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This paper is concerned with accurate and efficient numerical methods for solving viscous and nonviscous wave problems. The
paper first introduces a new second-order PR-ADI like scheme. For an efficient simulation, the scheme is also extended to a high-
order compact PRADI like method. Both of them have the advantages of unconditional stability, less impact of the perturbing terms
on the accuracy, and being convenient to compute the boundary values of the intermediates. Besides this, the compact scheme has
high-order accuracy and costs less in computational time. Numerical results are presented to show the accuracy and efficiency of

the new algorithms.

1. Introduction

In this paper, we consider the following differential problem
with initial and boundary conditions on domain Q = [0, 1%

8_u+ az—u—aAu— 2Au—S(x t)
Yl at YZ atz qat - ))/, > (1)

(x,y)€Q, te(0,T],

ou
u(x,9,0) = uy (x, ), g(x,%o) =y (xy),

(2)
(x,y) €0,

ulx,yt)=¢(xpt), (xy)edQ, te(,T], (3)

where y;, 75, a, and g are nonnegative constants, and ay, >
119> S denotes the source, and u,, y, and ¢ are given
functions, and 9€) is the boundary of the domain Q.

Equations (1)-(3) govern various physical phenomena by
choosing the coefficients. When y, = 0 and g = 0, the
equation represents standard heat transfer, and when y;, = 0
and g = 0, the equation represents standard wave equations.
Since there are many efficient algorithms known for them, we
exclude their consideration.

Some conventional numerical approaches for solving
wave equations introduce auxiliary variables to rewrite the
equations as first-order hyperbolic systems [1-3]; however,
these approaches introduce new unknowns which results in
an increase in the number of variables in the discrete prob-
lems. Thus, there are advantages in keeping the formulation
(1)-(3) involving the second time-derivative and a scalar
unknown. It has been the case that it is hard to construct
methods combining good stability with high accuracy with
this formulation [4].

This paper is concerned with numerical solutions to
viscous and nonviscous nonhomogeneous wave problems.
The wave equation is often solved by explicit time-stepping
schemes, which require to choose a time step size sufficiently
small to satisfy the stability condition and to reduce numer-
ical dispersion as well. As is well known, the alternating
direction implicit (ADI) schemes [3-14] are unconditionally
stable and only need to solve a sequence of tridiagonal linear
systems. In 1955, Peaceman and Rachford Jr. [15] presented a
method to solve two-dimensional parabolic equations. When
constructing the difference scheme, they first evaluated the
derivative with respect to x implicitly, the derivative with
respect to y explicitly and used a time step of At/2 to
get a scheme, then took another half step with explicit in



x and implicit in y to get another scheme. The final two-
step scheme, called Peaceman and Rachford (PR) scheme,
is unconditionally stable and second-order accurate. Alter-
native conventional approaches for solving wave equations
introduce an auxiliary variable to rewrite the equation as
a first-order hyperbolic system. With these approaches one
introduces new unknowns, which result in an increase in the
number of variables in the discrete problems. Thus, there are
good reasons to try to keep the formulation involving the
second time-derivative and a scalar unknown. Lim et al. [11]
introduce a stable three-level locally one-dimensional (LOD)
method for solving (1)-(3), which is second-order in space.

In the context of high order finite difference methods,
compact schemes feature high-order accuracy and small
stencils. Recently, there has been a renewed interest in the
development and the application of compact finite differ-
ence methods for the numerical solution of the differential
equations [8-10, 12, 14]. To obtain satisfactory higher order
numerical results with reasonable computational cost, there
have been attempts to develop higher order compact ADI
methods.

In this paper, we propose a new set of ADI methods
for viscous and nonviscous wave problems. In Section 3, we
obtain a new PR ADI-like scheme with truncation error
O(At* + h*) and analyze the error estimate by discrete energy
method. In Section 4, we further extend the method to
compact PR ADI-like scheme with truncation error O(At* +
h*). In Section 5, we provide two numerical examples to
illustrate the effectiveness of the scheme. We also compare the
two methods with some other schemes and the results show
that they have much higher efficiency.

2. Notation

The domain () is divided into a mesh by points x; = ih, y; =
jh G, j = 0,...,N), denoted by €, where h = 1/N is
the spatial mesh size in both x and y directions. Let " =
nAt, "2 = (n + 1/2)At, with At being the time increment.
Denote the values of u(x;, y;,t") and S(x;, y;, £"1/2) by uy;
and S?jl/ 2, respectively. Denote also the difference solutions
tou;; and v}; by U}, and V7', respectively.

Assume that V) = {w | w = {wi’j} € Qp,and wlq = 0}.
Forw = {w, ;} € V,and v = {v; ;} € V},, denote by

n+1 n n n
n ij —Vij n Vil " Vij
(Stvi’j = A—t’ 8xvi,j = T,
n n
S = Vij+1 ~ Vij
ylij T h 4
(4)
V=20 !
S2y0 _ VL ij T Vicyj
xVij W2 >
n n n
S - Vijer ~ 2Vij T Vi

WVij = 2
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For Vv, w € V,,, define their discrete inner product and norms
as follows:

vl = Vv, v),

N-1
2
(V, w) = Z Vi,jwi,jh 5

ij=1
N-1N-1 2

I8 = (5xv,.,j) 2,
i=0j=1
N-1N-

8,7 = J Y (o) ©)
i=1j=0

i=0j=0

N-1N-1
6.0, = \jz Y (8:8,,;) 1,

W = \/||8xv||2 o,
3. The New Second-Order ADI Scheme for
Two-Dimensional Problems

In this section, we derive a new second-order ADI method for
the numerical solution of the differential problems (1)-(3).

3.1. Construction of the New ADI Scheme. Introducing v =
YU + p,(0u/0t), we can rewrite (1) as follows:

0
—V—ocAv—[SAu:S,

35 (x,y)eQ, te(0,T], (6)

0
Ve 7)

u(x,9,0) =ug (x, ),
v (%, 9,0) = yiug (%, ) + 1y (x,9), (8)
(x.y) e Q,
u(x, y,t) = ¢ (x 1),
v (%, p:t) = 119 (%, 1) + 120, (%, 1) 5
(x,y) €0Q, t €(0,T],

€

where a = q/y,, f=a - (y1q/,).
Applying Crank-Nicolson implicit discretization to (6),
we have
V-n~+1 v V-”-H + V"
bj i “(5)% + 82) ij ij
At Y 2

Ut LU
_ 2 2 i,j i ontl/2 10
plo.+8)) 45— =57 )
1 1
Vi eVl U U

Ui - U
2 nTy '

At

L2
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From (10), we obtain

ne1 Af 2, §2)y! Ul
Vij _70‘(6x+6y) - ﬁ( ) ij
n At 2 2\m A 2 2 11
= Vi a8+ 8)) Vi + S B(81+8) U, (1)
+ AtSTH?
i,j b4
A At -2
urt = (v vy S B g gy
yAt + 2y, y1At + 2y,
Let
3 At L. = YAt =2y,
YAt + 2y, ’ YAt + 2y, ’ 13)
1
cmarpl,  y=ipU-1y),

then (11) can be reorganized as

\/itl;—l cAt (82 62) n+1

=V +%(62+62)V +yAt(82+62) ”. (14)

+ AtSZ}rl/z.

Adding perturbing term (*At?) 4)62 52 (V”Jrl VI"J) to the left
hand side of (14), we factor (14) as

(1_ C—At82>(l— C_Af6z> yrl
_ < CAt82> ( CAt62> (15)

+yAt (87 +82)UP + Ats]H2,

n+1/2

Introducing the intermediate variable V;';/"*", we obtain the

PR ADI-like scheme as follows:

(1_C_At62> Y2 ( CAf82>

At 2 1 n At n+1/2
+'}/<78y+z>U1] S
(16)
(1_C_At52> "“_( CAtaz) v

At 2 1 n At n+1/2

y(38- v s
17)

1 1

Oy (V) )

From (16), (17), we get the boundary equation as follows:

Vn+1 + Vn
nt1/2 _ Ubj LY _ cAt ntl  yom 19
Vz] 2 U 4 6}/ (Vi,j N Vi,j) - )

But usually we compute the boundary values of the interme-
diate variable using the following simple equality:

Vn+1 Vn
v e B Y (20)
Ui

wherei=0,N, j=0,...,N -1

We see that schemes (16)-(20) can solve differential
problems (1)-(3). In addition, following the idea of Douglas
([2, 3]), a Douglas-like scheme is as follows:

<1 — C_At5i> ( lnj+1/z _ Vzn])
=cA (5 + 62) Vi + yAt (6)2( + 8;) UZ]' + AtSZ;.I/Z,
(21)
cAt

(- S (v v -v @

The intermediate value of V"+1/ ? on the boundary is easy to

be obtained from (22). PR ADI-like scheme (16)-(18) and
Douglas-like scheme (21)-(22) are all derived from equation
(15), but PR ADI-like scheme has more efficiency, which will
be found in numerical experiment.

3.2. Error Estimate. We have derived a new kind of ADI
scheme in Section 3.1. We further analyze the error of the
scheme starting from (15). Expanding (15), we get

Vn:i—l _ Vn_ ani—l + Vn'
1] L] 2 2 L] L]
“ar eler) T
n+1 n n+1 n
—ﬂ(82+82)U a Ul] c*At? 6262‘/’] AtVi»J'
=g
(23)

Discretizing (6) as above and lettingé = u—-U, n=v-V, we
obtain the error equations as follows:

n+1 n+1 n n+1 n
Mi,; _”11 (62 n 62) Mij * M _ (52 +62) Ei,j +Ei,]’
At x Y 2 B * Y 2

n+1
L€ AP 5 ol _’711 _ pntl)2
.
(24)
n+1 n+1 n n+1 n
’11 N + ’71] _ 'yl gi’j + Ei,j 251',]' - Ei,j + I‘in+1/2 (25)
2 2 At B



4

where the truncation errors

n+1/2
R

VTR T T
- 24 ot? or20x? at28y2

N o'u . o'u
8 \ 0t?0x?  0t20y?

CZAtz aSV n+1/2

1 ataxzayZ)(x"’yf’t )
al? (o*v oty n1/2
(S g8 G
ﬁhz ” o'u 1/

oxt ay (x Ipt ' )

+O(At4+At W +h )

RUU2 2 pAf2 (l& _ndu_ ﬁifu) (x . t””/z)
i,j 7’

80t2 8 ot 240t
+0 (At4)
(26)
Hence there exist positive constants C,, C, such that
RV <c (af+12), R <cat. ()

Lemma 1 (see [1]). For w € V,, the following equalities hold:

N-1N-1 5 5
- wz]( x z]) = ((walj) h = "5le| >
i=1j=1 i=0j=1
N-1N-1 5 5 N-1N-1 3
- wl](‘syu’l])h = (6,w,;) = ||8yw|'
i=1j=1 i=1j=0
(28)

From Lemmal and Cauchy-Schwarz inequality, multi-
n+l

plying ((%;": Gt ]) /2)h? to both sides of (24), computing the
inner product, it is easy to follow that

ntl _ _n n+1 n
Il:<}7 TR ) oz (b1 =),

n+1 no nt+l n n+1 n 2
121=‘(065,2C11 2+'7,’1 2+77>=‘x8x’1 2+’1

n+1 n n+1 n n+1 n?
122=—<<x6j’7 L >=a5y—’7 o

Journal of Applied Mathematics

131= (.35E 25) 2+;1>
B Enﬂ E +’1n
- -p(a )
= _ﬁ((ging’LEn,
, E"“2+ e s"“At g Enﬂ,z)
EnH 6 n+1])2 nj 2
oo S B (o - per)
(oo ar)
2 B2 (o2 1. P)
e 5l

> 2 (Jo.c

~8.8"1)
el £ + o R,
L2 P2 (o e~ o)

SLIETY:

-8 (o

“efo R,

14: (C At 8282}7 n,”n+1+’1n)

At 2

1 cAf
= ECT (|'8xaynn+l|'2 B ”8x6yrln“2) ’

I = Rn+l/2 ’7 +17
> 2

4_11 Rn+1/2||2+l

> (= + ).

<

(29)

Multiplying 2At to both sides of the result derived from (29),
we have

+20Mt (||5x e+ )+ o, G+ )
+ By (0.8 + .8 - 1.8 - o8

cAt " 2)

n+1

S (los,[ - Jo.s

o
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& (efo.re [+ o, 4 )

ot ([ + 1)

B8+ 1.8 + Jo,87 ' + Jo,€7)-
(30)

Summing for # to both sides of (30), we obtain
1 2 n|2 n 2
" + s (lo.8" + 8,&])

<25 (1R o gl 8 T)

o5 (Gl oS +elo,5F).

noticing that £ = 5° = 0, by Gronwall Lemma, we obtain the
following theorem.

Theorem 2. Assume that u, v are the accurate solutions of
(6)-(9) with sufficient smoothness and U, V are the difference
solutions of (16)-(18). Let & = u — U, n = v =V, then there
exists a positive constant K independent of At and h, such that

ax (I + 0.8 +

o2 UF /A (At2 + hz) - (32)

4. Generalized Compact ADI Scheme

In this section, we extend the method to compact ADI
scheme for the numerical solution of the wave problems (1)-

(3).

4.1. Construction of the Compact ADI Scheme. Introducing

%y o’
fi, = ox2’ fyv = 32’
, , (33)
o“u o“u
fo. =532 fyu =52
0x Jy

We can rewrite (6) as follows:

gi;_“(fxv+fyv)_ﬂ(fxu+fyu)=S(x,y,t)_ (34)

Using the fourth-order compact finite difference dis-
cretization [6, 8], we discretize (33) as follows:

S n 1 n

g(fx)i,j + E(fx)iﬂj = 8325 ij>
5 n
g(fy)i,j

1 n
E(fx)i—l,j +
1
A (5) = )t

Ax(fx)Zj =

(fy)z ]+1 J’U’nJ
(35)

The Crank-Nicolson implicit discretization of (34) reads

vt -vy (U R () + ()
At 2
() 0+ 6)
2
=g,

(36)

where i, j = 1,2,..., N — 1. Multiplying (36) by At, applying
to its both sides with A A, and using the fact that the two
operators A, and A , commute with each other, we obtain the
implicit approximation of (6)-(9)

A(f. )"+1 AyA(fe);,

+ AxAy(f}’v)::‘—l +A,(£,);,)
A(f. )"+1 yAx(fxu)Zj

+ A ()5 A, (1))

n+1/2
= MtALASIP,

(37)
A
_ ﬁzf (

n+1 n n+1 n
Vii tViy Ui +U

+1
_, Ui —Uij
2 ! 2 :

At

(38)

2

Let

At YAt =2y,
M=oy M Ty,
)2 Y2 )2 Y2 (39)

1
c=a+fA, y=5,8(1+)t2),

then (37) can be conveniently written as

<AA cAt

2 CcAt 2 {ntl
Ay - tast- Axay>v,..

o]

= (AxAy <Aty 02+ A 0 ) (40)
2 bj

+yAt(A,82+ A 62)U + AtA A ]



Adding perturbing term (c*At*/4)5282 (V"Jrl Vl”]) to the left
hand side of (40) and introducing the 1ntermediate variable

fol/ ?, we obtain the compact PR ADI-like scheme as follows:

<A _ C_Atsz) yl2
cAt 2 n
= (4, S 8)

+ —A Sn+1/2)

panyy]

(A _ﬂ“(Sz) yl

A, 1 i}
+y (78}} + EAJ’>Ui,j (41)

At
(A SR (T L))
At n+1/2
+ A,
(42)
n+l1 n+1 n n
Ui,j =\ (Vz] +‘/i,j)_/\2Ui,j‘ (43)

From (41) and (42), we obtain the boundary equation as
follows:

n+l n

VAU

n+1/2 _
Ax\/i,j - Ay 2 Yy,

(44)

_C_Af(; (v,

But usually we compute the boundary values of the interme-
diate using the following simple equality:

Vn+1 + Vn
Vzn+1/2 L] + ZU-H-, (45)
>] 2 c b

wherei = 0,N, j = 1, N — 1. In addition, following the idea
of Douglas [2, 3], we can get a compact Douglas scheme as
follows:

(A - &“52)( v

Vi) = cAt(A,8% + A,5;) V'

+yAt (A% + A8 UY

n+1/2
+AtA A g,
(46)
cAt n+1 n\ _ ym+1/2 n
<A -5 >( Vi) =V v e
The intermediate value of V:’;l/ * on the boundary is easy to
be obtained from (47).

Journal of Applied Mathematics

4.2. Error Estimate. We have derived a kind of compact PR
ADI-like scheme in Section 4.1. In the following, we further
analyze the error of the scheme. Expanding (41)-(42), we get

n+1 n n+1 n
n+l _ Vit + v
ij i, 2 2\ _bJ b
AXAyT_“(Ay6x+Ax6y) 2
urtt + U
B4, + ALY (48)
24,2 n+l _ n
cAt 2a2 Vi n+1/2
P O Ty TAASGT
. 2 2
Noting that A, U7, = (1 + (h /12)6x)Uir,l AJ’Uan = 1+

(h2/12)6§,)U£’j, (48) can be written as
1 n

n o Van+ ~Vij
)

2
1+ h—52
12~ At

2 2 vty

ol (148 )2 (1 ) o2 ) T
127 12 )7 2

((

127) % 12 )7 2
n+1 n
+ CzAt 262 ‘/1,] —Yiyj
4 At

— 1+h_282 h_62 ﬂ+1/2.
12 % 127 l]

Discretizing (6) as above and lettingé = u—-U, n=v-V, we
obtain the error equations as follows:

n+l
) (1 g )
12 % 12 7 At
2 2 n+1 n
(145 )52 h52 5 iy * i
127) % 2
2 2 En+1+£n
-B 1+ 8 ) s 1+h—32 5 2 h
127) % 2

(49)

n+1
C At 6282 ’71] _’7:] _R:H.—I/z,
At -
(50)
rlzn;l + ’71] _ Ez;l + E:’)IJ EZ;I - g:J

Hn+1/2 51
T v TR
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where the truncation errors

oty

n+1/2 _
R = At Y3752 +

1 v«
—A A —-—[A
- o (a3 -5 (

B o'u
-=—|A A
8 *ot?oy?
At v
4 0tox*0y?

4 6
_oh A
240 9y°

/J)h4 o°u °u n+1/2
240 Ayax6+A’“ﬁ (53 )

+0 (At4 + AR + h6) ,

B2 2 A2 (lﬁ _ndu_ ﬁa%) (3, 1)

A, oty
0t20y?
o*u N

Y 0t20x?

%
Y356 ©

" 8or* 8 ot* 240t
+0(at!)
(52)
Hence there exist positive constants C', C"" such that
'Rn+l/2| <c (Atz + h4) ) n+1/2' <C'A (53)

Lemma 3 (see [1]). Forw € V,,, the following inequalities hold:

Rl st Difo,uf < 1w

1 1
ls.0 16,w|?, Zh2'|8x6yw||2 < |8,

(54)

ol <

From Lemmas 1 and 3 and Cauchy-Schwarz inequality,
multiplying ((17'”rl + 11{’].)/2)}12 to both sides of (50) and
computing the inner product, we have

2 2 n
11=(<1+h—6§)<1+h—82)6 w1 ”)
12 12 2

n+1 n 2 n+1 n
:(@ n 1 +’7>+h_(6i6t n 1 +'7>
2 12 2
h2 2 n ’7”“ + ’7”
+ E (6y8t’7 5 >
+ h_ 82828 n ’7’”1 + 17”
144 \

n n h2 n
P - s (Jour™ - I T)

h2 n+ n
=54z (o[ =1o'T)

1
2At

2

. Br

T O2At

I } )
" 288A: ("6"8“7 +1"2 - 8.8, "2))

. 1+h_282 627]n+1 +}1n ’7”+1 +;1n
127)>* 2 7 2
n+1 n |2

6x77 1
2

(xh2
12

55u

Il
S

n+1 n |2

nEn

[\

1l
|
/N
IS
—
—_

+
YN
w2
~__
NS

=
S
Rt
I
=
=
S
ht
N+
=
s
~

Il
R

n+1 n |2

h262 82€n+1+£n 77"+1+7]n
7)) 2 7 2

1l
|
-~
o)
/N
—
+

1l
|
/N
=
>
®
[\
[N}

[’)hZ 5 2£n+1 +€n n +’7n
(e 20 )
_ /3}}1 <5x§n+1 +En 6 En+1 +En>

2 72

+ﬁ’/2<8x€ 2+£ ’6x£ A;E )

+[3<8x

ﬁYI W
12

Enﬂ*'gn S §n+1/2>
2

§n+1 E £n+1 + En
(5 8,25 10.8,
2 n+1 n+l _ ¢n
12 2 At
/3112 Sn+1/2
-5 (0, ,6,8,R

(Jo.z™] -

i (e

12 2At

€n+1 + En
2

l6.£1”)

SyEnH"Z B

’)
B o+ po. + fo. k)

2
B ooy g | + oo, oo, k)
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A ~
> f_ZZt ("8x£n+1 2 B "(ngn“Z) 2/3 t (2“6 En+1|' + 2”895571"2 " "(SanJrl/Z”Z
_ i’_;% (||5x5yfn+1"2 B |"Sx8y5n”2> + 2"8},5"“"2 + 2|'8yf"“2 + "(Syﬁ”*l/zuz)
2N
L (afoe [ + 2l + Jo. ), U
1= (o ) E -
2 2 2
(56)
> % ("Sye'”l"z - ||8ye"||2> (S)lblzilging for n to both sides of (56), and by Lemma 3, we
K By - e
~ T 108, [ = [0.0,¢T) S 22 (o + o, )+ 2eo.s, e
~B )5 e 2o, R
S ) < e B (o1 + o)
_ A n+ n nwrl + ’1”
- (). 5 A o "
2
2At ., -
S (o o).
,B ("6 Rn+1/2" " H‘S Rn+1/2'| )
I = <Rn+1/2 ’7 tn > =
2
Noticing that & = #° = 0, by Gronwall Lemma, we obtain
< :11( Rn+1/2||2 42 nn+1 2 + 2”;771"2). the following theorem.

(55) Theorem 4. Assume that u, v are the accurate solutions of
(6)-(9) with sufficient smoothness and U, V are the difference
solutions of (41)-(43). Let & = u—-U, 5 = v =V, then there
exists a positive constant K' independent of At and h, such that

Multiplying 2At to both sides of the result derived from

(55), we have n
s (11081 0,67+ 1 fo.o, 1) “
<K' (A +h*).
n+1|2 h2 n+1||2 h2 n+1||2
(N I VA I VA
1217 1207 : J
5. Numerical Experiment
” 8,0, n+1|' ) In this section, we exemplify two numerical examples to
144 illustrate the effectiveness of the present ADI scheme. Lele [9]

12 discussed some finite differencing errors for first and second

+ By, <“ 5, £n+1"2 _ _" 8,0 £n+1"2 + ” 3, EMI"Z derlva.tlves b).l estabhshmg the relatlopshlp of wave number
12 (for differential equation) and numerical wave number (for

5 difference scheme) and indicated that standard Pade scheme

_ h_ " 5.8 £n+1||2) A ” 5, 8 n+1”2 (which is known as compact finite difference scheme in this

paper) is a good choice to discrete differential equations.

In this paper, we focus on the efficient alternating direction

< <||’1n||2 _ h_2 " x’7n||2 B h_2 ” 8y”n“2 L = " s 5y’1 “ ) technique for solving second-order wave equations. Because

the compact method in spatial direction is standard, the

R scheme is effective.
+ By, (“ 5 £n||2 K " 5.8 En"Z The computer language used for the programming is
* 2 Fortran, and the programs are performed on professional
computer (CPU is 3.10 GHz, and Memory is 3.47 G). For con-
nl|? venience, we denote the present second-order ADI scheme
(16)-(18) by PR, the present compact ADI scheme (41)-(43)




Journal of Applied Mathematics

TaBLE 1: The L*-norm and CPU time for the second-order schemes.

N=40,At=h N=60,At=h
Scheme ) CPU time ) CPU time
L"-norm L"-norm
(s) (s)
PR 5.8154 x 107* 0.125000 2.5959x 10™* 0.406250
Dou 5.7463 x 107 0.125000 2.5751x107* 0.390625
LOD 3 3
0 = 0.25) 6.2814 x 10 0.140625 3.9884 x 10 0.437500
%GO_DO 5) 6.3956 x 107> 0.140625 4.0402x 10™*  0.437500

TaBLE 2: The L?-norm and CPU time for the fourth-order schemes.

N =20,At =h* N =40, At = I*
Scheme ) CPU time ) CPU time
L“-norm L“-norm
() (s)
CPR 5.6026 x 1077 0.375000 3.5894x 1077 5.156250
CDou 5.1636 x 107 0.562500 3.3038x 1077  6.578125
LOD 4 4
@ = 0.25) 5.1383 x 10 0.390625 1.2695x 107* 5.265625
(Lg)PO 5) 51397 x 10 0.390625 1.2694x10™* 5.265625

by CPR, the second-order ADI scheme (21)-(22) by Dou, the
compact ADI scheme (46)-(47) by CDou, and the three-level
LOD scheme by LOD.

Example 5. Lety; = 1.0, y, = 1.0,a = 1.0,9 = 1.0, and
S =@ -3m+2)e ™ sin(x + y) in (1), then the true solution
isu = e sin(x + y). We chose different grids and compared
the accuracy of the computed solutions with other schemes.
The solutions were obtained for t,,, = 2.0. The quantities
that we compared are the maximum L?-norm and the total
elapsed time (CPU) in seconds.

Tables 1 and 2 display the L*-norm errors and the CPU
time. From Table 1, one can easily see that the error from
the present second-order scheme is smaller than that from
other schemes, and it converges as fast as other schemes.
From Table 2, we can find the superiority of the present
compact ADI scheme, which has the highest accuracy and
fastest computational efficiency. In Figures 1 and 2, we plot
the errors and cost time at various grids. The figures show the
superiority of the compact ADI over other schemes (second-
order scheme). The CPR has much higher and more efficiency
than CDou, which may be the best scheme to solve above
questions.

Example 6. Let yy = 10,9, = 1.0,a = 10,9 = 1.0,
and § = 7% sin5mxsin 2y[34 + (0.5 + 177%) cos m’t +
(17 — 0.57%) sin°t] in (1). The exact solution is u = (1 +
0.5 sin 7°t) sin 57zx cos 37y, and the initial and boundary
conditions can be obtained based on the exact solution. We
chose the grids 25 x 25 and 50 x 50, and the time step
with At = h%. The solutions were obtained for ¢, = 5.0.
We compared the accuracy of the computed solutions from

9
107 4 IR
1074 4 e I |
.4 E
<v’<‘>. "“”..:“" o
- . A
107° 4 <% -
o <« s K
g a
10—6 _f. :;:',
107 4 '::'
'."
1078 4
2 4 6 8 10
h x 1072
..m-- PR v CDou
e - CPR <  LOD
A - Dou

FIGURE 1: The error of all schemes for various grid sizes when At =
H.
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200

150

100 ~

CPU times (s)

7S

50 o

0 ] s gl e )

0.02 0.04 0.06 0.08 0.1

--m.- PR
e - CPR
A Dou

v+ CDou
< - LOD

FIGURE 2: The CPU time of all schemes for various grid sizes when
At = .

the present ADI scheme and other four ADI schemes. The
quantities that we compared are the L*-norm and the total
elapsed time (CPU) in seconds.

Table 3 lists ¢ the total elapsed time (CPU) in seconds and
the L?-norm error are listed in Table 3 and shown in Figures 3
and 4. One can see that the error from the same order scheme
is very close. From the table and figures, we can see that the
present fourth-order scheme not only has high accuracy but
also converges as fast as other schemes, especially for CPR
scheme.

From Figures 1 and 3, it is easily to find that the
tested methods degrade to first-order method as the grid
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TaBLE 3: The L?>-norm and CPU time for all schemes.

N =25 At =W N =50, At = I*
Scheme
L*-norm CPU time (s) L*-norm  CPU time (s)
PR 3.9262 x 1072 1.8125 1.0218 x 1072 23.7812
CPR  8.0830x 10°* 1.9375 52720 x 107> 24.8906
Dou  3.9262x 1072 1.8281 1.0218 x 107> 23.0625
CDou 8.0830x 10™* 20156  52720x107°  29.0312
LOD  4.2503x 107" 2.0508  6.5634x 1072 25.6705
-
107! 4 . <
e .
«¢T o
1072 ]« a W
;e
a®
.I
e 4
5107 4
5 e
107 4 .
_y.."
1075 - ,_.v
\ J
\d
107 L . . . .
1 2 3 4 5
h x 1072
.m.. PR v-- CDou
e CPR < LOD
A - Dou

FIGURE 3: The error of all schemes for various grid sizes when At =
n.

gets coarse. In all schemes, we add perturbing term
(czAt/4)8i8§(Vif’;1 - V,”]) that is, an approximation to
(A /4)(85v/8tax28y2). When step h becomes large, the
time step At varies correspondingly because of At = h
for the second-order schemes or At = h* for the compact
schemes. Hence, the effect of perturbing term is enhanced,
which results in the schemes seem to degrade to first-order
methods as the grid gets coarse. We can choose suitable 4 and
get required accuracy.

6. Conclusions

In this paper, we proposed two new ADI schemes for
solving nonhomogeneous wave problems. It has been proved
that they are unconditionally stable. The compact scheme
proposed in this paper is fourth-order accurate in space
and second-order accurate in time and allows a considerable
saving in computing time. Numerical examples are given to
test their high accuracy and to show their superiority over
some other schemes in terms of accuracy and computational
costs.

Journal of Applied Mathematics

400

350 o

300 +

381

v

(=}
1

CPU times (s)
(3]
S
S
1

—

(%2

(=]
1

100

0 - L 5508kt e
T T T T T

0.01 0.02 0.03 0.04 0.05

--m.- PR
e - CPR
A Dou

v - CDou
< - LOD

FIGURE 4: The CPU time of all schemes for various grid sizes when
At =R,

The present scheme can be applied to the following
Varialgle coefficient differential models on domain Q =
[0,1]":

ou o’u 0
ylﬁ + yzﬁ -V (AVu) - av . (QVU) = S,

(x,y) € Q, te(0,T],

w (5,9,0) =y (xy), &

(x.y) € Q,

(x,y) €0Q, t €(0,T],

u(x3,0) =u (x,y),

u(x y.t) = ¢ (x, 3.t),

where A = A(x, y) and Q = Q(x, y) are diagonal, nonnega-
tive diffusion tensors.
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