliminaries

In this section, we introduce the concepts of contrac-
tionmappings, nonexpansive mappings, quasi-nonexpansive
mappings, and -strictly pseudononspreading mappings and
some Lemmas.

Assume that 𝐶 is a nonempty closed and convex subset
of Hilbert space 𝐻. Recall that the (nearest point or metric)
projection from 𝐻 onto 𝐾, that denoted 𝑃

𝐶
, assigns, to each

𝑥 ∈ 𝐻, the unique point 𝑃
𝐶
𝑥 ∈ 𝐶 with the property

𝑥 − 𝑃𝐶𝑥
 = inf {𝑥 − 𝑦

 : 𝑦 ∈ 𝐶} . (11)

Definition 5. A mapping 𝑇 : 𝐻 → 𝐻 is said to be

(1) contraction, if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝛽‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐻 and
𝛽 ∈ (0, 1);

(2) nonexpansive, if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐻;
(3) quasi-nonexpansive, ‖𝑇𝑥 − 𝑞‖ ≤ ‖𝑥 − 𝑞‖, ∀(𝑥, 𝑞) ∈

𝐻 × 𝐹
𝑖𝑥
(𝑇).

Remark 6. From the Definition 5, It is easy to see that

(i) iterative methods for quasi-nonexpansive mappings
have been extensively investigated; see [13–17];

(ii) a nonexpansive mapping is a quasi-nonexpansive
mapping.

Following the terminology of Browder and Petryshyn
[18], we obtain the following definitions.

Definition 7. A mapping 𝑇 : 𝐷(𝑇) ⊆ 𝐻 → 𝐻 is -strictly
pseudononspreading if there exists  ∈ [0, 1) such that

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+ 
𝑥 − 𝑇𝑥 − (𝑦 − 𝑇𝑦)



2

+ 2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ ,

(12)

for all 𝑥, 𝑦 ∈ 𝐷(𝑇).

Iterative methods for strictly pseudononspreading map-
ping have been extensively investigated; see [19–23].

Lemma 8 (see [24]). Let𝐻 be a Hilbert spaces, and 𝑓 : 𝐻 →

𝐻 is a contractive mapping with constant 𝛽 ∈ (0, 1). 𝐵 : 𝐻 →

𝐻 is 𝑘-Lipschitzian and 𝜂-stronglymonotone operator with 𝑘 >
0, 𝜂 > 0. Then for 0 < 𝜎 < 𝜇𝜂/𝛽,

⟨𝑥 − 𝑦, (𝜇𝐵 − 𝜎𝑓) 𝑥 − (𝜇𝐵 − 𝜎𝑓) 𝑦⟩

≥ (𝜇𝜂 − 𝜎𝛽)
𝑥 − 𝑦



2

, 𝑥, 𝑦 ∈ 𝐻.

(13)

That is, 𝜇𝐵 − 𝜎𝑓 is strongly monotone with coefficient 𝜇𝜂 − 𝜎𝛽.
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Lemma 9. Let 𝐻 be a real Hilbert space. Then the following
well-known results hold: for all 𝑥, 𝑦 ∈ 𝐻 and 𝑡 ∈ [0, 1]

(i) ‖𝑥 + 𝑦‖2 ≤ ‖𝑥‖2 + 2⟨𝑦, 𝑥 + 𝑦⟩;
(ii) ‖𝑡𝑥 + (1 − 𝑡)𝑦‖2 = 𝑡‖𝑥‖2+(1−𝑡)‖𝑦‖2−𝑡(1−𝑡)‖𝑥 − 𝑦‖2;
(iii) ⟨𝑥, 𝑦⟩ = −(1/2)‖𝑥 − 𝑦‖2 + (1/2)‖𝑥‖2 + (1/2)‖𝑦‖2.

Lemma 10. Let𝑇 be a -strictly pseudononspreading mapping
with  ∈ (0, 1), and set 𝑇

𝛼
= (1 − 𝛼)𝐼 + 𝛼𝑇, 𝛼 ∈ (, 1). The fol-

lowing properties are reached for each (𝑥, 𝑝) ∈ 𝐻 × 𝐹
𝑖𝑥
(𝑇):

(1) ⟨𝑥−𝑇𝑥, 𝑥−𝑝⟩ ≥ ((1−)/2)‖𝑥 − 𝑇𝑥‖2 and ⟨𝑥−𝑇𝑥, 𝑝−
𝑇𝑥⟩ ≤ ((1 + )/2)‖𝑥 − 𝑇𝑥‖

2;
(2) ‖𝑇

𝛼
𝑥 − 𝑝‖

2
≤ ‖𝑥 − 𝑝‖

2
− 𝛼(1 −  − 𝛼)‖𝑥 − 𝑇𝑥‖

2;
(3) ⟨𝑥 − 𝑇

𝛼
𝑥, 𝑥 − 𝑝⟩ ≥ (𝛼(1 − )/2)‖𝑥 − 𝑇𝑥‖

2.

Proof. Note that property (1) is easily deduced from the
Lemma 8(iii) and the fact that 𝑇 is -strictly pseudonon-
spreading mapping, we obtain

⟨𝑥 − 𝑇𝑥, 𝑥 − 𝑝⟩ = −
1

2

𝑇𝑥 − 𝑝


2

+
1

2
‖𝑥 − 𝑇𝑥‖

2

+
1

2

𝑥 − 𝑝


2

= −
1

2

𝑇𝑥 − 𝑝


2

+
1 − 

2
‖𝑥 − 𝑇𝑥‖

2

+
1

2
(
𝑥 − 𝑝



2

+ ‖𝑥 − 𝑇𝑥‖
2
)

≥ −
1

2

𝑇𝑥 − 𝑝


2

+
1

2

𝑇𝑥 − 𝑝


2

+
1 − 

2
‖𝑥 − 𝑇𝑥‖

2

≥
1 − 

2
‖𝑥 − 𝑇𝑥‖

2
,

⟨𝑥 − 𝑇𝑥, 𝑝 − 𝑇𝑥⟩ = −
1

2

𝑥 − 𝑝


2

+
1

2
‖𝑥 − 𝑇𝑥‖

2

+
1

2

𝑇𝑥 − 𝑝


2

≤ −
1

2

𝑇𝑥 − 𝑝


2

+
𝑇𝑥 − 𝑝



2

+ (
1

2
+ )

𝑇𝑥 − 𝑝


2

≤
1 + 

2
‖𝑥 − 𝑇𝑥‖

2
.

(14)

Property (2) is obtained from property (1) and by

𝑇𝛼𝑥 − 𝑝


2

=
𝑥 − 𝑝



2

− 2𝛼 ⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩

+ 𝛼
2
‖𝑇𝑥 − 𝑥‖

2
.

(15)

Property (3) is given by 𝐼 − 𝑇
𝛼
= 𝛼(𝐼 − 𝑇) and property

(1).

Lemma 11 (see [25]). Let {T
𝑛
} be a sequence of real numbers

that does not decrease at infinity, in the sense that there exists
a subsequence {T

𝑛𝑗
}
𝑗 ≥ 0

of {T
𝑛
} which satisfies T

𝑛𝑗
< T
𝑛𝑗+1

for all 𝑗 ≥ 0. Also consider the sequence of integers {𝛿(𝑛)}
𝑛 ≥ 𝑛0

defined by

𝛿 (𝑛) = max {𝑘 ≤ 𝑛 | T
𝑘
< T
𝑘+1
} . (16)

Then {𝛿(𝑛)}
𝑛 ≥ 𝑛0

is a nondecreasing sequence verifying
lim
𝑛→∞

𝛿(𝑛) = ∞, for all 𝑛 ≥ 𝑛
0
; it holds thatT

𝛿(𝑛)
< T
𝛿(𝑛)+1

and one has

T
𝑛
< T
𝛿(𝑛)+1

. (17)

Lemma 12. Let 𝐾 be a closed convex subset of a real Hilbert
space𝐻, given 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐾. Then 𝑦 = 𝑃

𝐾
𝑥 if and only if

there holds the inequality

⟨𝑥 − 𝑦, 𝑦 − 𝑧⟩ ≥ 0, ∀𝑧 ∈ 𝐾. (18)

3. Main Results

In what follows, we will focus our attention on the following
general two operator split common fixed point problem in
real Hilbert space𝐻:

find 𝑥∗ ∈ 𝐶 such that 𝐴𝑥∗ ∈ 𝐷, (19)

where𝐴 : 𝐻
1
→ 𝐻
2
is a bounded linear operator,𝑈 : 𝐻

1
→

𝐻
1
and𝑉 : 𝐻

2
→ 𝐻
2
are two 

𝑖
-strictly pseudononspreading

mappings 𝑖 = 1, 2 with nonempty fixed point sets 𝐹
𝑖𝑥
(𝑈) =

𝐶 and 𝐹
𝑖𝑥
(𝑉) = 𝑄, and denote the solution set of the two-

operator SCFP by

Γ = {𝑦 ∈ 𝐶;𝐴𝑦 ∈ 𝑄} . (20)

On the other hand, 𝑥∗ ∈ Γ is also unique solution of solving
the variational inequality problem VIP(𝜇𝐵 − 𝜎𝑓, 𝑇):

𝑥
∗
∈ Γ, ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥

∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, 𝑦 ∈ Γ, (21)

where 𝐵 : 𝐻 → 𝐻 is 𝜂-strongly monotone and 𝑘-Lipschit-
zian on 𝐻 with 𝑘 > 0, 𝜂 > 0. Let 0 < 𝜇 < 2𝜂/𝑘

2, 0 < 𝜎 <

𝜇(𝜂 − (𝜇𝑘
2
/2))/𝛽 = 𝜏/𝛽.

Before stating our main convergence result, we establish
the boundedness of the iterates given by (9).

Lemma 13. The sequence {𝑥
𝑛
} is generated by (9), and let

𝑈 : 𝐻
1
→ 𝐻

1
and 𝑉 : 𝐻

2
→ 𝐻

2
be two 

𝑖
-strictly pseudo-

nonspreading mappings on 𝐻, 𝑖 = 1, 2, and 𝑓 : 𝐻 → 𝐻 is a
contractive mapping with constant 𝛽 ∈ (0, 1), {𝛼

𝑛
} ⊂ (0, 1) and

0 < 
𝑖
< 𝜔
𝑛
< 1/2, 𝑖 = 1, 2. Then {𝑥

𝑛
} is bounded.

Proof. Set 𝑇
𝜔𝑛
= (1−𝜔

𝑛
)𝐼+𝜔
𝑛
𝑇.Then 𝑥

𝑛+1
= 𝛼
𝑛
𝜎𝑓(𝑥
𝑛
)+ (𝐼−

𝜇𝛼
𝑛
𝐵)𝑇
𝜔𝑛
𝑥
𝑛
.
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Taking 𝑦 ∈ Γ, that is, 𝑦 ∈ 𝐹
𝑖𝑥
(𝑈) and 𝐴𝑦 ∈ 𝐹

𝑖𝑥
(𝑉). We

obtain

𝑥𝑛+1 − 𝑦
 =


𝛼
𝑛
𝜎 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑦)) + 𝛼

𝑛
(𝜎𝑓 (𝑦) − 𝜇𝐵𝑦)

+ (𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑇
𝜔𝑛
𝑥
𝑛
− 𝑦)



≤ 𝛼
𝑛
𝜎
𝑓 (𝑥𝑛) − 𝑓 (𝑦)

 + 𝛼𝑛
𝜎𝑓 (𝑦) − 𝜇𝐵𝑦



+ (1 − 𝛼
𝑛
𝜏)

𝑇
𝜔𝑛
𝑥
𝑛
− 𝑦



≤ 𝛼
𝑛
𝜎𝛽
𝑥𝑛 − 𝑦

 + 𝛼𝑛
𝜎𝑓 (𝑦) − 𝜇𝐵𝑦



+ (1 − 𝛼
𝑛
𝜏)

𝑇
𝜔𝑛
𝑥
𝑛
− 𝑦


.

(22)

From the definition of 𝑇
𝜔𝑛
, we have


𝑇
𝜔𝑛
𝑥
𝑛
− 𝑦



2

=
(1 − 𝜔𝑛) 𝑥𝑛 + 𝜔𝑛𝑇𝑥𝑛 − 𝑦



2

=
𝑥𝑛 − 𝑦 + 𝜔𝑛 (𝑇𝑥𝑛 − 𝑥𝑛)



2

=
𝑥𝑛 − 𝑦



2

− 2𝜔
𝑛
⟨𝑥
𝑛
− 𝑦, 𝑥

𝑛
− 𝑇𝑥
𝑛
⟩

+ 𝜔
2

𝑛

𝑇𝑥𝑛 − 𝑥𝑛


2

.

(23)

On the other hand, we obtain

𝑇𝑥𝑛 − 𝑦


2

=
𝑈 (𝐼 + 𝛾𝐴

∗
(𝑉 − 𝐼)𝐴) 𝑥

𝑛
− 𝑦



2

≤
(𝐼 + 𝛾𝐴

∗
(𝑉 − 𝐼)𝐴)𝑥

𝑛
− 𝑦



2

=
𝑥𝑛 − 𝑦



2

+ 𝛾
2𝐴
∗
(𝑉 − 𝐼)𝐴𝑥

𝑛



2

+ 2𝛾 ⟨𝑥
𝑛
− 𝑦, 𝐴

∗
(𝑉 − 𝐼)𝐴𝑥

𝑛
− 𝑦⟩

=
𝑥𝑛 − 𝑦



2

+ 𝛾
2
⟨(𝑉 − 𝐼)𝐴𝑥

𝑛
, 𝐴𝐴
∗
(𝑉 − 𝐼)𝐴𝑥

𝑛
⟩

+ 2𝛾 ⟨𝑥
𝑛
− 𝑦, 𝐴

∗
(𝑉 − 𝐼)𝐴𝑥

𝑛
⟩ .

(24)

According to the definition of 𝜆, we have

𝛾
2
⟨(𝑉 − 𝐼)𝐴𝑥

𝑛
, 𝐴𝐴
∗
(𝑉 − 𝐼)𝐴𝑥

𝑛
⟩

≤ 𝜆𝛾
2
⟨(𝑉 − 𝐼)𝐴𝑥

𝑛
, (𝑉 − 𝐼)𝐴𝑥

𝑛
⟩

= 𝜆𝛾
2(𝑉 − 𝐼)𝐴𝑥𝑛



2

.

(25)

Now, by using property (1) of Lemma 9, we obtain

2𝛾 ⟨𝑥
𝑛
− 𝑦, 𝐴

∗
(𝑉 − 𝐼)𝐴𝑥

𝑛
⟩

= 2𝛾 ⟨𝐴 (𝑥
𝑛
− 𝑦) , (𝑉 − 𝐼)𝐴𝑥

𝑛
⟩

= 2𝛾 ⟨𝐴 (𝑥
𝑛
− 𝑦) + (𝑉 − 𝐼)𝐴𝑥

𝑛

− (𝑉 − 𝐼)𝐴𝑥
𝑛
, (𝑉 − 𝐼)𝐴𝑥

𝑛
⟩

= 2𝛾 (⟨𝑉𝐴𝑥
𝑛
− 𝐴𝑦, (𝑉 − 𝐼)𝐴𝑥

𝑛
⟩

−
(𝑉 − 𝐼)𝐴𝑥𝑛



2

)

≤ 2𝛾 (
1 − 
2

2

(𝑉 − 𝐼)𝐴𝑥𝑛


2

−
(𝑉 − 𝐼)𝐴𝑥𝑛



2

)

≤ −𝛾 (1 − 
2
)
(𝑉 − 𝐼)𝐴𝑥𝑛



2

.

(26)

Combining (24)–(26), we obtain

𝑇𝑥𝑛 − 𝑦


2

=
𝑥𝑛 − 𝑦



2

+ 𝜆𝛾
2(𝑉 − 𝐼)𝐴𝑥𝑛



2

− 𝛾 (1 − 
2
)
(𝑉 − 𝐼)𝐴𝑥𝑛



2

=
𝑥𝑛 − 𝑦



2

− 𝛾 ((1 − 
2
) − 𝜆𝛾)

×
(𝑉 − 𝐼)𝐴𝑥𝑛



2

≤
𝑥𝑛 − 𝑦



2

.

(27)

From property (i) of Lemma 9 and (23), we get


𝑇
𝜔𝑛
𝑥
𝑛
− 𝑦



2

≤
𝑥𝑛 − 𝑦



2

− (1 − 
2
) 𝜔
𝑛

𝑥𝑛 − 𝑇𝑥𝑛


2

+ 𝜔
2

𝑛

𝑇𝑥𝑛 − 𝑥𝑛


2

=
𝑥𝑛 − 𝑦



2

− 𝜔
𝑛
(1 − 

2
− 𝜔
𝑛
)

×
𝑥𝑛 − 𝑇𝑥𝑛



2

≤
𝑥𝑛 − 𝑦



2

.

(28)

Combining (22), (23), and (28), we have
𝑥𝑛+1 − 𝑦

 ≤ 𝛼𝑛𝜎𝛽
𝑥𝑛 − 𝑦

 + 𝛼𝑛
𝑓 (𝑦) − 𝜇𝐵𝑦



+ (1 − 𝛼
𝑛
𝜏)

𝑇
𝜔𝑛
𝑥
𝑛
− 𝑦



= [1 − 𝛼
𝑛
(𝜏 − 𝜎𝛽)]

𝑥𝑛 − 𝑦


+ 𝛼
𝑛

𝑓 (𝑦) − 𝜇𝐵𝑦


≤ max{𝑥𝑛 − 𝑦
 ,

1

𝜏 − 𝜎𝛽

𝑓 (𝑦) − 𝜇𝐵𝑦
} .

(29)

It follows from (29) and induction that

𝑥𝑛+1 − 𝑦
 ≤ max{𝑥0 − 𝑦

 ,
1

𝜏 − 𝜎𝛽

𝑓 (𝑦) − 𝜇𝐵𝑦
} ,

(30)

and hence {𝑥
𝑛
} is bounded.

Now we are in position to claim the main convergence
result.
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Theorem 14. Given a bounded linear operator𝐴 : 𝐻
1
→ 𝐻
2
,

let 𝑈 : 𝐻
1
→ 𝐻

1
and 𝑉 : 𝐻

2
→ 𝐻

2
be two 

𝑖
-strictly pseu-

dononspreading mappings, and 𝑖 = 1, 2 with fixed point
𝐹
𝑖𝑥
(𝑈) = 𝐶 and 𝐹

𝑖𝑥
(𝑉) = 𝑄. Assume that 𝑈 − 𝐼 and 𝑉 − 𝐼

are demiclosed at origin. Let 𝐵 : 𝐻 → 𝐻 be 𝜂-strongly mono-
tone and 𝑘-Lipschitzian on 𝐻 with 𝑘 > 0, 𝜂 > 0, and 𝑓 :

𝐻 → 𝐻 is a contractive mapping with constant 𝛽 ∈ (0, 1).
Assume that {𝑥

𝑛
} is the sequence given by Algorithm 4 with

𝛾 ∈ (0, 1/𝜆), 0 < 
𝑖
< 𝜔
𝑛
< 1/2, and 𝑖 = 1, 2 such that

0 < lim inf
𝑛→∞

𝜔
𝑛
≤ lim sup

𝑛→∞
𝜔
𝑛
< 1/2 and 𝛼

𝑛
∈ (0, 1)

such that lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞. If Γ ̸= 0, then the

sequence {𝑥
𝑛
} strongly converges to a split common fixed point

𝑦 ∈ Γ, verifying 𝑦 = 𝑃
Γ
(𝐼 − 𝜇𝐵 + 𝜎𝑓)(𝑦) which equivalently

solves the following variational inequality problem:
𝑦 ∈ Γ, ⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥

∗
− 𝑦⟩ ≥ 0, 𝑥

∗
∈ Γ. (31)

Proof. Let 𝑦 be the solution of (31). From (9) we obtain that

𝑥
𝑛+1

− 𝑥
𝑛
+ 𝛼
𝑛
(𝜇𝐵𝑥
𝑛
− 𝜎𝑓 (𝑥

𝑛
)) = (𝐼 − 𝜇𝛼

𝑛
𝐵) (𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
) ,

(32)
hence

⟨𝑥
𝑛+1

− 𝑥
𝑛
+ 𝛼
𝑛
(𝜇𝐵𝑥
𝑛
− 𝜎𝑓 (𝑥

𝑛
)) , 𝑥
𝑛
− 𝑦⟩

= ⟨(𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
) , 𝑥
𝑛
− 𝑦⟩

= (1 − 𝛼
𝑛
) ⟨𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩

+ 𝛼
𝑛
⟨(𝐼 − 𝜇𝐵) (𝑇

𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
) , 𝑥
𝑛
− 𝑦⟩

≤ (1 − 𝛼
𝑛
) ⟨𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩

+ 𝛼
𝑛


(𝐼 − 𝜇𝐵) (𝑇

𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
)


𝑥𝑛 − 𝑦


≤ (1 − 𝛼
𝑛
) ⟨𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩

+ 𝛼
𝑛
(1 − 𝜏)


𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛



𝑥𝑛 − 𝑦


= (1 − 𝛼
𝑛
) ⟨𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩

+ 𝜔
𝑛
𝛼
𝑛
(1 − 𝜏)

𝑇𝑥𝑛 − 𝑥𝑛


𝑥𝑛 − 𝑦
 .

(33)

By (28), we obtain that

⟨𝑥
𝑛
− 𝑇
𝜔𝑛
𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩ =

𝜔
2

𝑛

2


𝑥
𝑛
− 𝑇
𝜔𝑛
𝑥
𝑛



2

+
1

2

𝑥𝑛 − 𝑦


2

−
1

2


𝑇
𝜔𝑛
𝑥
𝑛
− 𝑦



2

≥
𝜔
2

𝑛

2

𝑥𝑛 − 𝑇𝑥𝑛


2

+
1

2

𝑥𝑛 − 𝑦


2

−
1

2

𝑥𝑛 − 𝑦


2

+
𝜔
𝑛

2
(1 − 

2
− 𝜔
𝑛
)
𝑥𝑛 − 𝑇𝑥𝑛



2

=
𝜔
𝑛
(1 − 

2
)

2

𝑥𝑛 − 𝑇𝑥𝑛


2

.

(34)

It follows from (33) that
⟨𝑥
𝑛+1

− 𝑥
𝑛
+ 𝛼
𝑛
(𝜇𝐵𝑥
𝑛
− 𝜎𝑓 (𝑥

𝑛
)) , 𝑥
𝑛
− 𝑦⟩

≤ −
𝜔
𝑛

2
(1 − 

2
) (1 − 𝛼

𝑛
)
𝑥𝑛 − 𝑇𝑥𝑛



2

+ 𝜔
𝑛
𝛼
𝑛
(1 − 𝜏)

𝑇𝑥𝑛 − 𝑥𝑛


𝑥𝑛 − 𝑦


(35)

or equivalently

− ⟨𝑥
𝑛
− 𝑥
𝑛+1
, 𝑥
𝑛
− 𝑦⟩ ≤ −𝛼

𝑛
⟨(𝜇𝐵 − 𝜎𝑓) 𝑥

𝑛
, 𝑥
𝑛
− 𝑦⟩

−
𝜔
𝑛

2
(1 − 

2
) (1 − 𝛼

𝑛
)
𝑥𝑛 − 𝑇𝑥𝑛



2

+ 𝜔
𝑛
𝛼
𝑛
(1 − 𝜏)

𝑇𝑥𝑛 − 𝑥𝑛


𝑥𝑛 − 𝑦
 .

(36)

Furthermore, using the classical equality (iii) in Lemma 10
and settingT

𝑛
= (1/2)‖𝑥

𝑛
− 𝑦‖
2, we have

⟨𝑥
𝑛
− 𝑥
𝑛+1
, 𝑥
𝑛
− 𝑦⟩ = T

𝑛
−T
𝑛+1

+
1

2

𝑥𝑛 − 𝑥𝑛+1


2

. (37)

So that (36) can be equivalently rewritten as

T
𝑛+1

−T
𝑛
−
1

2

𝑥𝑛 − 𝑥𝑛+1


2

≤ −𝛼
𝑛
⟨(𝜇𝐵 − 𝜎𝑓) 𝑥

𝑛
, 𝑥
𝑛
− 𝑦⟩

−
𝜔
𝑛

2
(1 − 

2
) (1 − 𝛼

𝑛
)
𝑥𝑛 − 𝑇𝑥𝑛



2

+ 𝜔
𝑛
𝛼
𝑛
(1 − 𝜏)

𝑇𝑥𝑛 − 𝑥𝑛


𝑥𝑛 − 𝑦
 .

(38)

Now using (32) again, we have
𝑥𝑛+1 − 𝑥𝑛



2

=

𝛼
𝑛
(𝜎𝑓 (𝑥

𝑛
) − 𝜇𝐵𝑥

𝑛
)

+ (𝐼 − 𝜇𝛼
𝑛
𝐵) (𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
)


2

.

(39)

Since𝐵 : 𝐻 → 𝐻 is 𝜂-stronglymonotone and 𝑘-Lipschitzian
on𝐻, hence it is a classical matter to see that

𝑥𝑛+1 − 𝑥𝑛


2

≤ 2𝛼
2

𝑛

𝜎𝑓 (𝑥𝑛) − 𝜇𝐵𝑥𝑛


2

+ 2(1 − 𝛼
𝑛
𝜏)
2
𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛



2

,

(40)

which by ‖𝑇
𝜔𝑛
𝑥
𝑛
− 𝑥
𝑛
‖ = 𝜔
𝑛
‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ yields

1

2

𝑥𝑛+1 − 𝑥𝑛


2

≤ 𝛼
2

𝑛

𝜎𝑓 (𝑥𝑛) − 𝜇𝐵𝑥𝑛


2

+ (1 − 𝛼
𝑛
𝜏)
2

𝜔
2

𝑛

𝑥𝑛 − 𝑇𝑥𝑛


2

.

(41)

Then from (38) and (41), we have

T
𝑛+1

−T
𝑛
+ [

𝜔
𝑛

2
(1 − 

2
) (1 − 𝛼

𝑛
) − 𝜔
2

𝑛
(1 − 𝛼

𝑛
𝜏)
2

]

×
𝑥𝑛 − 𝑇𝑥𝑛



2

≤ 𝛼
𝑛
[𝛼
𝑛

𝜎𝑓 (𝑥𝑛) − 𝜇𝐵𝑥𝑛


2

− ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩

+𝜔
𝑛
(1 − 𝜏)

𝑇𝑥𝑛 − 𝑥𝑛


𝑥𝑛 − 𝑦
 ] .

(42)

The rest of the proof will be divided into two parts.
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Case 1. Suppose that there exists 𝑛
0
such that {T

𝑛
}
𝑛 ≥ 𝑛0

is
nonincreasing. In this situation, {T

𝑛
} is then convergent

because it is also nonnegative (hence it is bounded from
below), so that lim

𝑛→∞
(T
𝑛+1

− T
𝑛
) = 0; hence, in light of

(42) together with lim
𝑛→∞

𝛼
𝑛
= 0, the boundedness of {𝑥

𝑛
}

and 0 < lim inf
𝑛→∞

𝜔
𝑛
≤ lim sup

𝑛→∞
𝜔
𝑛
< 1/2, we obtain

lim
𝑛→∞

𝑥𝑛 − 𝑇𝑥𝑛
 = 0. (43)

It also follows from (42) that

T
𝑛
−T
𝑛+1

≥ 𝛼
𝑛
(−𝛼
𝑛

𝜎𝑓 (𝑥𝑛) − 𝜇𝐵𝑥𝑛


2

+ ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩

−𝜔
𝑛
(1 − 𝜏)

𝑇𝑥𝑛 − 𝑥𝑛


𝑥𝑛 − 𝑦
 ) .

(44)

Then, by ∑∞
𝑛=0

𝛼
𝑛
= ∞, we obviously deduce that

lim inf
𝑛→∞

𝛼
𝑛
(−𝛼
𝑛

𝜎𝑓 (𝑥𝑛) − 𝜇𝐵𝑥𝑛


2

+ ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩

−𝜔
𝑛
(1 − 𝜏)

𝑇𝑥𝑛 − 𝑥𝑛


𝑥𝑛 − 𝑦
 ) ≤ 0

(45)

or equivalently (as 𝛼
𝑛
‖𝜎𝑓(𝑥

𝑛
) − 𝜇𝐵𝑥

𝑛
‖
2

→ 0 and
lim
𝑛→∞

(T
𝑛+1

−T
𝑛
) = 0). From (45), we get

lim inf
𝑛→∞

⟨(𝜇𝐵 − 𝜎𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩ ≤ 0. (46)

Moreover, by Lemma 8, we have

2 (𝜇𝜂 − 𝜎𝛽)T
𝑛
+ ⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥

𝑛
− 𝑦⟩

≤ ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩ ,

(47)

which by (46) entails

lim inf
𝑛→∞

⟨2 (𝜇𝜂 − 𝜎𝛽)T
𝑛
+ (𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥

𝑛
− 𝑦⟩ ≤ 0. (48)

Hence, recalling that lim
𝑛→∞

T
𝑛
exists, we equivalently

obtain

2 (𝜇𝜂 − 𝜎𝛽) lim
𝑛→∞

T
𝑛
+ lim inf
𝑛→∞

⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥
𝑛
− 𝑦⟩ ≤ 0,

(49)

Namely,

2 (𝜇𝜂 − 𝜎𝛽) lim
𝑛→∞

T
𝑛
≤ −lim inf
𝑛→∞

⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥
𝑛
− 𝑦⟩ .

(50)

Now we prove that

lim inf
𝑛→∞

⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥
𝑛
− 𝑦⟩ ≤ 0. (51)

It follows from (27) and (43) that

𝛾 ((1 − 
2
) − 𝜆𝛾)

(𝑉 − 𝐼)𝐴𝑥𝑛


2

≤
𝑥𝑛 − 𝑦



2

−
𝑇𝑥𝑛 − 𝑦



2

= (
𝑥𝑛 − 𝑦

 −
𝑇𝑥𝑛 − 𝑦

)

× (
𝑥𝑛 − 𝑦

 +
𝑇𝑥𝑛 − 𝑦

)

= (
𝑥𝑛 − 𝑇𝑥𝑛

) (
𝑥𝑛 − 𝑦

 +
𝑇𝑥𝑛 − 𝑦

)

→ 0, (𝑛 → ∞) ,

(52)

and hence

lim
𝑛→∞

(𝑉 − 𝐼)𝐴𝑥𝑛
 = 0. (53)

Taking 𝑥∗ ∈ 𝜔
𝑤
(𝑥
𝑛
), from the demiclosedness of 𝑉 − 𝐼 at 0,

we have

𝑉 (𝐴𝑥
∗
) = 𝐴𝑥

∗
. (54)

Now, by setting 𝑢
𝑛
= 𝑥
𝑛
+ 𝛾𝐴
∗
𝑉 − 𝐼𝐴𝑥

𝑛
, it follows that 𝑥∗ ∈

𝜔
𝑤
(𝑢
𝑛
). On the other hand,

𝑈 (𝑢𝑛) − 𝑢𝑛
 =

𝑇𝑥𝑛 − 𝑥𝑛 − 𝛾𝐴
∗
𝑉 − 𝐼𝐴𝑥

𝑛



≤
𝑇𝑥𝑛 − 𝑥𝑛

 + 𝛾
𝐴
∗

𝑉 − 𝐼𝐴𝑥𝑛
 → 0,

(55)

which, combined with the demiclosedness of𝑈−𝐼 at 0, yields

𝑈𝑥
∗
= 𝑥
∗
. (56)

Hence, 𝑥∗ ∈ 𝐶 and 𝑥∗ ∈ Γ. We can take subsequence {𝑥
𝑛𝑗
} of

{𝑥
𝑛
} such that lim

𝑛→∞
𝑥
𝑛𝑗
= 𝑥
∗ and

lim inf
𝑛→∞

⟨(𝜎𝑓− 𝜇𝐵) 𝑦, 𝑥
𝑛
− 𝑦⟩ = lim

𝑗→∞

⟨(𝜎𝑓− 𝜇𝐵) 𝑦, 𝑥
𝑛𝑗
− 𝑦⟩,

(57)

which leads to

lim inf
𝑛→∞

⟨(𝜎𝑓 − 𝜇𝐵) 𝑦, 𝑥
𝑛
− 𝑦⟩ = ⟨(𝜎𝑓 − 𝜇𝐵) 𝑦, 𝑥

∗
− 𝑦⟩ ≤ 0.

(58)

By (50), we have lim
𝑛→∞

Γ
𝑛
= 0, and hence {𝑥

𝑛
} converges

strongly to 𝑦.

Case 2. Suppose that there exists a subsequence {T
𝑛𝑘
}
𝑘 ≥ 0

of
{T
𝑛
}
𝑛 ≥ 0

such thatT
𝑛𝑘
≤ T
𝑛𝑘+ 1

for all 𝑘 ≥ 0. In this situation,
we consider the sequence of indices {𝛿(𝑛)} as defined in
Lemma 11. It follows thatT

𝛿(𝑛+1)
−T
𝛿(𝑛)

> 0, which by (42)
amounts to

[
𝜔
𝑛

2
(1 − 

2
)(1 − 𝛼

𝛿(𝑛)
)− 𝜔
2

𝑛
(1 − 𝛼

𝛿(𝑛)
𝜏)
2

]
𝑥𝛿(𝑛) −𝑇𝑥𝛿(𝑛)



2

≤ 𝛼
𝛿(𝑛)

[𝛼
𝛿(𝑛)

𝜎𝑓 (𝑥𝛿(𝑛)) − 𝜇𝐵𝑥𝑛


2

− ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑦⟩

+𝜔
𝑛
(1 − 𝜏)

𝑇𝑥𝛿(𝑛) − 𝑥𝛿(𝑛)


𝑥𝛿(𝑛) − 𝑦
 ] .

(59)
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By the boundedness of {𝑥
𝑛
} and lim

𝑛→∞
𝛼
𝑛
= 0, we immed-

iately obtain

lim
𝑛→∞

𝑥𝛿(𝑛) − 𝑇𝑥𝛿(𝑛)
 = 0. (60)

Using (9), we have
𝑥𝛿(𝑛)+1 − 𝑥𝛿(𝑛)

 ≤ 𝛼𝛿(𝑛)
𝜎𝑓 (𝑥𝛿(𝑛)) − 𝜇𝐵𝑥𝛿(𝑛)



+
1 − 𝛼𝛿(𝑛)𝜏




𝑇
𝜔𝑛
𝑥
𝛿(𝑛)

− 𝑥
𝛿(𝑛)



≤ 𝛼
𝛿(𝑛)

𝜎𝑓 (𝑥𝛿(𝑛)) − 𝜇𝐵𝑥𝛿(𝑛)


+
1 − 𝛼𝛿(𝑛)𝜔𝑛𝜏



𝑇𝑥𝛿(𝑛) − 𝑥𝛿(𝑛)
 ,

(61)

which together with (60) and lim
𝑛→∞

𝛼
𝑛
= 0 yields

lim
𝑛→∞

𝑥𝛿(𝑛)+1 − 𝑥𝛿(𝑛)
 = 0. (62)

Similar to Case 1, we have

lim inf
𝑛→∞

⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥
𝛿(𝑛)

− 𝑦⟩ ≥ 0. (63)

Now by (59) we clearly have

𝛼
𝛿(𝑛)

𝜎𝑓 (𝑥𝛿(𝑛)) − 𝜇𝐵𝑥𝛿(𝑛)


2

+ 𝛼 (1 − 𝜏)

×
𝑇𝑥𝛿(𝑛) − 𝑥𝛿(𝑛)



𝑥𝛿(𝑛) − 𝑦


≥ ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥
𝛿(𝑛)
, 𝑥
𝛿(𝑛)

− 𝑦⟩ ,

(64)

which in the light of (47) yields

2 (𝜇𝜂 − 𝜎𝛽)T
𝛿(𝑛)

+ ⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥
𝛿(𝑛)

− 𝑦⟩

≤ 𝛼
𝛿(𝑛)

𝜎𝑓 (𝑥𝛿(𝑛)) − 𝜇𝐵𝑥𝛿(𝑛)


2

+ 𝛼 (1 − 𝜏)
𝑇𝑥𝛿(𝑛) − 𝑥𝛿(𝑛)



𝑥𝛿(𝑛) − 𝑦
 .

(65)

Hence (as lim
𝑛→∞

𝛼
𝛿(𝑛)
‖𝜎𝑓(𝑥

𝛿(𝑛)
) − 𝜇𝐵𝑥

𝛿(𝑛)
‖
2

= 0 and
lim
𝑛→∞

‖𝑇𝑥
𝛿(𝑛)

− 𝑥
𝛿(𝑛)
‖ = 0) it follows that

2 (𝜇𝜂 −𝜎𝛽) lim sup
𝑛→∞

T
𝛿(𝑛)

≤ −lim inf
𝑛→∞

⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥
𝛿(𝑛)

−𝑦⟩.

(66)

From (59) and (63), we obtain

lim
𝑛→∞

⟨(𝜇𝐵 − 𝜎𝑓) 𝑦, 𝑥
𝛿(𝑛)

− 𝑦⟩ ≥ 0, (67)

which by (60) yields lim sup
𝑛→∞

T
𝛿(𝑛)

= 0, so that
lim
𝑛→∞

T
𝛿(𝑛)

= 0. Combining (62), we have lim
𝑛→∞

T
𝛿(𝑛)+1

= 0. Then, recalling thatT
𝑛
< T
𝛿(𝑛)+1

(by Lemma 11), we get
lim
𝑛→∞

T
𝑛
= 0, so that 𝑥

𝑛
→ 𝑦 strongly.

In addition, the variational inequality (50) and (67) can
be written as

⟨(𝐼 − 𝜇𝐵 + 𝜎𝑓) 𝑦 − 𝑦, 𝑥
∗
− 𝑦⟩ ≤ 0, 𝑥

∗
∈ Γ. (68)

So, by the Lemma 12, it is equivalent to the fixed point
equation

𝑃
Γ
(𝐼 − 𝜇𝐵 + 𝜎𝑓) 𝑦 = 𝑦. (69)

4. Application in Other Nonlinear Operators

In order to define our motivations, we recall some definitions
of classed of operators as follows

Definition 15. 𝑇 : 𝐷(𝑇) ⊆ 𝐻 → 𝐻 is said to be

(1) nonspreading in [26, 27], if
𝑇𝑥 − 𝑇𝑦



2

≤
𝑇𝑥 − 𝑦



2

+
𝑇𝑦 − 𝑥



2

, ∀𝑥, 𝑦 ∈ 𝐶, (70)

(2) demicontractive in [28], if there exists a constant 𝛼 <
1 such that

𝑇𝑥 − 𝑞


2

≤
𝑥 − 𝑞



2

+ 𝛼‖𝑥 − 𝑇𝑥‖
2
,

∀ (𝑥, 𝑞) ∈ 𝐻 × 𝐹
𝑖𝑥
(𝑇) .

(71)

Remark 16. Iemoto and Takahashi [29] proved that (70) is
equivalent to

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+ 2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ ,

∀𝑥, 𝑦 ∈ 𝐶.

(72)

Iterative methods for nonspreading mapping have been
extensively investigated; see [30–34].

Remark 17. From the Definition 5 (3), Definition 7, and
Definition 15, we have the following facts.

(i) Observe that every nonspreading mapping is 0-
strictly pseudononspreading.

(ii) If 𝑇 is nonspreading mapping and the set of fixed
point is nonempty, then 𝑇 is quasi-nonexpansive
mapping.

(iii) Every pseudononspreading mapping with a non-
empty fixed point set 𝐹

𝑖𝑥
(𝑇) is demicontractive (see

[28]).

Corollary 18. Given a bounded linear operator 𝐴 : 𝐻
1
→

𝐻
2
, let𝑈 : 𝐻

1
→ 𝐻
1
and𝑉 : 𝐻

2
→ 𝐻
2
be two nonspreading

mappingswith fixed point𝐹
𝑖𝑥
(𝑈) = 𝐶 and𝐹

𝑖𝑥
(𝑉) = 𝑄. Assume

that𝑈− 𝐼 and 𝑉− 𝐼 are demiclosed at origin. Let 𝐵 : 𝐻 → 𝐻

be 𝜂-strongly monotone and 𝑘-Lipschitzian on 𝐻 with 𝑘 > 0,
𝜂 > 0, and let 𝑓 : 𝐻 → 𝐻 be a contractive mapping with
constant 𝛽 ∈ (0, 1). Let {𝑥

𝑛
} be the sequence given by (9) with

𝛾 ∈ (0, 1/𝜆), 0 < 
𝑖
< 𝜔
𝑛
< 1/2, and 𝑖 = 1, 2 such that

0 < lim inf
𝑛→∞

𝜔
𝑛
≤ lim sup

𝑛→∞
𝜔
𝑛
< 1/2 and 𝛼

𝑛
∈ (0, 1)

such that lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞. If Γ ̸= 0, then the

sequence {𝑥
𝑛
} strongly converges to a split common fixed point

𝑥
∗
∈ Γ, verifying 𝑥∗ = 𝑃

Γ
(𝐼 − 𝜇𝐵+𝜎𝑓)(𝑥

∗
) which equivalently

solves the following variational inequality problem:

𝑥
∗
∈ Γ, ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥

∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, 𝑦 ∈ Γ. (73)

Proof. Form the proof of theTheorem 14, we can easily certify
this theorem by nonspreading mapping (i.e., nonspreading is
0-strictly pseudononspreading).

From the Remark 17(ii) and the Corollary 18, we have the
following corollary.
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Corollary 19. Given a bounded linear operator 𝐴 : 𝐻
1
→

𝐻
2
, let 𝑈 : 𝐻

1
→ 𝐻

1
and 𝑉 : 𝐻

2
→ 𝐻

2
be two quasi-

nonexpansives with fixed point 𝐹
𝑖𝑥
(𝑈) = 𝐶 and 𝐹

𝑖𝑥
(𝑉) = 𝑄.

Assume that 𝑈 − 𝐼 and 𝑉 − 𝐼 are demiclosed at origin. Let
𝐵 : 𝐻 → 𝐻 be 𝜂-strongly monotone and 𝑘-Lipschitzian on
𝐻 with 𝑘 > 0, 𝜂 > 0, and let 𝑓 : 𝐻 → 𝐻 be a contract-
ive mapping with constant 𝛽 ∈ (0, 1). Let {𝑥

𝑛
} be the sequence

given by (9) with 𝛾 ∈ (0, 1/𝜆), 𝜔
𝑛
∈ (0, 1/2) such that 0 <

lim inf
𝑛→∞

𝜔
𝑛
≤ lim sup

𝑛→∞
𝜔
𝑛
< 1/2 and 𝛼

𝑛
∈ (0, 1) such

that lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞. If Γ ̸= 0, then the

sequence {𝑥
𝑛
} strongly converges to a split common fixed point

𝑥
∗
∈ Γ, verifying 𝑥∗ = 𝑃

Γ
𝑓(𝑥
∗
) which equivalently solves the

following variational inequality problem:

𝑥
∗
∈ Γ, ⟨(𝜇𝐵 − 𝜎𝑓) 𝑥

∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, 𝑦 ∈ Γ. (74)

If 𝜎 = 𝜇 = 1 and 𝐵 = 𝐼 in (9), thus 𝑘 = 𝜂 = 1 and 𝛽 ∈

(0, 1/2), and then we obtain (8) and the following corollary.
On the other hand, this corollary was proven by Zhao andHe
[14].

Corollary 20. Given a bounded linear operator 𝐴 : 𝐻
1
→

𝐻
2
, let 𝑈 : 𝐻

1
→ 𝐻

1
and 𝑉 : 𝐻

2
→ 𝐻

2
be two quasi-

nonexpansives with fixed point 𝐹
𝑖𝑥
(𝑈) = 𝐶 and 𝐹

𝑖𝑥
(𝑉) = 𝑄.

Assume that 𝑈 − 𝐼 and 𝑉 − 𝐼 are demiclosed at origin. Let 𝑓 :
𝐻 → 𝐻 be a contractive mapping with constant 𝛽 ∈ (0, 1/2).
Let {𝑥

𝑛
} be the sequence given by (8) with 𝛾 ∈ (0, 1/𝜆), 𝜔

𝑛
∈

(0, 1/2) such that 0 < lim inf
𝑛→∞

𝜔
𝑛
≤ lim sup

𝑛→∞
𝜔
𝑛
<

1/2, and 𝛼
𝑛
∈ (0, 1) such that lim

𝑛→∞
𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
=

∞. If Γ ̸= 0, then the sequence {𝑥
𝑛
} strongly converges to a split

common fixed point 𝑥∗ ∈ Γ, verifying 𝑥∗ = 𝑃
Γ
(𝐼−𝜇𝐵+𝜎𝑓)(𝑥

∗
)

which equivalently solves the following variational inequality
problem:

𝑥
∗
∈ Γ, ⟨(𝐼 − 𝑓) 𝑥

∗
, 𝑦 − 𝑥

∗
⟩ ≥ 0, 𝑦 ∈ Γ. (75)
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