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This paper is concerned with the problem of delay-dependent finite-time𝐻
∞
filtering for Markovian jump systems with different

system modes. By using the new augmented multiple mode-dependent Lyapunov-Krasovskii functional and employing the
proposed integrals inequalities in the derivation of our results, a novel sufficient condition for finite-time boundness with an𝐻

∞

performance index is derived. Particularly, two different Markov processes have been considered for modeling the randomness of
system matrix and the state delay. Based on the derived condition, the 𝐻

∞
filtering problem is solved, and an explicit expression

of the desired filter is also given; the system trajectory stays within a prescribed bound during a specified time interval. Finally, a
numerical example is given to illustrate the effectiveness and the potential of the proposed techniques.

1. Introduction

Markovian jump systems were introduced by Krasovskĭı and
Lidskĭı [1], which can be described by a set of systems
with the transitions in a finite mode set. In the past few
decades, there has been increasing interest in Markovian
jump systems because this class of systems is appropriate
to many physical systems which always go with random
failures, repairs, and sudden environment disturbance [2–5].
Such class of systems is a special class of stochastic hybrid
systems with finite operation modes, which may switch from
one to another at different time, such as component failures,
sudden environmental disturbance, and abrupt variations
of the operating points of a nonlinear system. As a crucial
factor, it is shown that such jumping can be determined by a
Markovian chain [6]. For linear Markovian jumping systems,
many important issues have been studied extensively such as
stability, stabilization, control synthesis, and filter design [6–
12]. In finite operation modes, Markovian jump systems are a
special class of stochastic systems that can switch from one to
another at different time.

It is worth pointing out that time delay is of interest to
many researchers because of the fact that time delay is often

encountered in various systems such as networked control
systems, chemical processes, and communication systems. It
is worth pointing out that time delay is one of the instabil-
ity sources for dynamical systems and is a common phenom-
enon inmany industrial and engineering systems. Hence, it is
not surprising that much effort has been made to investigate
Markovian jump systems with time delay during the last two
decades [13–15]. The exponential stabilization of Markovian
jump systems with time delay was firstly studied in [16]
where the decay rate was estimated by solving linear matrix
inequalities [17]. However, in the aforementioned works, the
network-induced delays have been commonly assumed to be
deterministic, which is fairly unrealistic since delays resulting
from network transmissions are typically time varying [18–
24].

Generally speaking, the delay-dependent criterions are
less conservative than delay-independent ones, especially
when the time delay is small enough in Markovian jump
systems. Thus, recent efforts were devoted to the delay-
dependent Markovian jump systems stability analysis by
employing Lyapunov-Krasovskii functionals [25–33]. How-
ever, in most thesis, the time delay to be arbitrarily large
are allowed in criterion, it always tends to be conservative.
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Furthermore, though the decay rate can be computed, it is a
fixed value that one cannot adjust to deduce if a larger de-
cay rate is possible. Therefore, how to obtain the improved
results without increasing the computational burden has
greatly improved the current study. On the other hand, the
practical problems which system described does not exceed
a certain threshold over some finite time interval are con-
sidered. In finite-time interval, finite-time stability is inves-
tigated to address these transient performances of control
systems. Recently, the concept of finite-time stability has been
revisited in the light of linear matrix inequalities (LMIs) and
Lyapunov function theory, and some results are obtained to
ensure that systems are finite-time stability or finite-time
boundness [34–50]. To the best of our knowledge, in most
of the works about Markovian jump systems with mode-
dependent delay, the delay mode is always assumed to be the
same as the system matrices mode. However, in real systems,
the delay mode may not be the same as that for jump in
other system parameters. In other words, variations of delay
usually depend on phenomena which may not cause abrupt
changes in other systems parameters. Therefore, the work of
Markovian jump systems with different system modes is not
only theoretically interesting and challenging, but also very
important in practical applications.

Motivated by the previous above discussions, in this pa-
per, we present a new augmented Lyapunov functional for
a class of Markovian jump systems with different system
modes; in order to reduce the possible conservativeness and
computational burden, some slack matrices are introduced
[32]. Several sufficient conditions are derived to guarantee the
finite-time stability and boundedness of the resulting closed-
loop system. We find that finite-time stability is an inde-
pendent concept from Lyapunov stability and always can be
affected by switching behavior significantly, and the finite-
time boundness criteria can be tackled in the form of LMIs.
Finally, a numerical example is presented to illustrate the
effectiveness of the developed techniques.

Notations. Throughout this paper, we let 𝑃 > 0 (𝑃 ≥ 0, 𝑃 <
0, and 𝑃 ≤ 0) denote a symmetric positive definite matrix 𝑃
(positive semidefinite, negative definite, and negative semi-
definite). For any symmetric matrix 𝑃, 𝜆max(𝑃) and 𝜆min(𝑃)
denote the maximum andminimum eigenvalues of matrix 𝑃,
respectively.R𝑛 denotes the 𝑛-dimensional Euclidean space,
and R𝑛×𝑚 refers to the set of all 𝑛 × 𝑚 real matrices and
N = {1, 2, . . . , 𝑁}. The identity matrix of order 𝑛 is denoted
as 𝐼

𝑛
. ∗ represents the elements below the main diagonal of a

symmetricmatrix.The superscripts ⊺ and −1 stand formatrix
transposition and matrix inverse, respectively.

2. Preliminaries

In this paper, we consider the followingMarkov jump system
described by

�̇� (𝑡) = 𝐴
𝑟
𝑡

𝑥 (𝑡) + 𝐴
𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏
𝑠
𝑡

(𝑡)) + 𝐷
𝑟
𝑡

𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑦𝑟
𝑡

𝑥 (𝑡) + 𝐶
𝑦𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏
𝑠
𝑡

(𝑡)) + 𝐷
𝑦𝑟
𝑡

𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑧𝑟
𝑡

𝑥 (𝑡) + 𝐶
𝑧𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏
𝑠
𝑡

(𝑡)) + 𝐷
𝑧𝑟
𝑡

𝜔 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 = [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈R𝑛 is the state vector of the system, 𝑦(𝑡) ∈R𝑙 is
themeasured output, 𝑧(𝑡) ∈R𝑞 is the controlled output,𝜑(𝑡),
𝑡 ∈ [−ℎ, 0] are initial conditions of continuous state, and 𝑟

0
∈

N, 𝑠
0
∈ M = {1, 2, . . . ,𝑀} are initial conditions of mode.

𝜔(𝑡) ∈ R𝑞 is the disturbance input, satisfying the following
condition:

∫

∞

0

𝜔
⊺

(𝑡) 𝜔 (𝑡) 𝑑𝑡 ≤ 𝑑. (2)

Let the random form processes 𝑟
𝑡
, 𝑠

𝑡
be the Markov sto-

chastic processes taking values on finite sets N = {1, 2, . . . ,

𝑁} and M = {1, 2, . . . ,𝑀} with probability transition rate
matrices Λ = {𝜆

𝑖𝑗
}, 𝑖, 𝑗 ∈ N, and Π = {𝜋

𝑚,𝑛
}, 𝑚, 𝑛 ∈ M. The

transition probabilities from mode 𝑗 to mode 𝑗 for Markov
process 𝑟

𝑡
and from mode 𝑚 to mode 𝑛 for the Markov

process 𝑠
𝑡
in time ℎ are described as

Pr (𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖) = 󰜚

𝑖𝑗
+ 𝜆

𝑖𝑗
Δ + 𝑜 (Δ) ,

Pr (𝑠
𝑡+Δ

= 𝑛 | 𝑠
𝑡
= 𝑚) = 𝜁

𝑚𝑛
+ 𝜋

𝑚𝑛
Δ + 𝑜 (Δ) ,

(3)

where

󰜚
𝑖𝑗
= {

0, if 𝑖 ̸= 𝑗,

1, if 𝑖 = 𝑗,
𝜁
𝑚𝑛
= {

0, if 𝑚 ̸= 𝑛,

1, if 𝑚 = 𝑛,

(4)

and Δ > 0, 𝜆
𝑖𝑗
≥ 0, for 𝑖 ̸= 𝑗, is the transition rate from mode

𝑖 at time 𝑡 to mode 𝑗 at time 𝑡 + Δ and

−𝜆
𝑖𝑖
=

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
, (5)

for each mode 𝑖 ∈ N, lim
Δ→0

+

(𝑜(Δ)/Δ) = 0. 𝜋
𝑚𝑛

≥ 0 for
𝑚 ̸= 𝑛 is the transition rate from mode 𝑚 to mode 𝑛 at time
𝑡 + Δ and

−𝜋
𝑚𝑚

=

𝑀

∑

𝑛=1,𝑚 ̸= 𝑛

𝜋
𝑚𝑛
, (6)

for each mode 𝑖 ∈ M, lim
Δ→0

+

(𝑜(Δ)/Δ) = 0. For conve-
nience, we denote the Markov process 𝑟

𝑡
and 𝑠

𝑡
by 𝑖 and

𝑚 indices, respectively. 𝜏
𝑚
(𝑡) denotes the mode-dependent

time-varying state delay in the system and satisfies the
following condition:

0 < 𝜏
𝑚
(𝑡) ≤ ℎ

𝑚
< ∞,

̇𝜏
𝑚
(𝑡) ≤ 𝜇

𝑚
, ∀𝑚 ∈M,

(7)

where ℎ = max{ℎ
𝑖
, 𝑖 ∈ M} is prescribed integer representing

the upper bounds of time-varying delay 𝜏
𝑚
(𝑡). Similarly, 𝜇 =

max{𝜇
𝑚
, 𝑚 ∈ M} is prescribed integer representing the up-

per bounds of time-varying delay ̇𝜏
𝑚
(𝑡). 𝐴

𝑟
𝑡

, 𝐴
𝜏𝑟
𝑡

, 𝐷
𝑟
𝑡

, 𝐶
𝑦𝑟
𝑡

,
𝐶
𝑦𝜏𝑟
𝑡

, 𝐷
𝑦𝑟
𝑡

, 𝐶
𝑧𝑟
𝑡

, 𝐶
𝑧𝜏𝑟
𝑡

, and 𝐷
𝑧𝑟
𝑡

are known mode-dependent
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matrices with appropriate dimensions functions of the ran-
dom jumping process {𝑟

𝑡
} and represent the nominal systems

for each 𝑟
𝑡
∈ N. For notation simplicity, when the system

operates in the 𝑖-th mode (𝑟
𝑡
= 𝑖), 𝐴

𝑟
𝑡

, 𝐴
𝜏𝑟
𝑡

, 𝐷
𝑟
𝑡

, 𝐶
𝑦𝑟
𝑡

, 𝐶
𝑦𝜏𝑟
𝑡

,
𝐷

𝑦𝑟
𝑡

,𝐶
𝑧𝑟
𝑡

,𝐶
𝑧𝜏𝑟
𝑡

, and𝐷
𝑧𝑟
𝑡

are denoted as𝐴
𝑖
,𝐴

𝜏𝑖
,𝐷

𝑖
,𝐶

𝑦𝑖
,𝐶

𝑦𝜏𝑖
,

𝐷
𝑦𝑖
, 𝐶

𝑧𝑖
, 𝐶

𝑧𝜏𝑖
, and𝐷

𝑧𝑖
, respectively.

Here we are interested in designing a full-order filter
described by

�̇�
𝑓
(𝑡) = 𝐴

𝑓𝑟
𝑡
,𝑠
𝑡

𝑥
𝑓
(𝑡) + 𝐵

𝑓𝑟
𝑡
,𝑠
𝑡

𝑦 (𝑡) ,

𝑧
𝑓
(𝑡) = 𝐶

𝑓𝑟
𝑡
,𝑠
𝑡

𝑥
𝑓
(𝑡) ,

(8)

where 𝑥
𝑓
(𝑡) ∈ R𝑛 is the filter state, 𝑧

𝑓
(𝑘) ∈ R𝑞, and the

matrices 𝐴
𝑓𝑟
𝑡
,𝑠
𝑡

, 𝐵
𝑓𝑟
𝑡
,𝑠
𝑡

, and 𝐶
𝑓𝑟
𝑡
,𝑠
𝑡

are unknown filter param-
eters to be designed.

Augmenting the model of (1) to include the filter (8), we
obtain the following filtering error system:

̇𝜂 (𝑡) = 𝐴
𝑟
𝑡

𝜂 (𝑡) + 𝐵
𝑟
𝑡

𝜂 (𝑡 − 𝜏
𝑚
(𝑡)) + 𝐷

𝑟
𝑡

𝜔 (𝑡) ,

𝑒 (𝑡) = 𝐶
𝑟
𝑡

𝜂 (𝑡) + 𝐸
𝑟
𝑡

𝜂 (𝑡 − 𝜏
𝑚
(𝑡)) ,

(9)

where

𝜂 (𝑡) = [

𝑥 (𝑡)

𝑥
𝑓
(𝑡)
] , 𝑒 (𝑡) = 𝑧 (𝑡) − 𝑧

𝑓
(𝑡) ,

𝐴
𝑟
𝑡

= [

𝐴
𝑟
𝑡

0

𝐵
𝑓𝑟
𝑡
,𝑠
𝑡

𝐶
𝑦𝑟
𝑡

𝐴
𝑓𝑟
𝑡
,𝑠
𝑡

] , 𝐵
𝑟
𝑡

= [

𝐴
𝜏𝑟
𝑡

𝐵
𝑓𝑟
𝑡
,𝑠
𝑡

𝐶
𝑦𝜏𝑟
𝑡

] ,

𝐷
𝑟
𝑡

= [

𝐷
𝑟
𝑡

𝐵
𝑓𝑟
𝑡
,𝑠
𝑡

𝐷
𝑦𝑟
𝑡

] ,

𝐶
𝑟
𝑡

= [𝐶
𝑧𝑟
𝑡

, −𝐶
𝑓𝑟
𝑡
,𝑠
𝑡

] , 𝐸
𝑟
𝑡

= [𝐶
𝑧𝜏𝑟
𝑡

, 0] .

(10)

In order to more precisely describe the main objective,
we introduce the following definitions and Lemmas for the
underlying system.

Definition 1. System (1) is said to be finite-time bounded with
respect to (𝑐

1
, 𝑐

2
, 𝑇, 𝑅, 𝑑), if condition (2) and the following

inequality hold:

sup
−ℎ≤𝜐≤0

E {𝜂
⊺

(𝜐) 𝑅𝜂 (𝜐) , ̇𝜂
⊺

(𝜐) 𝑅 ̇𝜂 (𝜐)}

≤ 𝑐
1
󳨐⇒ E {𝜂

⊺

(𝑡) 𝑅𝜂 (𝑡)} < 𝑐
2
,

∀𝑡 ∈ [0, 𝑇] ,

(11)

where 𝑐
2
> 𝑐

1
≥ 0 and 𝑅 > 0.

Definition 2. Consider 𝑉(𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
, 𝑡 > 0) as the stochastic

positive Lyapunov function; its weak infinitesimal operator
is defined as

£𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)

= lim
Δ→0

1

Δ

[E {𝑉 (𝜂
𝑡+Δ
, 𝑟

𝑡+Δ
, 𝑠

𝑡+Δ
) | 𝜂

𝑡
, 𝑟

𝑡
, 𝑠

𝑡
}

−𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)] .

(12)

Definition 3. Given a constant 𝑇 > 0, for all admissible
𝜔(𝑡) subject to condition (2), under zero initial conditions,
if the closed-loop Markovian jump system (1) is finite-time
bounded and the control outputs satisfy condition (8) with
attenuation 𝛾 > 0,

E{∫
𝑇

0

𝑒
⊺

(𝑡) 𝑒 (𝑡) 𝑑𝑡} ≤ 𝛾
2

𝑒
𝜂𝑇

E{∫
𝑇

0

𝜔
⊺

(𝑡) 𝜔 (𝑡) 𝑑𝑡} . (13)

Then, the controller system (1) finite-time bounded with
disturbance attenuation 𝛾.

Remark 4. It should be pointed out that the assumption of
zero initial condition in system (1) is only for the purpose
of technical simplification in the derivation, and it does not
cause loss of generality. In fact, if this assumption is lost, the
same control result can be obtained along the same line,
except for adding extra manipulations in the derivation and
extra terms in the control presentation. However, in real-
world applications, the initial condition of the underlying
system is generally not zero.

Lemma 5 (see [32]). Let 𝑓
𝑖
: R𝑚

→ R (𝑖 = 1, 2, . . . , 𝑁)

have positive values in an open subset D of R𝑚. Then, the re-
ciprocally convex combination of 𝑓

𝑖
overD satisfies

min
{𝛽
𝑖
|𝛽
𝑖
>0,∑
𝑖
𝛽
𝑖
=1}

∑

𝑖

1

𝛽
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max

𝑔
𝑖,𝑗
(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖,𝑗
(𝑡)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑔
𝑖,𝑗
:R

𝑚

󳨀→R, 𝑔
𝑗,𝑖
(𝑡) = 𝑔

𝑖,𝑗
(𝑡) ,

[

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑖,𝑗
(𝑡) 𝑓

𝑗
(𝑡)
] ≥ 0} .

(14)

Lemma 6 (Schur Complement [17]). Given constant matrices
𝑋,𝑌,𝑍, where𝑋 = 𝑋

⊺ and 0 < 𝑌 = 𝑌⊺, then𝑋+𝑍⊺

𝑌
−1

𝑍 < 0

if and only if

[

𝑋 𝑍
⊺

∗ −𝑌
] < 0 𝑜𝑟 [

−𝑌 𝑍

∗ 𝑋
] < 0. (15)

3. Finite-Time 𝐻
∞

Performance Analysis

Theorem 7. System (9) is finite-time bounded with respect to
(𝑐
1
, 𝑐

2
, 𝑑, 𝑅, 𝑇), if there exist matrices 𝑃

𝑖𝑚
> 0, 𝑄

𝑙𝑖
> 0 (𝑙 = 1,

2), 𝑄 > 0, 𝑋
𝑖𝑚
> 0, 𝑋 > 0, 𝑌

𝑖𝑚
> 0, 𝑌 > 0,𝐻 > 0, 𝑆

𝑖𝑚
, scalars

𝑐
1
< 𝑐

2
, 𝑇 > 0𝜆

𝑠
> 0, (𝑠 = 1, 2, . . . , 10), 𝜂 > 0, and Λ > 0, such

that for all 𝑖, 𝑗 ∈ N and 𝑚, 𝑛 ∈ M, the following inequalities
hold:

∑

𝑗∈N,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
(𝑄

1𝑗
+ 𝑄

2𝑗
) + ∑

𝑛∈M,𝑚 ̸= 𝑛

𝜋
𝑚𝑛
𝑄

2𝑖
− 𝑄 < 0, (16)

∑

𝑛∈M,𝑚 ̸= 𝑛

𝜋
𝑚𝑛
𝑋

𝑖𝑛
+ ∑

𝑗∈N,𝑖 ̸= 𝑗

𝜆
𝑖𝑗
𝑋

𝑗𝑚
− 𝑋 < 0, (17)
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∑

𝑛∈M,𝑚 ̸= 𝑛

𝜋
𝑚𝑛
𝑌
𝑖𝑛
+ ∑

𝑗∈N,𝑖 ̸= 𝑗

𝜆
𝑖𝑗
𝑌
𝑗𝑚
− 𝑌 < 0, (18)

[

[

[

𝑌
𝑖𝑚

ℎ

𝑆
𝑖𝑚

∗

𝑌
𝑖𝑚

ℎ

]

]

]

> 0, (19)

Ξ
1𝑖𝑚

=

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11𝑖𝑚

Ξ
12𝑖𝑚

−𝑆
𝑖𝑚

𝐴

⊺

𝑖
𝑉
⊺

𝑖𝑚
ℎ𝐴

⊺

𝑖
𝑀
⊺

𝑖𝑚
𝑃
𝑖𝑚
𝐷
𝑖

∗ Ξ
22𝑖𝑚

𝑆
𝑖𝑚

−

𝑌
𝑖𝑚

ℎ

𝐵

⊺

𝑖
𝑉
⊺

𝑖𝑚
ℎ𝐵

⊺

𝑖
𝑀
⊺

𝑖𝑚
0

∗ ∗ −𝑄
1𝑖
+

𝑌
𝑖𝑚

ℎ

0 0 0

∗ ∗ ∗ Ξ
44𝑖𝑚

−ℎ𝑀
⊺

𝑖𝑚
𝑉
𝑖𝑚
𝐷
𝑖

∗ ∗ ∗ ∗ −ℎ𝑋
𝑖𝑚

ℎ𝑀
𝑖𝑚
𝐷
𝑖

∗ ∗ ∗ ∗ ∗ −𝛿𝐻

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(20)

Ξ
2𝑖𝑚

=

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11𝑖𝑚

Ξ
12𝑖𝑚

−𝑆
𝑖𝑚

𝐴

⊺

𝑖
𝑉
⊺

𝑖𝑚
ℎ𝐴

⊺

𝑖
𝑀
⊺

𝑖𝑚
𝑃
𝑖𝑚
𝐷
𝑖

∗ Ξ
22𝑖𝑚

𝑆
𝑖𝑚

−

𝑌
𝑖𝑚

ℎ

𝐵

⊺

𝑖
𝑉
⊺

𝑖𝑚
ℎ𝐵

⊺

𝑖
𝑁
⊺

𝑖𝑚
0

∗ ∗ −𝑄
1𝑖
+

𝑌
𝑖𝑚

ℎ

0 0 0

∗ ∗ ∗ Ξ
44𝑖𝑚

−ℎ𝑁
⊺

𝑖𝑚
𝑉
𝑖𝑚
𝐷
𝑖

∗ ∗ ∗ ∗ −ℎ𝑋
𝑖𝑚

ℎ𝑁
𝑖𝑚
𝐷
𝑖

∗ ∗ ∗ ∗ ∗ −𝛿𝐻

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(21)

𝑐
1
Λ + 𝑑𝛿𝜆

10

1

𝜂

(1 − 𝑒
−𝜂𝑇

) < 𝜆
1
𝑒
−𝜂𝑇

𝑐
2
, (22)

where

Ξ
11𝑖𝑚

= ∑

𝑛∈M

𝜋
𝑚𝑛
𝑃
𝑖𝑛
+ ∑

𝑗∈N

𝜆
𝑖𝑗
𝑃
𝑗𝑚

+ 𝛿𝑃
𝑖𝑚
+ 𝑃

𝑖𝑚
𝐴

𝑖
+ 𝐴

⊺

𝑖
𝑃
𝑖𝑚
+ 𝑒

𝛿ℎ

𝑄
1𝑖

+ 𝑒
𝛿ℎ

𝑄
2𝑖
+ ℎ𝑄

𝑒
𝛿ℎ

− 1

𝛿

𝑋
𝑖𝑚

+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋 +

𝑌
𝑖𝑚

ℎ

,

Ξ
12𝑖𝑚

= 𝑃
𝑖𝑚
𝐵
𝑖
−

𝑌
𝑖𝑚

ℎ

+ 𝑆
𝑖𝑚
,

Ξ
22𝑖𝑚

= 𝑟 (𝜇
𝑚
) 𝑄

2𝑖
+

2𝑌
𝑖𝑚

ℎ

− 𝑆
𝑖𝑚
− 𝑆

⊺

𝑖𝑚
,

Ξ
44𝑖𝑚

= −𝑉
𝑖𝑚
− 𝑉

⊺

𝑖𝑚
+

𝑒
𝛿ℎ

− 1

𝛿

𝑌
𝑖𝑚
+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑌,

𝑟 (𝜏
𝑚
) = {

− (1 − 𝜇
𝑚
) 𝑒

𝛿ℎ
𝑖
, if 𝜇

𝑚
> 1,

− (1 − 𝜇
𝑚
) , if 𝜇

𝑚
≤ 1,

Λ = 𝜆
2
+ ℎ𝑒

𝛿ℎ

(𝜆
3
+ 𝜆

4
) + ℎ

2

𝑒
𝛿ℎ

(𝜆
5
+ 𝜆

6
+ 𝜆

8
)

+

1

2

ℎ
3

𝑒
𝛿ℎ

(𝜆
7
+ 𝜆

9
) ,

𝜆
1
= min

𝑖∈N,𝑚∈M
𝜆min (�̃�𝑖𝑚) , 𝜆

2
= max

𝑖∈N,𝑚∈M
𝜆max (�̃�𝑖𝑚) ,

𝜆
3
= max

𝑖∈N
𝜆max (𝑄1𝑖

) ,

𝜆
4
= max

𝑖∈N
𝜆max (𝑄2𝑖

) , 𝜆
5
= 𝜆max (𝑄) ,

𝜆
6
= max

𝑖∈N,𝑚∈M
𝜆max (𝑋𝑖𝑚

) , 𝜆
7
= 𝜆max (𝑋) ,

𝜆
8
= max

𝑖∈N,𝑚∈M
𝜆max (�̃�𝑖𝑚) , 𝜆

9
= 𝜆max (�̃�) ,

𝜆
10
= 𝜆max (𝐻) ,

�̃�
𝑖𝑚
= 𝑅

−(1/2)

𝑃
𝑖𝑚
𝑅
−(1/2)

,

𝑄
𝑙𝑖
= 𝑅

−(1/2)

𝑄
𝑙𝑖
𝑅
−(1/2)

(𝑙 = 1, 2) ,

𝑄 = 𝑅
−(1/2)

𝑄𝑅
−(1/2)

, 𝑋
𝑖𝑚
= 𝑅

−(1/2)

𝑋
𝑖𝑚
𝑅
−(1/2)

,

𝑋 = 𝑅
−(1/2)

𝑋𝑅
−(1/2)

, �̃�
𝑖𝑚
= 𝑅

−(1/2)

𝑌
𝑖𝑚
𝑅
−(1/2)

,

�̃� = 𝑅
−(1/2)

𝑌𝑅
−(1/2)

.

(23)

Proof. First, in order to cast our model into the framework of
theMarkov processes, we define a new process {(𝜂

𝑡
, 𝑟

𝑡
, 𝑠

𝑡
), 𝑡 ≥

0} by

𝜂
𝑡
(𝑠) = 𝜂 (𝑡 + 𝑠) , 𝑠 ∈ [−ℎ, 0] . (24)

Now, we consider the following Lyapunov-Krasovskii
functional:

𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
) =

4

∑

𝑙=1

𝑉
𝑙
(𝜂

𝑡
, 𝑟

𝑡
, 𝑡) , (25)

where

𝑉
1
(𝜂

𝑡
, 𝑟

𝑡
, 𝑠

𝑡
) = 𝜂(𝑡)

⊺

𝑒
𝛿𝑡

𝑃
𝑟
𝑡
,𝑠
𝑡

𝜂 (𝑡) ,

𝑉
2
(𝜂

𝑡
, 𝑟

𝑡
, 𝑠

𝑡
) = ∫

𝑡

𝑡−ℎ

𝑒
𝛿(𝑠+ℎ)

𝜂
⊺

(𝑠) 𝑄
1𝑟
𝑡

𝜂 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
𝑠𝑡
(𝑡)

𝑒
𝛿(𝑠+ℎ)

𝜂
⊺

(𝑠) 𝑄
2𝑟
𝑡

𝜂 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+ℎ)

𝜂
⊺

(𝑠) 𝑄𝜂 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
3
(𝜂

𝑡
, 𝑟

𝑡
, 𝑠

𝑡
) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺

(𝑠)𝑋
𝑟
𝑡
,𝑠
𝑡

𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺

(𝑠)𝑋𝜂 (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃,

𝑉
4
(𝜂

𝑡
, 𝑟

𝑡
, 𝑠

𝑡
) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

̇𝜂
⊺

(𝑠) 𝑌
𝑟
𝑡
,𝑠
𝑡

̇𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

̇𝜂
⊺

(𝑠) 𝑌 ̇𝜂 (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃.

(26)
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Then, for each 𝑟
𝑡
= 𝑖, 𝑠

𝑡
= 𝑚, we have

£𝑉
1
(𝜂

𝑡
, 𝑖, 𝑚)

= lim
Δ→0

+

1

Δ

E {𝜂
⊺

(𝑡 + Δ) 𝑒
𝛿(𝑡+Δ)

𝑃
𝑟
𝑡+Δ

,𝑠
𝑡+Δ

𝜂 (𝑡 + Δ)

−𝜂
⊺

(𝑡) 𝑒
𝛿𝑡

𝑃
𝑖𝑚
𝜂 (𝑡)}

= lim
Δ→0

+

1

Δ

E
{

{

{

𝜂
⊺

(𝑡 + Δ)
[

[

(1 + 𝜆
𝑖𝑖
Δ + 𝑜 (Δ))

× (1 + 𝜋
𝑚𝑚
Δ + 𝑜 (Δ)) 𝑒

𝛿(𝑡+Δ)

𝑃
𝑖𝑚

+ (1 + 𝜆
𝑖𝑖
Δ + 𝑜 (Δ))

× ( ∑

𝑛∈M

(𝜋
𝑚𝑛
Δ + 𝑜 (Δ))) 𝑒

𝛿(𝑡+Δ)

𝑃
𝑖𝑛

+ (1 + 𝜋
𝑚𝑚
Δ + 𝑜 (Δ))

× (∑

𝑗∈N

(𝜆
𝑖𝑗
Δ + 𝑜 (Δ))) 𝑒

𝛿(𝑡+Δ)

𝑃
𝑗𝑚

+ ( ∑

𝑛∈M

(𝜋
𝑚𝑛
Δ + 𝑜 (Δ)))

×(∑

𝑗∈N

(𝜆
𝑖𝑗
Δ + 𝑜 (Δ))) 𝑒

𝛿(𝑡+Δ)

𝑃
𝑗𝑛

]

]

× 𝜂 (𝑡 + Δ)

− 𝜂
⊺

(𝑡) 𝑒
𝛿𝑡

𝑃
𝑖𝑚
𝜂 (𝑡)

}

}

}

= 𝛿𝑒
𝛿𝑡

𝜂
⊺

(𝑡) 𝑃
𝑖𝑚
𝜂 (𝑡) + 2𝑒

𝛿𝑡

𝜂
⊺

(𝑡) 𝑃
𝑖𝑚
̇𝜂 (𝑡)

+ 𝑒
𝛿𝑡

𝜂
⊺

(𝑡)( ∑

𝑛∈M

𝜋
𝑚𝑛
𝑃
𝑖𝑛
+ ∑

𝑗∈N

𝜆
𝑖𝑗
𝑃
𝑗𝑚
)𝜂 (𝑡)

= 𝑒
𝛿𝑡

𝜂
⊺

(𝑡)( ∑

𝑛∈M

𝜋
𝑚𝑛
𝑃
𝑖𝑛
+ ∑

𝑗∈N

𝜆
𝑖𝑗
𝑃
𝑗𝑚
+ 𝛿𝑃

𝑖𝑚

+ 𝑃
𝑖𝑚
𝐴

𝑖
+ 𝐴

⊺

𝑖
𝑃
𝑖𝑚
)𝜂 (𝑡)

+ 2𝑒
𝛿𝑡

𝜂
⊺

(𝑡) 𝑃
𝑖𝑚
𝐵
𝑖
𝜂 (𝑡 − 𝜏

𝑚
(𝑡)) + 2𝑒

𝛿𝑡

𝜂
⊺

(𝑡) 𝑃
𝑖𝑚
𝐷

𝑖
𝜔 (𝑡) ,

(27)
£𝑉

2
(𝜂

𝑡
, 𝑖, 𝑚)

= lim
Δ→0

+

1

Δ

E{∫
𝑡+Δ

𝑡+Δ−ℎ

𝜂
⊺

(𝑠) 𝑒
𝛿(𝑠+ℎ)

𝑄
1𝑟
𝑡+Δ

𝜂 (𝑠) 𝑑𝑠

−∫

𝑡

𝑡−ℎ

𝜂
⊺

(𝑠) 𝑒
𝛿(𝑠+ℎ)

𝑄
1𝑖
𝜂 (𝑠) 𝑑𝑠}

+ lim
Δ→0

+

1

Δ

E{∫
𝑡+Δ

𝑡+Δ−𝜏
𝑠
𝑡+Δ

(𝑡)

𝜂
⊺

(𝑠) 𝑒
𝛿(𝑠+ℎ)

𝑄
2𝑟
𝑡+Δ

𝜂 (𝑠) 𝑑𝑠

−∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

𝜂
⊺

(𝑠) 𝑒
𝛿(𝑠+ℎ)

𝑄
2𝑖
𝜂 (𝑠) 𝑑𝑠}

+ lim
Δ→0

+

1

Δ

E{∫
0

−ℎ

∫

𝑡+Δ

𝑡+Δ+𝜃

𝑒
𝛿(𝑠+ℎ)

𝜂
⊺

(𝑠) 𝑄𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

−∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+ℎ)

𝜂
⊺

(𝑠) 𝑄𝜂 (𝑠) 𝑑𝑠 𝑑𝜃}

= lim
Δ→0

+

1

Δ

E{∫
𝑡+Δ

𝑡+Δ−ℎ

𝜂
⊺

(𝑠) 𝑒
𝛿(𝑠+ℎ)

𝑄
1𝑖
𝜂 (𝑠) 𝑑𝑠

+ ∫

𝑡+Δ

𝑡+Δ−ℎ

𝜂
⊺

(𝑠)

× ∑

𝑗∈N

(𝜆
𝑖𝑗
Δ + 𝑜 (Δ))

× 𝑒
𝛿(𝑠+ℎ)

𝑄
1𝑖
𝜂 (𝑠) 𝑑𝑠

−∫

𝑡

𝑡−ℎ

𝜂
⊺

(𝑠) 𝑄
1𝑖
𝜂 (𝑠) 𝑑𝑠}

+ lim
Δ→0

+

1

Δ

E[∫
𝑡+Δ

𝑡+Δ−𝜏
𝑗
(𝑡+Δ)

𝜂
⊺

(𝑠) 𝑒
𝛿(𝑠+ℎ)

𝑄
2𝑖
𝜂 (𝑠) 𝑑𝑠

+ ∑

𝑛∈M

(𝜋
𝑚𝑛
Δ + 𝑜 (Δ))

× ∫

𝑡

𝑡+Δ−𝜏
𝑛
(𝑡+Δ)

𝜂
⊺

(𝑠) 𝑒
𝛿(𝑠+ℎ)

𝑄
2𝑖
𝜂 (𝑠) 𝑑𝑠

+ ∫

𝑡+Δ

−𝜏
𝑗
(𝑡 + Δ)

𝑡+Δ

𝜂
⊺

(𝑠)

× ∑

𝑗∈N

(𝜆
𝑖𝑗
Δ + 𝑜 (Δ))

× 𝑒
𝛿(𝑠+ℎ)

𝑄
2𝑗
𝜂 (𝑠) 𝑑𝑠

−∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

𝜂
⊺

(𝑠) 𝑒
𝛿(𝑠+ℎ)

𝑄
2𝑖
𝜂 (𝑠) 𝑑𝑠]

+ 𝑒
𝛿𝑡

𝜂
⊺

(𝑡) ℎ𝑄𝜂 (𝑡) − ∫

𝑡−ℎ

𝑒
𝛿(𝑠+ℎ)

𝜂
⊺

(𝑠) 𝑄𝜂 (𝑠) 𝑑𝑠

≤ 𝑒
𝛿𝑡

𝜂
⊺

(𝑡) (𝑒
𝛿ℎ

𝑄
1𝑖
+ 𝑒

𝛿ℎ

𝑄
2𝑖
+ ℎ𝑄) 𝜂 (𝑡)

− 𝑒
𝛿𝑡

𝜂
⊺

(𝑡 − ℎ)𝑄
1𝑖
𝜂 (𝑡 − ℎ)

− (1 − 𝜏
𝑚
(𝑡)) 𝑒

𝛿𝑡

𝜂
⊺

(𝑡 − 𝜏
𝑚
(𝑡)) 𝑄

2𝑖
𝜂 (𝑡 − 𝜏

𝑚
(𝑡))

+ ∫

𝑡

𝑡−ℎ

𝑒
𝜎(𝑠+ℎ)

𝜂
⊺

(𝑠)( ∑

𝑗∈N,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
(𝑄

1𝑗
+ 𝑄

2𝑗
)



6 Journal of Applied Mathematics

+ ∑

𝑛∈M,𝑚 ̸= 𝑛

𝜋
𝑚𝑛
𝑄

2𝑖
− 𝑄)

× 𝜂 (𝑠) 𝑑𝑠.

(28)

Since

0 ≤ 𝜏
𝑚
(𝑡) ≤ ℎ

𝑚
, (29)

we define

𝑟 (𝜏
𝑚
) = {

− (1 − 𝜇
𝑚
) 𝑒

𝛿ℎ
𝑚
, if 𝜇

𝑚
> 1,

− (1 − 𝜇
𝑚
) , if 𝜇

𝑚
≤ 1.

(30)

Then,

£𝑉
2
(𝜂

𝑡
, 𝑖, 𝑚) ≤ 𝑒

𝛿𝑡

𝜂
⊺

(𝑡) (𝑒
𝛿ℎ

𝑄
1𝑖
+ 𝑒

𝛿ℎ

𝑄
2𝑖
+ ℎ𝑄) 𝜂 (𝑡)

− 𝑒
𝛿𝑡

𝜂
⊺

(𝑡 − ℎ)𝑄
1𝑖
𝜂 (𝑡 − ℎ)

+ 𝑒
𝛿𝑡

𝜂
⊺

(𝑡 − 𝜏
𝑚
(𝑡)) 𝑟 (𝜏

𝑚
) 𝑄

2𝑖
𝜂 (𝑡 − 𝜏

𝑚
(𝑡))

+ ∫

𝑡

𝑡−ℎ

𝑒
𝜎(𝑠+ℎ)

𝜂
⊺

(𝑠)

× ( ∑

𝑗∈N,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
(𝑄

1𝑗
+ 𝑄

2𝑗
)

+ ∑

𝑛∈M,𝑚 ̸= 𝑛

𝜋
𝑚𝑛
𝑄

2𝑖
− 𝑄)

× 𝜂 (𝑠) 𝑑𝑠.

(31)

Similar to the previous process, we can obtain

£𝑉
3
(𝜂

𝑡
, 𝑖, 𝑚) ≤ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺

(𝑠)

× ( ∑

𝑛∈M,𝑚 ̸= 𝑛

𝜋
𝑚𝑛
𝑋

𝑖𝑛

+ ∑

𝑗∈N,𝑖 ̸= 𝑗

𝜆
𝑖𝑗
𝑋

𝑗𝑚
− 𝑋)

× 𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿𝑡

𝜂
⊺

(𝑡) 𝑋
𝑖𝑚
𝜂 (𝑡) ∫

0

−ℎ

𝑒
−𝛿𝜐

𝑑𝜐

− 𝑒
𝛿𝑡

∫

𝑡

𝑡−ℎ

𝜂
⊺

(𝑠)𝑋
𝑖𝑚
𝜂 (𝑠) 𝑑𝑠

+ 𝑒
𝛿𝑡

𝜂
⊺

(𝑡) 𝑋𝜂 (𝑡) ∫

0

−ℎ

∫

0

𝜐

𝑒
−𝛿𝜐

𝑑𝜃𝑑𝜐.

(32)

By using Lemma 5, it yields that

−∫

𝑡

𝑡−ℎ

𝜂
⊺

(𝑠)𝑋
𝑖𝑚
𝜂 (𝑠) 𝑑𝑠 = −∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

𝜂
⊺

(𝑠)𝑋
𝑖𝑚
𝜂 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏
𝑚
(𝑡)

𝑡−ℎ

𝜂
⊺

(𝑠)𝑋
𝑖𝑚
𝜂 (𝑠) 𝑑𝑠

≤ −𝜏
𝑚
(𝑡) 𝑈

⊺

1
𝑋

𝑖𝑚
𝑈
1

− (ℎ − 𝜏
𝑚
(𝑡)) 𝑈

⊺

2
𝑋

𝑖𝑚
𝑈
2
,

(33)

where

𝑈
1
=

1

𝜏
𝑚
(𝑡)

∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

𝜂 (𝑠) 𝑑𝑠,

𝑈
2
=

1

ℎ − 𝜏
𝑚
(𝑡)

∫

𝑡−𝜏
𝑚
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠,

lim
𝜏
𝑚
(𝑡)→0

1

𝜏
𝑚
(𝑡)

∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

𝜂 (𝑠) 𝑑𝑠 = 𝜂 (𝑡) ,

lim
𝜏
𝑚
(𝑡)→ℎ

1

ℎ − 𝜏
𝑚
(𝑡)

∫

𝑡−𝜏
𝑚
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠 = 𝜂 (𝑡 − ℎ) .

(34)

From the Newton-Leibniz formula, the following equa-
tion is true for any matrices𝑀

𝑖𝑚
, 𝑁

𝑖𝑚
, and 𝑉

𝑖𝑚
with appro-

priate dimensions:

(2𝜏
𝑚
(𝑡) 𝑈

⊺

1
𝑀

𝑖𝑚
+ 2 (ℎ − 𝜏

𝑚
(𝑡)) 𝑈

⊺

2
𝑁

𝑖𝑚
+ 2 ̇𝜂

⊺

(𝑡) 𝑉
𝑖𝑚
)

× [− ̇𝜂 (𝑡) + 𝐴
𝑖
𝜂 (𝑡) + 𝐵

𝜏𝑖
𝜂 (𝑡 − 𝜏

𝑚
(𝑡)) + 𝐷

𝑖
𝜔 (𝑡)] = 0,

(35)

£𝑉
4
(𝜂

𝑡
, 𝑖, 𝑚)

≤ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

̇𝜂
⊺

(𝑠)

× ( ∑

𝑛∈M,𝑚 ̸= 𝑛

𝜋
𝑚𝑛
𝑌
𝑖𝑛

+ ∑

𝑗∈N,𝑖 ̸= 𝑗

𝜆
𝑖𝑗
𝑌
𝑗𝑚
− 𝑌)

× ̇𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿𝑡

̇𝜂
⊺

(𝑡) 𝑌
𝑖𝑚
̇𝜂 (𝑡) ∫

0

−ℎ

𝑒
−𝛿𝜐

𝑑𝜐

− 𝑒
𝛿𝑡

∫

𝑡

𝑡−ℎ

̇𝜂
⊺

(𝑠) 𝑌
𝑖𝑚
̇𝜂 (𝑠) 𝑑𝑠

+ 𝑒
𝛿𝑡

̇𝜂
⊺

(𝑡) 𝑌 ̇𝜂 (𝑡) ∫

0

−ℎ

∫

0

𝜐

𝑒
−𝛿𝜐

𝑑𝜃 𝑑𝜐.

(36)
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From Lemma 5, it yields that

− ∫

𝑡

𝑡−ℎ

̇𝜂
⊺

(𝑠) 𝑌
𝑖𝑚
̇𝜂 (𝑠) 𝑑𝑠

= −∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

̇𝜂
⊺

(𝑠) 𝑌
𝑖𝑚
̇𝜂 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏
𝑚
(𝑡)

𝑡−ℎ

̇𝜂
⊺

(𝑠) 𝑌
𝑖𝑚
̇𝜂 (𝑠) 𝑑𝑠

≤ −

ℎ

𝜏
𝑚
(𝑡)

[∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

̇𝜂 (𝑠) 𝑑𝑠]

⊺

𝑌
𝑖𝑚

ℎ

[∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

̇𝜂 (𝑠) 𝑑𝑠]

−

ℎ

ℎ − 𝜏
𝑚
(𝑡)

[∫

𝑡−𝜏
𝑚
(𝑡)

𝑡−ℎ

̇𝜂 (𝑠) 𝑑𝑠]

⊺

𝑌
𝑖𝑚

ℎ

[∫

𝑡−𝜏
𝑚
(𝑡)

𝑡−ℎ

̇𝜂 (𝑠) 𝑑𝑠]

≤ −

[

[

[

[

∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

̇𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑚
(𝑡)

𝑡−ℎ

̇𝜂 (𝑠) 𝑑𝑠

]

]

]

]

⊺

[

[

[

𝑌
𝑖𝑚

ℎ

𝑆
𝑖𝑚

∗

𝑌
𝑖𝑚

ℎ

]

]

]

[

[

[

[

∫

𝑡

𝑡−𝜏
𝑚
(𝑡)

̇𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑚
(𝑡)

𝑡−ℎ

̇𝜂 (𝑠) 𝑑𝑠

]

]

]

]

.

(37)

From (25)–(37), we can eventually obtain

£𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
) − 𝛿𝜔

⊺

(𝑡)𝐻𝜔 (𝑡) ≤ 𝑒
𝛿𝑡

𝜉
⊺

(𝑡) Ξ
𝑖𝑚
𝜉 (𝑡) , (38)

where

𝜉
⊺

(𝑡) = [𝜂
⊺

(𝑡) , 𝜂
⊺

(𝑡 − 𝜏
𝑚
(𝑡)) , 𝜂

⊺

(𝑡 − ℎ) , ̇𝜂
⊺

(𝑡) , 𝑈
⊺

1
, 𝑈

⊺

2
, 𝜔

⊺

(𝑡)] ,

Ξ
𝑖𝑚
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11𝑖𝑚

Ξ
12𝑖𝑚

−𝑆
𝑖𝑚

𝐴
⊺

𝑖
𝑉

⊺

𝑖𝑚
𝜏
𝑚
(𝑡) 𝐴

⊺

𝑖
𝑀

⊺

𝑖𝑚
(ℎ − 𝜏

𝑚
(𝑡)) 𝐴

⊺

𝑖
𝑁

⊺

𝑖𝑚
𝑃
𝑖𝑚
𝐷

𝑖

∗ Ξ
22𝑖𝑚

𝑆
𝑖𝑚
−

𝑌
𝑖𝑚

ℎ

𝐴
⊺

𝜏𝑖
𝑉

⊺

𝑖𝑚
𝜏
𝑚
(𝑡) 𝐴

⊺

𝜏𝑖
𝑀

⊺

𝑖𝑚
(ℎ − 𝜏

𝑚
(𝑡)) 𝐴

⊺

𝜏𝑖
𝑁

⊺

𝑖𝑚
0

∗ ∗ −𝑄
1𝑖
+

𝑌
𝑖𝑚

ℎ

0 0 0 0

∗ ∗ ∗ Ξ
44𝑖𝑚

−𝜏
𝑚
(𝑡)𝑀

⊺

𝑖𝑚
− (ℎ − 𝜏

𝑚
(𝑡))𝑁

⊺

𝑖𝑚
𝑉
𝑖𝑚
𝐷

𝑖

∗ ∗ ∗ ∗ −𝜏
𝑚
(𝑡) 𝑋

𝑖𝑚
0 𝜏

𝑚
(𝑡)𝑀

𝑖𝑚
𝐷

𝑖

∗ ∗ ∗ ∗ ∗ − (ℎ − 𝜏
𝑚
(𝑡))𝑋

𝑖𝑚
(ℎ − 𝜏

𝑚
(𝑡))𝑁

𝑖𝑚
𝐷

𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝛿𝐻

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(39)

The LMIs (20) and (21) lead to 𝜏
𝑚
(𝑡) → ℎ and 𝜏

𝑚
(𝑡) →

0, respectively. It is easy to see that Ξ
1𝑖𝑚

results from Ξ
𝑖𝑚
|

𝜏
𝑚
(𝑡) = ℎ and Ξ

𝑖𝑚
|𝜏
𝑚
(𝑡) = 0. Thus, we obtain

E {£𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)} ≤ 𝜂E [𝑉 (𝜂

𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)] + 𝛿𝜔

⊺

(𝑡)𝐻𝜔 (𝑡) .

(40)

Multiplying the aforementioned inequality by 𝑒−𝜂𝑡, we can
get

E {£ [𝑒−𝜂𝑡𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)]} ≤ 𝑒

−𝜂𝑡

𝛿𝜔
⊺

(𝑡)𝐻𝜔 (𝑡) . (41)

By integrating the aforementioned inequality between 0
and 𝑡, it follows that

𝑒
−𝜂𝑡

E [𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)] − E [𝑉 (𝜂

0
, 𝑟

0
, 𝑠

0
)]

≤ 𝛿∫

𝑡

0

𝑒
−𝜂𝑠

𝜔
⊺

(𝑠)𝐻𝜔 (𝑠) 𝑑𝑠.

(42)

Denote that �̃�
𝑖𝑚

= 𝑅
−(1/2)

𝑃
𝑖𝑚
𝑅
−(1/2), 𝑄

𝑠𝑖
=

𝑅
−(1/2)

𝑄
𝑠𝑖
𝑅
−(1/2)

(𝑠 = 1, 2), 𝑄 = 𝑅
−(1/2)

𝑄𝑅
−(1/2),

𝑋
𝑖𝑚

= 𝑅
−(1/2)

𝑋
𝑖𝑚
𝑅
−(1/2), 𝑋 = 𝑅

−(1/2)

𝑋𝑅
−(1/2),

�̃�
𝑖𝑚

= 𝑅
−(1/2)

𝑌
𝑖𝑚
𝑅
−(1/2), and �̃� = 𝑅

−(1/2)

𝑌𝑅
−(1/2); it yields

that

E [𝑉 (𝜂
0
, 𝑟

0
, 𝑠

0
)]

≤ max
𝑖∈N,𝑚∈M

𝜆max (�̃�𝑖𝑚) 𝜂
⊺

(0) 𝑅𝜂 (0)

+ (max
𝑖∈N

𝜆max (𝑄1𝑖
) +max

𝑖∈N
𝜆max (𝑄2𝑖

)) 𝑒
𝛿ℎ

× ∫

0

−ℎ

𝑒
𝛿𝑠

𝜂
⊺

(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠

+ 𝑒
𝛿ℎ

𝜆max (𝑄)∫
0

−ℎ

∫

0

𝜃

𝑒
𝛿𝑠

𝜂
⊺

(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠

+ 𝑒
𝛿ℎ max

𝑖∈N,𝑚∈M
𝜆max (𝑋𝑖𝑚

)

× ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜃

𝜂
⊺

(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿ℎ

𝜆max (𝑋)

× ∫

0

−ℎ

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

𝜂
⊺

(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜐

+ 𝑒
𝛿ℎ max

𝑖∈N,𝑚∈M
𝜆max (�̃�𝑖𝑚)
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× ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜃

̇𝜂
⊺

(𝑠) 𝑅 ̇𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿ℎ

𝜆max (�̃�)

× ∫

0

−ℎ

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

̇𝜂
⊺

(𝑠) 𝑅 ̇𝜂 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜐

≤ { max
𝑖∈N,𝑚∈M

𝜆max (�̃�𝑖𝑚)

+ ℎ𝑒
𝛿ℎ

(max
𝑖∈N

𝜆max (𝑄1𝑖
+

𝑖∈N
max𝜆max (𝑄2𝑖

)))

+ ℎ
2

𝑒
𝛿ℎ

( max
𝑖∈N,𝑚∈M

𝜆max (𝑋𝑖𝑚
) + 𝜆max (𝑄)

+ max
𝑖∈N,𝑚∈M

𝜆max (�̃�𝑖𝑚))

+

1

2

ℎ
3

𝑒
𝛿ℎ

(𝜆max (𝑋) + 𝜆max (�̃�)) }

× sup
−ℎ≤𝑠≤0

{𝜂
⊺

(𝑠) 𝑅𝜂 (𝑠) , ̇𝜂
⊺

(𝑠) 𝑅 ̇𝜂 (𝑠)}

= 𝑐
1
Λ.

(43)

For given 𝜂 > 0 and 0 ≤ 𝑡 ≤ 𝑇, we have

E [𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)] ≤ E [𝑒

𝜂𝑡

𝑉 (𝜂
0
, 𝑟

0
, 𝑠

0
)]

+ 𝑒
𝜂𝑡

𝛿∫

𝑡

0

𝑒
−𝜂𝑠

𝜔
⊺

(𝑠)𝐻𝜔 (𝑠) 𝑑𝑠

≤ 𝑒
𝜂𝑇

𝑐
1
Λ + 𝑑𝛿𝑒

𝜂𝑇

𝜆max (𝐻)∫
𝑇

0

𝑒
−𝜂𝑠

𝑑𝑠

≤ 𝑒
𝜂𝑇

{𝑐
1
Λ + 𝑑𝛿𝜆

10

1

𝜂

(1 − 𝑒
−𝜂𝑇

)} .

(44)

On the other hand, it follows from (25) that

E [𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)] ≥ E [𝜂

⊺

(𝑡) 𝑒
𝜆𝑡

𝑃
𝑖𝑚
𝜂 (𝑡)]

≥ max
𝑖∈N

𝜆min (𝑃𝑖𝑚)E [𝜂
⊺

(𝑡) 𝑅𝜂 (𝑡)]

= 𝜆
1
E [𝜂

⊺

(𝑡) 𝑅𝜂 (𝑡)] .

(45)

It can be derived from (43)–(45) that

E [𝜂
⊺

(𝑡) 𝑅𝜂 (𝑡)] ≤

𝑒
𝜂𝑇

𝜆
1

{𝑐
1
Λ + 𝑑𝛿𝜆

10

1

𝜂

(1 − 𝑒
−𝜂𝑇

)} . (46)

From (22) and (46), we have

E [𝜂
⊺

(𝑡) 𝑅𝜂 (𝑡)] < 𝑐
2
. (47)

Then, the system is finite-time bounded with respect to
(𝑐
1
, 𝑐

2
, 𝑑, 𝑅, 𝑇).

Remark 8. In this paper, 𝜏
𝑚
(𝑡) and ̇𝜏

𝑚
(𝑡) may have different

upper bounds in various delay intervals satisfying (7), respec-
tively. However, in previous work such as [20, 21], 𝜏

𝑚
(𝑡) and

̇𝜏
𝑚
(𝑡) are enlarged to 𝜏

𝑚
(𝑡) ≤ ℎ = max{ℎ

𝑖
, 𝑚 ∈ M} and

̇𝜏
𝑚
(𝑡) ≤ 𝜇 = max{𝜇

𝑚
, 𝑚 ∈ M}, respectively, which may lead

to conservativeness inevitably. However, the previouse case
can be taken fully into account by employing the Lyapunov-
Krasovskii functional (25).

Remark 9. When dealing with term−∫

𝑡

𝑡−ℎ

̇𝜂
⊺

(𝑠)𝑌
𝑖𝑚
̇𝜂(𝑠)𝑑𝑠, the

convex combination is not employed, Lemma 5 is used in this
paper, and then the free-weighting matrices-dependent null
add items are necessary to be introduced in our proof, which
lead to the decrease of the number of LMIs and LMIs scalar
decision variables.

Remark 10. The feature of this paper is the way to deal
with the integral term. Many researchers have enlarged the
derivative of the Lyapunov functional in order to deal with the
integral term in mathematical operations. In this paper, we
propose a novel delay-dependent sufficient criterion, which
ensures that the Markovian jump system with different mode
systems is finite-time stable.

Remark 11. It should be pointed out that the novelty of the
Lyapunov functional (25) lies in distinct Lyapunov matrices
(𝑃

𝑖𝑚
, 𝑋

𝑖𝑚
, 𝑌

𝑖𝑚
) which is chosen for different system modes

𝑖 (𝑖 = 1, 2, . . . , 𝑁) and𝑚 (𝑚 = 1, 2, . . . ,𝑀).

Theorem 12. System (9) is finite-time bounded with respect to
(𝑐
1
, 𝑐

2
, 𝑑, 𝑅, 𝑇), if there exist matrices 𝑃

𝑖
> 0, 𝑄

𝑙𝑖
> 0 (𝑙 = 1, 2),

𝑄 > 0, 𝑋
𝑖𝑚
> 0, 𝑋 > 0, 𝑌

𝑖𝑚
> 0, 𝑌 > 0, 𝑆

𝑖𝑚
, scalars 𝑐

1
< 𝑐

2
,

𝑇 > 0, 𝜆
𝑠
> 0 (𝑠 = 1, 2, . . . , 9), 𝜂 > 0, 𝛾 > 0, and Λ > 0, such

that for all 𝑖, 𝑗 ∈N and𝑚, 𝑛 ∈M and (16)–(19), the following
inequalities hold:

Σ
1𝑖𝑚

=

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11𝑖𝑚

Ξ
12𝑖𝑚

−𝑆
𝑖𝑚

𝐴

⊺

𝑖
𝑉
⊺

𝑖𝑚
ℎ𝐴

⊺

𝑖
𝑀
⊺

𝑖𝑚
𝑃
𝑖𝑚
𝐷
𝑖

𝐶

⊺

𝑖

∗ Ξ
22𝑖𝑚

𝑆
𝑖𝑚

−

𝑌
𝑖𝑚

ℎ

𝐵

⊺

𝑖
𝑉
⊺

𝑖𝑚
ℎ𝐵

⊺

𝑖
𝑀
⊺

𝑖𝑚
0 𝐸

⊺

𝑖

∗ ∗ −𝑄
1𝑖
+

𝑌
𝑖𝑚

ℎ

0 0 0 0

∗ ∗ ∗ Ξ
44𝑖𝑚

−ℎ𝑀
⊺

𝑖𝑚
𝑉
𝑖𝑚
𝐷
𝑖

0

∗ ∗ ∗ ∗ −ℎ𝑋
𝑖𝑚

ℎ𝑀
𝑖𝑚
𝐷
𝑖

0

∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(48)

Σ
2𝑖𝑚

=

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11𝑖𝑚

Ξ
12𝑖𝑚

−𝑆
𝑖𝑚

𝐴

⊺

𝑖
𝑉
⊺

𝑖𝑚
ℎ𝐴

⊺

𝑖
𝑁
⊺

𝑖𝑚
𝑃
𝑖𝑚
𝐷
𝑖

𝐶

⊺

𝑖

∗ Ξ
22𝑖𝑚

𝑆
𝑖𝑚

−

𝑌
𝑖𝑚

ℎ

𝐵

⊺

𝑖
𝑉
⊺

𝑖𝑚
ℎ𝐵

⊺

𝑖
𝑁
⊺

𝑖𝑚
0 𝐸

⊺

𝑖

∗ ∗ −𝑄
1𝑖
+

𝑌
𝑖𝑚

ℎ

0 0 0 0

∗ ∗ ∗ Ξ
44𝑖𝑚

−ℎ𝑁
⊺

𝑖𝑚
𝑉
𝑖𝑚
𝐷
𝑖

0

∗ ∗ ∗ ∗ −ℎ𝑋
𝑖𝑚

ℎ𝑁
𝑖𝑚
𝐷
𝑖

0

∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(49)

𝑐
1
Λ + 𝑑𝛿𝛾

2
1

𝜂

(1 − 𝑒
−𝜂𝑇

) < 𝜆
1
𝑒
−𝜂𝑇

𝑐
2
. (50)
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Proof. We now consider the 𝐻
∞

performance of system (9).
Select the same Lyapunov-Krasovskii functional as Theo-
rem 7; it yields that

£𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
) + 𝑒

⊺

(𝑡) 𝑒 (𝑡) − 𝛾
2

𝜔
⊺

(𝑡) 𝜔 (𝑡) ≤ 𝜉
⊺

(𝑡) Σ
𝑙𝑖𝑚
𝜉 (𝑡)

(𝑙 = 1, 2) .

(51)

It follows from (49)-(50) that

E {£𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)}

≤ E [𝜂𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)] + 𝛾

2

𝜔
⊺

(𝑡) 𝜔 (𝑡) − E [𝑒
⊺

(𝑡) 𝑒 (𝑡)] .

(52)

Multiplying the aforementioned inequality by 𝑒−𝜂𝑡, one
has

E {£ [𝑒−𝜂𝑡𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)]} ≤ 𝑒

−𝜂𝑡

[𝛾
2

𝜔
⊺

(𝑡) 𝜔 (𝑡) − 𝑒
⊺

(𝑡) 𝑒 (𝑡)] .

(53)

In zero initial condition and E[𝑉(𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)] > 0, by inte-

grating the aforementioned inequality between 0 and 𝑇, we
can get

∫

𝑇

0

𝑒
−𝜂𝑡

[𝛾
2

𝜔
⊺

(𝑡) 𝜔 (𝑡) − 𝑒
⊺

(𝑡) 𝑒 (𝑡)] 𝑑𝑡

≤ E{∫
𝑇

0

£ [𝑒−𝜂𝑡𝑉 (𝜂
𝑡
, 𝑟

𝑡
, 𝑠

𝑡
)] 𝑑𝑡} ≤ 𝑉 (𝜂

0
, 𝑟

0
, 𝑠

0
) = 0.

(54)

Using Dynkins formula, it results that

E [∫
𝑇

0

𝑒
−𝜂𝜐

𝑒
⊺

(𝜐) 𝑒 (𝜐) 𝑑𝜐] ≤ 𝛾
2

E [∫
𝑇

0

𝑒
−𝜂𝜐

𝜔
⊺

(𝜐) 𝜔 (𝜐) 𝑑𝜐] .

(55)

Then, it yields that

E [∫
𝑇

0

𝑒
⊺

(𝜐) 𝑒 (𝜐) 𝑑𝜐] ≤ 𝛾
2

𝑒
𝜂𝑇

E [∫
𝑇

0

𝜔
⊺

(𝜐) 𝜔 (𝜐) 𝑑𝜐] . (56)

Thus, it is concluded by Definition 3 that system (9) is fi-
nite-time bounded with an 𝐻

∞
performance 𝛾. This com-

pletes the proof.

Remark 13. From the proof process of Theorems 7 and 12,
it is easy to see that neither bounding technique for cross-
terms nor model transformation is involved. In other words,
the obtained result is expected to be less conservative.

Remark 14. The Lyapunov asymptotic stability and finite-
time stability of a class of system are independent concepts.
A Lyapunov asymptotic stability system may not be finite-
time stability. Moreover, finite-time stability system may also
not be Lyapunov asymptotic stability.There exist some results
on Lyapunov stability, while finite-time stability also needs
our full investigation, which was neglected by most previous
work.

4. Finite-Time 𝐻
∞

Filtering

Theorem 15. System (9) is finite-time bounded with respect to
(𝑐
1
, 𝑐

2
, 𝑑, 𝑅, 𝑇), if there exist matrices 𝑃

𝑖𝑚
> 0,𝑀

𝑖𝑚
, 𝑁

𝑖𝑚
, 𝑉

𝑖𝑚
,

𝑄
𝑙𝑖
> 0 (𝑙 = 1, 2), 𝑄 > 0, 𝑋

𝑖𝑚
> 0, 𝑋 > 0, 𝑌

𝑖𝑚
> 0, 𝑌 > 0,

𝐴
𝑓𝑖𝑚

, 𝐵
𝑓𝑖𝑚

, 𝐶
𝑓𝑖𝑚

,𝑀
𝐴𝑖𝑚

,𝑀
𝐵𝑖𝑚

, 𝑁
𝐴𝑖𝑚

, 𝑁
𝐵𝑖𝑚

, 𝑉
𝐴𝑖𝑚

, 𝑉
𝐵𝑖𝑚

, 𝑆
𝑖𝑚

scalars 𝑐
1
< 𝑐

2
, 𝑇 > 0, 𝜎

𝑠
> 0 (𝑠 = 1, 2, . . . , 9), 𝛿 > 0, 𝜂 > 0,

and Λ > 0, such that for all 𝑖, 𝑗 ∈ N and 𝑚, 𝑛 ∈ M, the
following inequalities hold:

𝑃
𝑖𝑚
= [

𝑃
1𝑖𝑚

𝑃
2𝑖𝑚

𝑃
2𝑖𝑚

𝑃
2𝑖𝑚

] > 0, 𝑀
𝑖𝑚
= [

𝑀
1𝑖𝑚

𝑀
2𝑖𝑚

𝑀
2𝑖𝑚

𝑀
2𝑖𝑚

] , (57)

𝑁
𝑖𝑚
= [

𝑁
1𝑖𝑚

𝑁
2𝑖𝑚

𝑁
2𝑖𝑚

𝑁
2𝑖𝑚

] , 𝑉
𝑖𝑚
= [

𝑉
1𝑖𝑚

𝑉
2𝑖𝑚

𝑉
2𝑖𝑚

𝑉
2𝑖𝑚

] , (58)

Γ
1𝑖𝑚

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
11𝑖𝑚

Γ
12𝑖𝑚

−𝑆
𝑖𝑚

Γ
14𝑖𝑚

Γ
15𝑖𝑚

Γ
16𝑖𝑚

Γ
17𝑖𝑚

∗ Ξ
22𝑖𝑚

𝑆
𝑖𝑚

−

𝑌
𝑖𝑚

ℎ

Γ
24𝑖𝑚

Γ
25𝑖𝑚

0 [
𝐶
⊺

𝑧𝜏𝑖

0
]

∗ ∗ −𝑄
1𝑖
+

𝑌
𝑖𝑚

ℎ

0 0 0 0

∗ ∗ ∗ Ξ
44𝑖𝑚

−ℎ𝑀
⊺

𝑖𝑚
Γ
46𝑖𝑚

0

∗ ∗ ∗ ∗ −ℎ𝑋
𝑖𝑚

Γ
56𝑖𝑚

0

∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(59)

Γ
2𝑖𝑚

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
11𝑖𝑚

Γ
12𝑖𝑚

−𝑆
𝑖𝑚

Γ
14𝑖𝑚

Γ
󸀠

15𝑖𝑚
Γ
16𝑖𝑚

Γ
17𝑖𝑚

∗ Ξ
22𝑖𝑚

𝑆
𝑖𝑚

−

𝑌
𝑖𝑚

ℎ

Γ
24𝑖𝑚

Γ
󸀠

25𝑖𝑚
0 [

𝐶
⊺

𝑧𝜏𝑖

0
]

∗ ∗ −𝑄
1𝑖
+

𝑌
𝑖𝑚

ℎ

0 0 0 0

∗ ∗ ∗ Ξ
44𝑖𝑚

−ℎ𝑁
⊺

𝑖𝑚
Γ
󸀠

46𝑖𝑚
0

∗ ∗ ∗ ∗ −ℎ𝑋
𝑖𝑚

Γ
󸀠

56𝑖𝑚
0

∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(60)where

Γ
11𝑖𝑚

= ∑

𝑛∈M

𝜋
𝑚𝑛
𝑃
𝑖𝑛
+ ∑

𝑗∈N

𝜆
𝑖𝑗
𝑃
𝑗𝑚
+ 𝑒

𝛿ℎ

𝑄
1𝑖
+ 𝑒

𝛿ℎ

𝑄
2𝑖
+ ℎ𝑄 +

𝑒
𝛿ℎ

− 1

𝛿

𝑋
𝑖𝑚
+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋

+

𝑌
𝑖𝑚

ℎ

+ [

𝛿𝑃
1𝑖𝑚

+ 𝑃
1𝑖𝑚
𝐴

𝑖
+ 𝐴

⊺

𝑖
𝑃
1𝑖𝑚

+ 𝐵
𝑓𝑖𝑚
𝐶
𝑦𝑖
+ 𝐶

⊺

𝑦𝑖
𝐵

⊺

𝑓𝑖𝑚
𝛿𝑃

2𝑖𝑚
+ 𝐴

𝑓𝑖𝑚
+ 𝐴

⊺

𝑓𝑖𝑚

𝛿𝑃
2𝑖𝑚

+ 𝑃
2𝑖𝑚
𝐴

𝑖
+ 𝐴

⊺

𝑖
𝑃
2𝑖𝑚

+ 𝐵
𝑓𝑖𝑚
𝐶
𝑦𝑖
+ 𝐶

⊺

𝑦𝑖
𝐵

⊺

𝑓𝑖𝑚
𝛿𝑃

2𝑖𝑚
+ 𝐴

𝑓𝑖𝑚
+ 𝐴

⊺

𝑓𝑖𝑚

] ,

(61)
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Γ
12𝑖𝑚

= −

𝑌
𝑖𝑚

ℎ

+ 𝑆
𝑖𝑚
+ [

𝑃
1𝑖𝑚
𝐴

𝜏𝑖
+ 𝐵

𝑓𝑖𝑚
𝐶
𝑦𝜏𝑖

𝑃
2𝑖𝑚
𝐴

𝜏𝑖
+ 𝐵

𝑓𝑖𝑚
𝐶
𝑦𝜏𝑖

] ,

Γ
14𝑖𝑚

= [

𝐴
⊺

𝑖
𝑉

⊺

1𝑖𝑚
+ 𝐶

⊺

𝑦𝑖
𝑉

⊺

𝐵𝑖𝑚
𝑉

⊺

𝐴𝑖𝑚

𝐴
⊺

𝑖
𝑉

⊺

2𝑖𝑚
+ 𝐶

⊺

𝑦𝑖
𝑉

⊺

𝐵𝑖𝑚
𝑉

⊺

𝐴𝑖𝑚

] ,

Γ
15𝑖𝑚

= [

ℎ𝐴
⊺

𝑖
𝑀

⊺

1𝑖𝑚
+ ℎ𝐶

⊺

𝑦𝑖
𝑀

⊺

𝐵𝑖𝑚
ℎ𝑀

⊺

𝐴𝑖𝑚

ℎ𝐴
⊺

𝑖
𝑀

⊺

2𝑖𝑚
+ ℎ𝐶

⊺

𝑦𝑖
𝑀

⊺

𝐵𝑖𝑚
ℎ𝑀

⊺

𝐴𝑖𝑚

] ,

Γ
󸀠

15𝑖𝑚
= [

ℎ𝐴
⊺

𝑖
𝑁

⊺

1𝑖𝑚
+ ℎ𝐶

⊺

𝑦𝑖
𝑁

⊺

𝐵𝑖𝑚
ℎ𝑁

⊺

𝐴𝑖𝑚

ℎ𝐴
⊺

𝑖
𝑁

⊺

2𝑖𝑚
+ ℎ𝐶

⊺

𝑦𝑖
𝑁

⊺

𝐵𝑖𝑚
ℎ𝑁

⊺

𝐴𝑖𝑚

] ,

Γ
16𝑖𝑚

= [

𝑃
1𝑖𝑚
𝐷

𝑖
+ 𝐵

𝑓𝑖𝑚
𝐷

𝑦𝑖

𝑃
2𝑖𝑚
𝐷

𝑖
+ 𝐵

𝑓𝑖𝑚
𝐷

𝑦𝑖

] ,

Γ
17𝑖𝑚

= [

𝐶
⊺

𝑧𝑖

−𝐶
𝑓𝑖𝑚

] ,

Γ
24𝑖𝑚

= [

𝐴
⊺

𝜏𝑖
𝑉

⊺

1𝑖𝑚
+ 𝐶

⊺

𝑦𝜏𝑖
𝑉

⊺

𝐵𝑖𝑚

𝐴
⊺

𝜏𝑖
𝑉

⊺

2𝑖𝑚
+ 𝐶

⊺

𝑦𝜏𝑖
𝑉

⊺

𝐵𝑖𝑚

] ,

Γ
25𝑖𝑚

= [

ℎ𝐴
⊺

𝜏𝑖
𝑀

⊺

1𝑖𝑚
+ ℎ𝐶

⊺

𝑦𝜏𝑖
𝑀

⊺

𝐵𝑖𝑚

ℎ𝐴
⊺

𝜏𝑖
𝑀

⊺

2𝑖𝑚
+ ℎ𝐶

⊺

𝑦𝜏𝑖
𝑀

⊺

𝐵𝑖𝑚

] ,

Γ
󸀠

25𝑖𝑚
= [

ℎ𝐴
⊺

𝜏𝑖
𝑁

⊺

1𝑖𝑚
+ ℎ𝐶

⊺

𝑦𝜏𝑖
𝑁

⊺

𝐵𝑖𝑚

ℎ𝐴
⊺

𝜏𝑖
𝑁

⊺

2𝑖𝑚
+ ℎ𝐶

⊺

𝑦𝜏𝑖
𝑁

⊺

𝐵𝑖𝑚

] ,

Γ
46𝑖𝑚

= [

𝑉
1𝑖𝑚
𝐷

𝑖
+ 𝑉

𝐵𝑖𝑚
𝐷

𝑦𝑖

𝑉
2𝑖𝑚
𝐷

𝑖
+ 𝑉

𝐵𝑖𝑚
𝐷

𝑦𝑖

] ,

Γ
56𝑖𝑚

= [

ℎ𝑀
1𝑖𝑚
𝐷

𝑖
+ ℎ𝑀

𝐵𝑖𝑚
𝐷

𝑦𝑖

ℎ𝑀
2𝑖𝑚
𝐷

𝑖
+ ℎ𝑀

𝐵𝑖𝑚
𝐷

𝑦𝑖

] ,

Γ
󸀠

56𝑖𝑚
= [

ℎ𝑁
1𝑖𝑚
𝐷

𝑖
+ ℎ𝑁

𝐵𝑖𝑚
𝐷

𝑦𝑖

ℎ𝑁
2𝑖𝑚
𝐷

𝑖
+ ℎ𝑁

𝐵𝑖𝑚
𝐷

𝑦𝑖

] .

(62)

Then, a desired filter can be chosen with parameters as

𝐴
𝑓𝑖𝑚

= 𝑃
−1

2𝑖𝑚
𝐴

𝑓𝑖𝑚
, 𝐵

𝑓𝑖𝑚
= 𝑃

−1

2𝑖𝑚
𝐵
𝑓𝑖𝑚
,

𝐶
𝑓𝑖𝑚

= 𝐶
𝑓𝑖𝑚
.

(63)

Proof. We denote that

𝑃
𝑖𝑚
= [

𝑃
1𝑖𝑚

𝑃
2𝑖𝑚

𝑃
2𝑖𝑚

𝑃
2𝑖𝑚

] . (64)

The term 𝑃
𝑖𝑚
𝐴

𝑖
can be rewritten as

𝑃
𝑖𝑚
𝐴

𝑖
= [

𝑃
1𝑖𝑚
𝐴

𝑖
+ 𝑃

2𝑖𝑚
𝐵
𝑓𝑖𝑚
𝐶
𝑦𝑖
𝑃
2𝑖𝑚
𝐴

𝑓𝑖𝑚

𝑃
2𝑖𝑚
𝐴

𝑖
+ 𝑃

2𝑖𝑚
𝐵
𝑓𝑖𝑚
𝐶
𝑦𝑖
𝑃
2𝑖𝑚
𝐴

𝑓𝑖𝑚

] . (65)

Similarly, we have

𝑃
𝑖𝑚
𝐵
𝑖
= [

𝑃
1𝑖𝑚
𝐴

𝜏𝑖
+ 𝑃

2𝑖𝑚
𝐵
𝑓𝑖𝑚
𝐶
𝑦𝜏𝑖

𝑃
2𝑖𝑚
𝐴

𝜏𝑖
+ 𝑃

2𝑖𝑚
𝐵
𝑓𝑖𝑚
𝐶
𝑦𝜏𝑖

] ,

𝑃
𝑖𝑚
𝐷

𝑖
= [

𝑃
1𝑖𝑚
𝐷

𝑖
+ 𝑃

2𝑖𝑚
𝐵
𝑓𝑖𝑚
𝐷

𝑦𝑖

𝑃
2𝑖𝑚
𝐷

𝑖
+ 𝑃

2𝑖𝑚
𝐵
𝑓𝑖𝑚
𝐷

𝑦𝑖

]

(66)

Define 𝐴
𝑓𝑖𝑚

= 𝑃
2𝑖𝑚
𝐴

𝑓𝑖𝑚
, 𝐵

𝑓𝑖𝑚
= 𝑃

2𝑖𝑚
𝐵
𝑓𝑖𝑚

, 𝐶
𝑓𝑖𝑚

= 𝐶
𝑓𝑖𝑚

,
𝑀

𝐴𝑖𝑚
= 𝑀

2𝑖𝑚
𝐴

𝑓𝑖𝑚
,𝑀

𝐵𝑖𝑚
= 𝑀

2𝑖𝑚
𝐵
𝑓𝑖𝑚

, 𝑁
𝐴𝑖𝑚

= 𝑁
2𝑖𝑚
𝐴

𝑓𝑖𝑚
,

𝑁
𝐵𝑖𝑚

= 𝑁
2𝑖𝑚
𝐵
𝑓𝑖𝑚

, 𝑉
𝐴𝑖𝑚

= 𝑉
2𝑖𝑚
𝐴

𝑓𝑖𝑚
, and 𝑉

𝐵𝑖𝑚
= 𝑉

2𝑖𝑚
𝐵
𝑓𝑖𝑚

.
Therefore, if (59) and (60) hold, system (9) is finite-time
bounded with a prescribed 𝐻

∞
performance index 𝛾. The

proof is completed.

Remark 16. In many actual applications, the minimum value
of 𝛾2min is of interest. In Theorem 12, with a fixed 𝜆, 𝛾min can
be obtained through the following optimization procedure:

min 𝛾
2

s.t. (48)–(50) .
(67)

In Theorem 15, as for finite-time stability and bounded-
ness, once the state bound 𝑐

2
is not ascertained, theminimum

value 𝑐
2min is of interest. With a fixed 𝜆, define 𝜆

1
= 1; then

the following optimization problem can be formulated to get
minimum value 𝑐

2min:

min 𝜍𝛾
2

+ (1 − 𝜍) 𝑐
2

s.t. (59)-(60) and (50) ,

(68)

where 𝜍 is weighted factor, and 𝜍 ∈ [0, 1].

5. Illustrative Example

Example 17. Consider that the Markovian jump system and
the delay mode switching are governed by a Markov process
with the following transition rates:

Λ = [

−0.7 0.7

0.9 −0.9
] , Π = [

−1 1

1.2 −1.2
] , (69)

as well as with the following parameters:

𝐴
1
= [

−3.5 0.86

−0.64 −3.25
] , 𝐴

2
= [

−2.5 0.34

1.4 −0.02
] ,

𝐴
𝜏1
= [

−0.8 −1.3

−0.7 −2.2
] , 𝐴

𝜏2
= [

−2.8 0.5

−0.8 −1.4
] ,

𝐷
1
= 𝐷

2
= [

0.1

0.2
] , 𝐶

𝑦1
= [0.4, 0.7] ,

𝐶
𝑦2
= [0.5, 0.8] , 𝐶

𝑦𝜏1
= [0.1, 0.2] ,

𝐶
𝑦𝜏2

= [0.1, 0.1] ,

𝐷
𝑦1
= 𝐷

𝑦2
= 0.1, 𝐶

𝑧1
= [0.1, 0.05] ,

𝐶
𝑧2
= [0.2, 0.09] , 𝐶

𝑧𝜏1
= [0.3, 0.6] ,

𝐶
𝑧𝜏2

= [0.4, 0.8] , 𝐷
𝑧1
= 𝐷

𝑧2
= 0.05.

(70)
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Then, we choose 𝑅 = 𝐼, 𝑇 = 2, 𝑐
1
= 1, and 𝑑 = 0.01;

throughTheorem 15, it yields that themode-dependent filters
are as follows:

𝐴
𝑓11

= [

−6.1254 1.5565

−0.2347 −0.3763
] ,

𝐴
𝑓12

= [

−6.2682 1.4338

−0.3552 −0.5327
] ,

𝐴
𝑓21

= [

−8.9214 2.4223

−1.5476 −0.6234
] ,

𝐴
𝑓22

= [

−8.4638 2.8237

−1.3545 −0.4322
] ,

𝐵
𝑓11

= [

5.1465 −2.8516

−9.1216 9.5171
] ,

𝐵
𝑓12

= [

5.4203 −2.3121

−9.3156 9.6332
] ,

𝐵
𝑓21

= [

4.6193 −1.1984

−16.2397 16.3006
] ,

𝐵
𝑓22

= [

4.6512 −1.0311

−16.1132 16.2312
] ,

𝐶
𝑓11

= [0.0294, −0.0397] ,

𝐶
𝑓12

= [0.0271, −0.03368] ,

𝐶
𝑓21

= [0.1163, −0.1432] ,

𝐶
𝑓22

= [0.1342, −0.3672] .

(71)

This paper deals with the finite-time filter design problem
for a class of Markovian jump systems; particularly, two dif-
ferentMarkov processes are considered formodeling the ran-
domness of system matrix and the state delay. Then, through
the numerical example, we can see that results in this paper
are feasible, which further verified the correctness of our the-
ory. Therefore, the paper shorten this gap.

6. Conclusions

In this paper, we have examined the problems of finite-time
𝐻

∞
filtering for a class of Markovian jump systems with dif-

ferent system modes. Based on a novel approach, a sufficient
condition is derived such that the closed-loop Markovian
jump system is finite-time bounded and satisfies a prescribed
level of𝐻

∞
disturbance attenuation in a finite time interval.

Finally, a numerical example is also given to illustrate the
effectiveness of the proposed design approach. It should be
noted that one of future research topics would be to investi-
gate the problems of fault detection and fault tolerant control
for time-varying Markovian jump systems with incomplete
information over a finite-time horizon.
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