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This work presents an efficient solution using computer algebra system to perform linear temporal properties verification for
synchronous digital systems. The method is essentially based on both Groebner bases approaches and symbolic simulation. A
mechanism for constructing canonical polynomial set based symbolic representations for both circuit descriptions and assertions
is studied. We then present a complete checking algorithm framework based on these algebraic representations by using Groebner
bases. The computational experience result in this work shows that the algebraic approach is a quite competitive checking method
and will be a useful supplement to the existent verification methods based on simulation.

1. Introduction

With the complexity of circuits increases, it becomes an
important issue to find efficient ways to express and verify
design properties. Actually, verification is a very difficult
and computationally intensive task. Although great advances
have been made over the past decades, all these verification
methods suffer from this problem in some way.

Currently, assertion based verification (ABV) has
emerged as a promising solution for this problem. In
particularly, an assertion specifying language named
Property Specification Language (PSL) [1–3] has now
become an IEEE standard and accepted by a wide variety of
companies. PSL has totally changed the way how designers
specify and verify functional requirements and properties of
digital systems. Moreover, PSL based ABV has recently been
supported by most EDA companies in their tools for both
formal and runtime verification.

So far, there have been many efforts in assertion checking
solvers including model checking, theorem proving (e.g.,
HOL [4]), and runtime verification. In [5], an efficient

approach to model check safety properties expressed in PSL
property has been studied. While in [6], a temporal tester
was introduced as a compositional basis for the construction
of automata corresponding to temporal formulas in the PSL
logic for PSL assertion run-time checking.

As well known, the conventional simulation for assertion
checking is a well-understood and the most commonly used
technique, but only feasible for very small scale systems
and cannot provide exhaustive checking, while symbolic
simulation proposed by Darringer [7] as early as 1979 can
provide exhaustive checking by covering many conditions
with a single simulation sequence but could not handle large
circuits due to exponential symbolic expressions.

In our work, to address this functional verification chal-
lenge, we propose an alternative implementation mechanism
based on algebra symbolic computation combining with
symbolic simulation for PSL assertion checking.

Earlier work in applications of symbolic manipulation
and algebra computation has gained significant extensions
and improvements. In [8], a technique framework on Groeb-
ner bases was demonstrated that computer algebra geometry
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method can be used to perform symbolic model checking by
using an encoding of boolean sets as the common zeros of sets
of polynomials. In [9], a similar technique framework based
Wu’s Method has been further extended to bit level symbolic
model checking. In [10], an improved framework for multi-
valued model checking via Groebner bases approached was
proposed, which is based on a canonical polynomial repre-
sentation of the multivalued logics.

All these existing articles just mainly focus on model
checking via algebraic symbolic computation approaches. In
our research, instead of static analysis or model checking,
we extend this algebraic approach to the area of simulation-
based runtime verification methods over polynomial repre-
sentation models and towards PSL assertions checking.

Our aim is to verify a given temporal property holds or
not on the traces produced after several cycles running over
a given sequential circuit model.

The idea is that, for any pure combinational circuitmodel,
we can derive its data-flow-based polynomial representation
named PM. Meanwhile, for any sequential circuit model
and a given running cycle number 𝑛, we can also derive
its equivalent polynomial representation PM[𝑛] by unrolling
this sequential circuit 𝑛 times and translating it into a pure
combinationalmodel. In a similar way, we can get polynomial
set representation PS for any temporal assertion.

By suitable restrictions of Boolean and SERE temporal
layer of PSL and redefining a hierarchy of PSL assertions,
we can guarantee the availability of above polynomial set
model. Based on these polynomial set models, symbolic
simulation can be performed to produce symbolic traces and
temporal relationship constraints of signal variables as well.
We then apply symbolic algebra approach to check the zeros
set inclusion relationship between their polynomials PM[𝑛]
and PS and determine whether the temporal assertion holds
or not under current running cycle 𝑛.

2. Preliminaries

In this section, we will give some preliminary knowledge
throughout this paper.

2.1. Cycle-Based Symbolic Simulation. We will firstly sketch
the underlying systemmodel for simulation used in ourwork.

The system model we used is a cycle-based symbolic
simulation model that is performed on a cycle-by-cycle basis
for synchronous digital systems.

Here, the term cycle is defined as one iteration of the
evaluation process, during which the state of the design is
recomputed and may change. In other words, a cycle is the
smallest granularity of time.

Intuitively, cycle-based symbolic simulation is a hybrid
approach in the sense that the values that are propagated
through the network can be both symbolic expressions or
constant Boolean values. It assumes that there exists one
unified clock signal in the circuit and all inputs of the systems
remain unchanged while evaluating their values in each
simulation cycle. The results of simulation report only the
final values of the output signals or states in the current
simulation cycle.

By convention, we give the model structure definition for
symbolic simulation as follows.

Definition 1 (simulation model). The symbolic Simulation
Model for synchronous digital system is a tuple Σ =

(𝑋
0
, 𝑋, 𝑌,𝑀, 𝑆, 𝐹, 𝑛), where

(i) 𝑋
0
is a finite set of input assignment including

numeric value and symbolic value, Boolean or inte-
ger;

(ii) 𝑋 is a finite set of primary input variables;

(iii) 𝑌 = {𝑦
𝑖
| 1 ≤ 𝑖 ≤ 𝑁

𝑌
} is a finite set of primary output

variables;

(iv) 𝑀 = {𝑚
𝑖
| 1 ≤ 𝑖 ≤ 𝑁

𝑀
} is a finite set of intermediate

variables;

(v) 𝑛 is the sequential depth of the network or running
cycles;

(vi) 𝐹 = {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
} is a finite output function

regarding input or intermediate variables, and note
that each 𝑦

𝑖
= 𝑓
𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, @) (1 ≤ 𝑖 ≤ 𝑛) is

defined on𝑋⋃𝑀.

Given sequential depth 𝑛 of the network, a synchronous
sequential logic network can be transformed into a pure
combinational function of delayed input variables with delay
less than or equal to 𝑛, that is,

𝑌 = 𝐹 (𝑋,𝑋@1, . . . , 𝑋@𝑛,𝑀,𝑀@1, . . . ,𝑀@𝑛) . (1)

The behavior of a circuit is defined by its excitation
function 𝑌 that serves a role similar to the transition relation
or next-state functions of temporal logic model checkers.

The simulation process can be described as follows.
Firstly, cycle-based symbolic simulation is initialized by

setting the state of the circuit to the initial vector (𝑋
0
).

Each of the primary input signals will be assigned a distinct
symbolic variable or a symbolic constant. Then, at the end
of a simulation step, the expressions representing the next-
state functions generally undergo a parametric transforma-
tion based optimization. After parameterization, the newly
generated functions are used as present state for the next state
of simulation.

In this paper, simulation based verification is to check
whether the given assertion is satisfied or not after running
a few cycles.

2.2. PSL Preliminary. PSL is a hierarchical language and
its syntax is very declarative and structural. Generally, PSL
contains four layers: Boolean, temporal, verification, and
modeling layers.

(i) Modeling Layer. Modeling layer is needed to define the
verification environment specially for formal verification
tools. This layer is used to model behavior of design inputs
and to model auxiliary parts of the design that are needed for
verification.
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(ii) Verification Layer. Verification layer is more related to the
description of verification tools where notions like assume
and guarantee are present. This layer is used to tell the
verification tool what to do with the properties described by
the temporal layer.

(iii) Temporal Layer. Temporal layer is the essence of PSL
where complex temporal relations between signals can be
expressed. This layer can describe properties that involve
complex temporal relations which are evaluated over a series
of evaluation cycles.

(iv) Boolean Layer. Boolean layer is used to build expressions
for the other layers, specifically the temporal layer. Boolean
expressions are evaluated in a single evaluation cycle.

PSL allows the engineer to define assertions describing
the system’s behavior once and reuse them between different
forms of formal, semiformal, or functional verification. With
PSL, it is possible to perform assertion based runtime verifi-
cations of the design while simulation properties are checked.

According to PSL specification [1, 3, 11], every assertion
written in PSL can be broken down into parts that can be
attributed to one of those four layers.

The Boolean layer comprises all Boolean expressions
including signal names as well as HDL expressions and PSL
expressions (especially all built-in function calls like, e.g.,
𝑝𝑟𝑒V(𝑏) and 𝑟𝑜𝑠𝑒(𝑏) and the logical implication and other
operators).

The Boolean layer forms an underlying basis for the
whole assertion architecture. In this paper, we will limit
our discussion only to a special subset of the Boolean layer
for our purpose. We then further build a restricted simple
subset of SERE layer for temporal property specification and
verification over this constrained Boolean layer.

3. System Polynomial Representation Model

In this section, we will discuss polynomial modeling for
combinational and sequential circuits. Previous work [12]
has shown that any combinational circuit can be uniquely
represented by a minimum order polynomial. Here, we give
an alternative data-flow based polynomial set representation
model for our assertions checking purposewhose zero set can
make such a data-flow model work well.

3.1. Arithmetic and Logic Unit Modeling. In this paper, we
only focus on arithmetic unit for calculating fixed-point oper-
ations. For any arithmetic unit, integer arithmetic operations
(addition, subtraction, multiplication, and division) can be
constructed by the following polynomials:

(1) 𝑦 = 𝑎 + 𝑏 ⇒ (𝑦 − 𝑎 − 𝑏),

(2) 𝑦 = 𝑎 − 𝑏 ⇒ (𝑦 − 𝑎 + 𝑏),

(3) 𝑦 = 𝑎 ∗ 𝑏 ⇒ (𝑦 − 𝑎 ∗ 𝑏),

(4) 𝑦 = 𝑎/𝑏 ⇒ (𝑦 ∗ 𝑏 − 𝑎).

The basic logic operations [13] like “AND,” “OR,” and
“NOT” can be modeled by the following forms:

𝑦 = 𝑁𝑂𝑇 𝑥 ⇒ (1 − 𝑥 − 𝑦) ,

𝑦 = 𝑥
1
𝐴𝑁𝐷 𝑥

2
⇒ (𝑥

1
∗ 𝑥
2
− 𝑦) ,

𝑦 = 𝑥
1
𝑂𝑅 𝑥

2
⇒ (𝑥

1
+ 𝑥
2
− 𝑥
1
∗ 𝑥
2
− 𝑦) .

(2)

Furthermore, we can extend the above rule to other logic
operators. For example,

𝑦 = 𝑥
1
⊕ 𝑥
2
(or 𝑦 = 𝑥

1
XOR 𝑥

2
)⇒ (𝑦 − (𝑥

1
+ 𝑥
2
−

𝑥
1
∗ 𝑥
2
) ∗ (1 − 𝑥

1
∗ 𝑥
2
)).

For all bit level variable 𝑥
𝑖
(0 ≤ 𝑖 ≤ 𝑛), a limitation 𝑥

𝑖
∗

𝑥
𝑖
− 𝑥
𝑖
should be added.

3.2. Branch and Sequential Unit Modeling. Basically, mul-
tiway branch is an important control structure in digital
system. It provides a set of condition bits, 𝑏𝑖 (0 ≤ 𝑖 ≤ 𝐵), a
set of target identifiers, (0, . . . , 𝑇 − 1), and a mapping from
condition bit values to target identifiers. This mapping takes
the form of a condition tree. For any binary signal 𝑥, its value
should be limited to {1, 0} by adding 𝑥 ∗ 𝑥 − 𝑥,

𝑦 = MUX (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
, 𝑠) , 𝑖 = 𝑠 ⇒ 𝑦 = 𝑥

𝑖
,

(0 ≤ 𝑖 ≤ 𝑛) ⇒ 𝑦 −

𝑛−1

∑

𝑖=1

( ∏

𝑗∈{0,1,...,𝑛−1}{𝑖}

(

(𝑠 − 𝑗)

(𝑖 − 𝑗)

))

∗ 𝑥
𝑖
, with

𝑛−1

∏

𝑖=0

(𝑠 − 𝑖) = 0.

(3)

Each flip-flop (FF) in the circuit can be modeled as a
multiplexer, as illustrated in Figure 1. We have the following
proposition to state this model.

Proposition 2. For a 𝐷 FF model (𝐷 is the next state), with
an enable signal 𝑐, its equivalent combinational formal is 𝑦 =
MUX(𝐷,𝐷, 𝑠) : 𝑖 = 𝑠 → 𝑦


= 𝑥
𝑖
(0 ≤ 𝑖 < 2, 𝑥

0
= 𝐷, 𝑥

1
=

𝐷

), whose polynomial algebraic model can be described as

(𝑦

− 𝐷) ∗ (𝑐 − 1) , (𝑦


− 𝐷

) ∗ 𝑐,

(𝑦

− 𝐷) ∗ (𝑦


− 𝐷

) ,

𝑜𝑟

𝑦

− 𝐷 ∗ (𝑐 − 1) − 𝐷


∗ 𝑐.

(4)

Proof. Let 𝐷 be the current state and let 𝑦 denote the next
state of the flip-flop.When the clock value is 0,𝑦 has the same
value as𝐷 so that the FFmaintains its present state; when the
clock value is 1, 𝑦 takes a new value from the𝐷 input (where
𝐷
 denotes the new value next state of the FF). Therefore, we

have the 2-value multiway branch model and its polynomial
set representation for FF.

Proposition 3. Let 𝐷 be a FF model (𝐷 is the next state),
without enable signal; then its equivalent combinational formal
polynomial algebraic model can be described as (𝑦 − 𝐷).
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FF𝐷
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𝑐 𝑐

𝐷


𝐷


0

1
𝑦


Figure 1: Flip-flop model.

3.3. Sequential Unrolling. Generally, for a sequential circuit,
one time frame of a sequential circuit is viewed as a combi-
national circuit in which each flip-flop will be converted into
two corresponding signals: a pseudo primary input (PPI) and
a pseudo primary output (PPO).

Symbolical simulation of a sequential circuit for 𝑛 cycles
can be regarded as unrolling the circuit 𝑛 times.The unrolled
circuit is still a pure combinational circuit, and the ith copy of
the circuit represents the circuit at cycle 𝑖. Thus, the unrolled
circuit contains all the symbolic results from the 𝑛 cycles.

To illustrate the sequential modeling for a given cycle
number clearly, we define an indexed polynomial set represen-
tation for the ith cycle.

For example, PM[𝑖] is defined as follows. PM[𝑖] = {(𝑥1
[𝑖]
−

𝑚2
[𝑖]
− 𝑦3
[𝑖]
), . . .}, where 𝑥1 denotes signal variable name

while 𝑥1
[𝑖]

denotes variable state in ith simulation cycle.
If the given running cycle is 𝑛, then we have the system
representation: PM = {⋃

𝑛

𝑖=0
PM[𝑖]}.

Let 𝑥𝑖
[𝑙]
(0 ≤ 𝑖 ≤ 𝑟) denote the input signals for the lth

clock, let 𝑚𝑖
[𝑙]
(0 ≤ 𝑖 ≤ 𝑠) denote the intermediate signals,

and let 𝑦𝑖
[𝑙]
(0 ≤ 𝑖 ≤ 𝑡) denote the output signals. We

then have the following time frame expansion model for the
sequential circuit:

FM = {

𝑛

⋃

𝑖=0

FM [𝑖]} , (5)

where FM[𝑖] = C(𝑥1
[𝑖]
, . . . , 𝑚1

[𝑖]
, . . . , 𝑚1

[𝑖]
, . . . , 𝑥1

[𝑖+1]
, . . . ,

𝑚1
[𝑖+1]
, . . . , 𝑦1

[𝑖+1]
, . . .) denotes the ith time frame model.

Time frame expansion is achieved by connecting the
PPIs (e.g., 𝑥1

[𝑖+1]
from FM[𝑖 + 1]) of the time frame to the

corresponding PPOs (𝑥1
[𝑖+1]

from FM[𝑖]) of the previous
time frame.

3.4. Sequence Operator Modeling. In this paper, only a so-
called simple subset of PSL will be considered, which sub-
sumes the properties in which time advances monotonically,
from left to right through the property: if an entity (a Boolean
Expression or a SERE) needs to be evaluated at a given time,
all other entities right of it do so far not need to be known.
Many properties not in the simple subset can be rewritten by
the simple subset. The most properties to be verified can be
expressed within the bounds of the simple subset.

For SEREs, only the following features are supported by
our modeling method:

(1) standard Boolean expressions,
(2) fixed length Kleene closure,
(3) SERE concatenation,
(4) SERE fusion,

(5) SERE disjunction,
(6) length-matching SERE conjunction.
By the constrained simple subset of PSL, the user can

specify a safety property using only nonnegated weak oper-
ators. Intuitively, a safety property is used to ensure that
“something bad does not happen” which is important in
formal verification. Because safety properties are easier to
verify, this approach is only able to deal with safety properties.

(1) Next Operator
It indicates that the property will hold if its operand
holds at the next cycle. For example,

assert (𝑟𝑒𝑞− > 𝑛𝑒𝑥𝑡 𝑎𝑐𝑘) (6)

states that if signal 𝑟𝑒𝑞 is asserted then 𝑎𝑐𝑘 will be
asserted at next cycle:
⇒ N𝑖(𝑟𝑒𝑞) and N𝑖+1(𝑎𝑐𝑘).

(2) Semicolons Operator
Semicolons operator, a semicolon(;), is used to join
two SEREs (or twoAL expressions, or aAL expression
and a SERE) in such a way that the right-hand SERE
starts the cycle after the left-hand SERE ends.
For example, 𝐺 = {assert (𝑟𝑒𝑞; 𝑎𝑐𝑘)} states that when
signal 𝑟𝑒𝑞 is asserted then 𝑎𝑐𝑘 will be asserted at next
cycle:
⇒ N𝑖(𝑟𝑒𝑞) and N𝑖+1(𝑎𝑐𝑘)
⇔ N𝑖(𝑟𝑒𝑞 is 𝐻) andN𝑖+1(𝑎𝑐𝑘 is𝐻),
where (0 ≤ 𝑖 ≤ 𝑑𝑒𝑝(𝐺)).

(3) Fusion Operator
The fusion operator, a colon (:), is used to join two
SEREs (or twoAL expressions, or aAL expression and
a SERE) in such a way that there is a single cycle of
overlap between them: the right-hand SERE just starts
the same cycle that the left-hand SERE ends.
For example, 𝐺 = {assert always (𝑟𝑒𝑞 : 𝑎𝑐𝑘; 𝑔𝑛𝑡)}
states that when signal 𝑟𝑒𝑞 is asserted then 𝑎𝑐𝑘 and
𝑔𝑛𝑡 will be asserted at next cycle:
⇒N𝑖(𝑟𝑒𝑞 is 𝐻) andN𝑖(𝑎𝑐𝑘 is𝐻) andN𝑖+1(𝑔𝑛𝑡 is𝐻),
where (0 ≤ 𝑖 ≤ 𝑑𝑒𝑝(𝐺)).

(4) Repeat Operator
Repeat operators allow the user to build more sophis-
ticated SEREs, using variations on the SERE repeti-
tion operators [∗𝑛], [= 𝑛], and so forth. Consecutive
repetition operators provide a shortcut to typing the
same sub-SERE a number of times.
In this paper, we only consider fixed times repeat
operator [= 𝑛].
For example, 𝐺 = {assert (𝑟𝑒𝑞[𝑛]; 𝑎𝑐𝑘)} states that
when signal 𝑟𝑒𝑞 is asserted 𝑛 times then 𝑎𝑐𝑘 will be
asserted at next cycle. We then have
⇒ N1(𝑟𝑒𝑞 is𝐻) and ⋅ ⋅ ⋅ and N𝑛(𝑟𝑒𝑞 is𝐻)
and N𝑛+1(𝑎𝑐𝑘 is𝐻).
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(1) Decomposition
SERE property Common sequence set

(3) Reduction (2) Unrolling
Flat sequence

(4) Algebraization
Propositional formulas

Polynomial set

Figure 2: Algebraization steps of SEREs.

4. Translation of SERE

In this section, we will mainly discuss the hierarchical
modeling method of SERE. The temporal layer contains
“Sequential Extended Regular Expressions” (SEREs) which
allow describing the relation between Boolean layer expres-
sions over time.

Firstly, we discuss the general algebraization process of
SERE from a symbolic computation point of view.

4.1. Algebraization Process. The algebraization process of
SERE properties can be demonstrated in Figure 2. The prop-
erties written in SERE will be unrolled and checked against
the design for bounded time steps in our method. Note that
only a constrained subset of SERE can be supported by our
method (unspecified upper bound time range and first-match
operator are excluded).

Firstly, we translate the properties described by the
constrained subset of SERE into flat sequences according to
the semantics of each supported operator.

Secondly, the unrolled flat sequences will be added
temporal constraints to form proportional formulas with
logical connectives (∨, ∧, and ¬).

Finally, the resulted proportional formulas will be trans-
lated into equivalent polynomial set.

In summary, the verification problem is reduced to
proving zero set inclusion relationship which can be resolved
by Groebner bases approaches.

4.2. Boolean LayerModeling. ThePSLBoolean layer forms an
underlying basis for the whole assertion architecture. In this
paper, we limit our discussion only to the Boolean layer and
a special constrained subset of it.

While the Boolean layer consists of Boolean expressions
that hold or do not hold at a given cycle, the temporal layer
provides a way to describe relationships between Boolean
expressions over time.

In this paper, we distinguish between signal logic and
Boolean proposition logic.

Therefore, we have the following two definitions.

Definition 4 (signal logic). In digital circuit systems, signal
logic (SL, for short) is defined as follows:

(i) if a signal 𝑠 is active-high (H, for short), then its signal
value is defined as 1;

(ii) if a signal 𝑠 is active-low (L, for short), then its signal
value is defined as 0;

(iii) if a signal 𝑠 is assigned a symbolic value, then its signal
value is defined as 𝑈.

Definition 5 (symbolic trajectory logic). The definition of
trajectory evaluation logic (TEL) is extended as the following
grammar:

𝑓 ::= 𝑛 is 0 | 𝑛 is 1 | 𝑤 is N | 𝑓
1
and 𝑓

2
| 𝑃 → 𝑓 | N (𝑓) ,

(7)

where “is” is used to state the value of a Boolean or word-level
node in the circuit. Defined recursively over 𝑉, where 𝑝 is a
Boolean expression over 𝑉; 𝑛 is a node or variable name; 𝑓,
𝑓
1
, 𝑓
2
are TEL formulas; N is the next-time operator.

For example, a symbolic trajectory assertion, assume𝑉 =
{𝑎}, then [(in is 𝑎) ∧ N(true) =⇒N(out is 𝑎)].

Let numeric subscript denote time framenumber for each
variable, then we have in

[0]
is 𝑎, out

[1]
is 𝑎.

In this paper, all temporal operators in PSL SEREs
specification will be modeled by next operator N.

We will introduce a notion of symbolic constant to PSL
inspired from GSTE [14].

Definition 6 (symbolic constant). A symbolic constant [14] is
a rigid Boolean or integer variable that forever holds the same
boolean value.The notion of symbolic constant is introduced
in an assertion for two purposes:

(1) to encode an arbitrary Boolean constraints among a
set of circuit nodes in a parametric form;

(2) to encode all possible scalar values for a set of nodes.

Consider 𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑟𝑒𝑞 is 𝐻) and (𝑎𝑐𝑘 is 𝐻) as an
example. According to our definitions, 𝑟𝑒𝑞 and 𝑎𝑐𝑘 are
signals belonging to signal logic, while both (𝑟𝑒𝑞 is 𝐻) and
(𝑎𝑐𝑘 is 𝐻) themselves are of assertion logic.

Here, we provide a formal syntax definition for assertion
proposition logic, namely, Assertion Boolean Logic.

If 𝑥
1
, 𝑥
2
, 𝑚, and 𝑛 are of SL, then we have 𝑥

1
= 𝑥
2
, 𝑚 =

𝑥
1
& 𝑥
2
, 𝑚 = 𝑥

1
‖𝑥
2
, 𝑚 = !𝑥

2
, and (𝑚 = 𝑥

1
) ∧ (𝑛 = 𝑥

2
) are

all of valid AL and can also be verified by using polynomial
model.

Definition 7 (assertion Boolean logic layer syntax). If 𝑎 ∈ SL
and 𝐻 ∈ BC, then 𝑎 = 𝐻 is an atom Boolean formula;
[𝐴𝑡𝑜𝑚 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝐹𝑜𝑟𝑚𝑢𝑙𝑎].

Built-in functions: 𝑠𝑡𝑎𝑏𝑙𝑒(), 𝑟𝑜𝑠𝑒(), 𝑓𝑒𝑙𝑙(), 𝑖𝑠𝑢𝑛𝑘𝑛𝑜𝑤𝑛(),
𝑜𝑛𝑒ℎ𝑜𝑡(), and 𝑜𝑛𝑒ℎ𝑜𝑡0() are of atom Boolean formulas.

If 𝑎 is an integer signal logic variable (denoted by 𝑎 ∈ ISL)
and symbolic constant 𝐼 ∈ 𝐼𝐶, then 𝑎 = 𝐼 is also an atom
Boolean formula; [𝐴𝑡𝑜𝑚𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝐹𝑜𝑟𝑚𝑢𝑙𝑎].

If 𝑎
1
and 𝑎
2
are atom Boolean formulas, then

(1) 𝑎
1
& & 𝑎

2
[Standard Logic “AND”],

(2) 𝑎
1
‖ 𝑎
2
[Standard Logic “OR”],

(3) !𝑎
1
[Standard Logic “NOT”],

(4) 𝑎
1
− > 𝑎

2
[Standard Logic “Implication”] are Boolean

formulas.
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Assertion proposition logic (AL) for PSL is defined as
standard Boolean logic. A Boolean expression of AL is an
expression that is evaluated in a single cycle and has the value
𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒. Boolean connectives for AL are interpreted in
the standard.

For example, assertion (𝑎[15 : 0] == 𝑏[15 : 0]), given in
the Verilog flavor of PSL, is a valid Boolean expression which
means 𝑎[15 : 0] and 𝑏[15 : 0] are equal.

The state of a signal variable can be viewed as a zero of a
set of polynomials. We have the following.

(1) For any signal 𝑥 holds at a given time step 𝑖; thus, the
state of 𝑥 == 1 (𝑥 is active-high at cycle 𝑖) can be
represented by polynomial {𝑥

[𝑖]
− 1}.

(2) Alternatively, the state of 𝑥 == 0 (𝑥 is active-low at
cycle 𝑖 ) can be represented by polynomial {𝑥

[𝑖]
}.

(3) Symbolically, the state of 𝑥 == 𝐻 (𝑥 is active-high𝐻
at the ith cycle) can be modeled as {𝑥

[𝑖]
− 𝐻}.

5. Algorithm Framework

In this section, we will describe how an assertion is checked
using Groebner basis approach.

As we all know, in traditional numeric simulation [15],
PSL assertion checking process can be described as follows.
Firstly, the design file with PSL codes is compiled into local
executable binary code via simulation tools (such as, Ques-
taSim or ModelSim). The designer then provides a testbench
file to set input values, running cycles, and other parameters.
Finally, the designer performs simulation by starting “run”
command to produce traces for assertion checking.

Firstly, wewill sketch some of the key notions ofGroebner
bases theory [16, 17] and symbolic computation.

5.1. Groebner Bases Preliminary. We begin by listing some
general facts and establishing notations.

Let 𝑘 be an algebraically closed field, and let 𝑘[𝑥
1
, . . . , 𝑥

𝑛
]

be the polynomial ring in variables 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
with coeffi-

cient in 𝑘, under addition and multiplication of polynomial.
Here, let 𝐼 ⊆ 𝑘[𝑥

1
, . . . , 𝑥

𝑛
] be an ideal. As we all know, the

following theorem holds.

Theorem 8 (Hilbert basis theorem). Every ideal 𝐼 ⊂

𝑘[𝑥
1
, . . . , 𝑥

𝑛
] has a finite generating set. That is, 𝐼 = ⟨𝑔

1
,

. . . , 𝑔
𝑡
⟩ for some 𝑔

1
, . . . , 𝑔

𝑡
∈ 𝐼.

Then, by the Hilbert basis theorem, there exist finitely
many polynomials 𝑓

1
, . . . , 𝑓

𝑚
such that 𝐼 = ⟨𝑓

1
, . . . , 𝑓

𝑚
⟩. A

polynomial 𝑓 ⊆ 𝑘[𝑥
1
, . . . , 𝑥

𝑛
] defines a map 𝑓 : 𝑘𝑛 → 𝑘 via

evaluation (𝑎
1
, . . . , 𝑎

𝑛
) → 𝑓(𝑎

1
, . . . , 𝑎

𝑛
).

The set 𝑉(𝐼) := 𝑎 ∈ 𝑘𝑛 | ∀𝑓 ∈ 𝐼 : 𝑓(𝑎) = 0 ⊆ 𝑘𝑛 is called
the variety associated with 𝐼.

If 𝑉
1
= 𝑉(𝐼

1
) and 𝑉

2
= 𝑉(𝐼

2
) are the varieties defined

by ideals 𝐼
1
and 𝐼
2
, then we have 𝑉

1
∩ 𝑉
2
= 𝑉(⟨𝐼

1
, 𝐼
2
⟩) and

𝑉
1
∪𝑉
2
= 𝑉(𝐼

1
×𝐼
2
), where 𝐼

1
×𝐼
2
= ⟨𝑓
1
𝑓
2
| 𝑓
1
∈ 𝐼
1
, 𝑓
2
∈ 𝐼
2
⟩. If

𝐼
1
= ⟨𝑓
1
, . . . , 𝑓

𝑟
⟩ and 𝐼

2
= ⟨ℎ
1
, . . . , ℎ

𝑠
⟩, then 𝐼

1
×𝐼
2
= ⟨𝑓
𝑖
×𝑔
𝑗
|

1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑠⟩.
Any set of points in 𝑘𝑛 can be regarded as the variety

of some ideal. Note that there will be more than one ideal

defining a given variety. For example, the ideals ⟨𝑥
0
⟩ and

⟨𝑥
0
, 𝑥
1
𝑥
0
− 1⟩ both define the variety 𝑉(𝑥

0
). In order to

perform verification, we need to be able to determine when
two ideals represent the same set of points. That is to say, we
need a canonical representation for any ideal. Groebner bases
can be used for this purpose.

Definition 9 (Groebner basis). Fix a monomial order. A finite
subset 𝐺 = {𝑔

1
, . . . , 𝑔

𝑡
} of an ideal 𝐼 is said to be a Groebner

basis (or standard basis) if ⟨𝐿𝑇(𝑔
1
), . . . , 𝐿𝑇(𝑔

𝑡
)⟩ = ⟨𝐿𝑇(𝐼)⟩.

Equivalently, but more informally, a set {𝑔
1
, . . . , 𝑔

𝑡
} ⊂ 𝐼

is a Groebner basis of 𝐼 if and only if the leading term of any
element of 𝐼 is divisible by one of the 𝐿𝑇(𝑔

𝑖
).

In work [18], Buchberger provided an algorithm for con-
structing a Groebner basis for a given ideal. This algorithm
can also be used to determine whether a polynomial belongs
to a given ideal.

A reduced Groebner basis 𝐺 is a Groebner basis where
the leading coefficients of polynomials in 𝐺 are all 1, and no
monomial of an element of𝐺 lies in the ideal generated by the
leading terms of other elements of 𝐺 : ∀𝑔 ∈ 𝐺, no monomial
of 𝑔 is in ⟨𝐿𝑇(𝐺 − {𝑔})⟩.

The important result is that, for a fixed monomial order-
ing, any nonzero ideal has a unique reduced Groebner basis.
The algorithm for finding a Groebner basis can easily be
extended to output its reduced Groebner basis. Thus we will
have a canonical symbolic representation for any ideal.

Theorem 10 (the elimination theorem). Let 𝐼 ⊂ 𝑘[𝑥
1
, . . . , 𝑥

𝑛
]

be an ideal and let 𝐺 be a Groebner basis of 𝐼 with respect to
lex order where 𝑥

1
≻ 𝑥
2
≻ ⋅ ⋅ ⋅ ≻ 𝑥

𝑛
. Then, for every 0 ≤ 𝑙 ≤ 𝑛,

the set

𝐺
𝑙
= 𝐺 ∩ 𝑘 [𝑥

𝑙+1
, . . . , 𝑥

𝑛
] (8)

is a Groebner basis of the lth elimination ideal 𝐼
𝑙
.

Theorem 11. Let 𝐺 be a Groebner basis for an ideal 𝐼 ⊂

𝑘[𝑥
1
, . . . , 𝑥

𝑛
] and let 𝑓 ∈ 𝑘[𝑥

1
, . . . , 𝑥

𝑛
]. Then 𝑓 ∈ 𝐼 if and

only if the remainder on division of 𝑓 by 𝐺 is zero, denoted by,
𝑟𝑒𝑚𝑑(𝑓, 𝐺) = 0.

The property given in Theorem 11 can also be taken as
the definition of a Groebner basis. Then we will get an
efficient algorithm for solving the idealmembership problem.
Assumed that we know a Groebner basis 𝐺 for the ideal in
question, we only need to compute a remainder with respect
to 𝐺 to determine whether 𝑓 ∈ 𝐼.

5.2. Verification Principle Based Theorem Proving. As just
mentioned in previous section, our checking method is
based on algebraic geometry theory. Algebraic geometry is
the study of the geometric objects arising as the common
zeros of collections of polynomials. Our aim is to find
polynomials whose zeros correspond to system states in
which the appropriate assignments are made.

In our method, we regard any set of points in 𝑘𝑛 as the
variety of some ideal. We can use the ideal or any basis for
the ideal as a way of encoding the set of states.The verification
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problem is then transformed into ideal membership problem
that can be solved by computation algorithms.

From Groebner Bases theory [16, 18] every nonzero ideal
𝐼 ⊂ 𝑘[𝑥

1
, . . . , 𝑥

𝑛
] has a Groebner basis and the following

proposition evidently holds.

Proposition 12. Let 𝐶 and 𝑆 be polynomial sets of
𝑘[𝑥
1
, . . . , 𝑥

𝑛
], and ⟨𝐺𝑆⟩ is a Groebner basis for ⟨𝑆⟩, then

one has ⟨𝐶⟩ ⊆ ⟨𝑆⟩ ⇔ ∀𝑐 ∈ 𝐶 : 𝑟𝑒𝑚𝑑(𝑐, 𝐺𝑆) = 0.

All supported SEREs properties can be classified into two
categories.

(1) Implication-typed: Properties of this type have an
explicit antecedent that can be taken as an initial
precondition. If the precondition is conflict with
the system model, this property will be viewed as
false. Otherwise, further checking process will be
performed.

(2) Sequence-typed: Properties of this type have no
explicit antecedent, and therefore an initial condition
should be provided by the testbench. If the pre-
condition is in conflict with the system model, this
sequence property will also be viewed as false. Oth-
erwise, further checking process will be performed.

Theorem 13. Suppose that 𝐺 (If 𝐺 = [𝐴 ⇒ 𝐶] is an
implication-typed property, then 𝐴 denotes the antecedent;
otherwise, 𝐺 is a sequence-typed property, then 𝐴 is the
precondition) and 𝑀 is a system model. Let 𝑃𝐴 and PM be
the polynomial set representations for 𝐴 and 𝑀, respectively,
constructed by previous mentioned rules. Let𝐻 = 𝑃𝐴 ∪ PM =

{ℎ
1
, ℎ
2
, . . . , ℎ

𝑠
} ⊆ 𝑘[𝑥

1
, . . . , 𝑥

𝑛
], 𝐼 = ⟨𝐻⟩ (where ⟨𝐻⟩ denotes

the ideal generated by𝐻), {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑟
} denotes the polynomial

set representation for 𝐶, 𝐺𝐵
𝐻
= 𝑔𝑏𝑎𝑠𝑖𝑠(𝐻, ≺), then one has

((1 ∉ 𝐺𝐵
𝐻
) and 𝑟𝑒𝑚𝑑 (𝐶, 𝐺𝐵

𝐻
) == 0)

⇔ ((1 ∉ 𝐺𝐵
𝐻
) and ⋀𝑟

𝑖=0
(𝑟𝑒𝑚𝑑 (𝑐

𝑖
, 𝐺𝐵
𝐻
) == 0))

⇔ (𝑀 |= 𝐺).

Proof. By Hilbert’s Nullstellensatz theory and previously
mentioned notions, it is easy to have the conclusion.

5.3. Checking Algorithm. For a practical assertion checking
process, it needs to build complicated syntax analysis tree
for a given assertion and call the basic checking functions to
perform checking. For simplicity, we only provide the core
decision algorithms and the basic process flow.

Firstly, the original circuit is sliced with respect to the
given assertion𝐺. Polynomial representation for sliced circuit
model, antecedent, and consequent will then be built, respec-
tively. Finally, we calculate the hypothesis set and itsGroebner
bases to determine whether the assertion holds or not.

From the above discussion, we have the process steps and
detailed algorithm description in Algorithm 1.

An important advantage of our algorithm is that it only
requires a comparatively small amount of state variables to
verify a given assertion due to slicing reduction.

Input: Circuit model C, an assertion 𝐺 = [A⇒ C];
Output: Boolean: true or false;
BEGIN

/∗ Step 0: initialize input signals via testbench ∗/
(0) 𝐼𝑛𝑖𝑡𝑆𝑖𝑔𝑛𝑎𝑙𝑠(

→

𝑋
0
);

(1) S = 0;M = 0; 𝑃𝑆
𝐴
= 0;𝐻 = 0; 𝑃𝑆

𝐶
= 0;

/∗ Step 1: build polynomial model ∗/
(2) M = 𝐵𝑢𝑖𝑙𝑑𝑃𝑆(S);

/∗ Step 3: build polynomial set for antecedentA∗/
(3) 𝑃𝑆A = 𝐵𝑢𝑖𝑙𝑑𝑃𝑆(A);

/∗ Step 3: build polynomial set for consequentC∗/
(4) 𝑃𝑆C = 𝐵𝑢𝑖𝑙𝑑𝑃𝑆(C);

/∗ Step 4: calculate the 𝑃𝑆A ∪M∗/
(5) 𝐻 = 𝑃𝑆A ∪M;

/∗ Step 5: calculate the Groebner base of ⟨𝐻⟩ ∗/
(6) 𝐺𝐵

𝐻
:= 𝑔𝑏𝑎𝑠𝑖𝑠(𝐻, ≺);

/∗ Step 6: calculate the Groebner base of ⟨𝐻⟩ ∗/
(7) if(1 ∈ 𝐺𝐵

𝐻
){

(8) return false; }
(9) if(𝑟𝑒𝑚𝑑(𝑃𝑆C, 𝐺𝐵𝐻) ̸= 0){
(10) return false; }
(11) return 𝑡𝑟𝑢𝑒; /∗ Assertion does hold ∗/
END ;

Algorithm 1: Assertion checking: 𝐴𝑠𝑠𝐶ℎ𝑘 (C, 𝐺).

From the above discussion, we have the process steps and
detailed algorithm description in Algorithm 2.

Firstly, the original circuit is transformed into a normal
polynomial representation and the assertion as well. Then,
calculateGroebner bases using the Buchberger algorithm [19]
and their elimination ideals. Finally, examine the relation
between elimination ideals and determine whether the asser-
tion holds or not.

6. A Case Study

In this section, we will study a case to show how PSL SERE
properties are verified by polynomial representation and
algebra computation.

6.1. Circuit and PSL Modeling. As an example, consider
the 3-bit synchronous counter circuit C in Figure 3, whose
polynomial set can be constructed as follows. In this circuit,
there exists a design bug that “AND” gate is replaced by “OR”
gate incorrectly. Now, let us show how to check this error
using our symbolic algebraic method:

𝑃𝑆𝑒𝑡counter

= { (𝑦1 − (𝑚1 + 𝑚4 − 𝑚1 ∗ 𝑚4) ∗ (1 − 𝑚1 ∗ 𝑚4)) ,

(𝑦2 − (𝑚2 + 𝑚3 − 𝑚2 ∗ 𝑚3) ∗ (1 − 𝑚2 ∗ 𝑚3)) ,

(1 − 𝑚3 − 𝑦3) , (1 − 𝑚4 − 𝑚3 ∗ 𝑚2) ,

(𝑚1

− 𝑦1) (𝑚2


− 𝑦2) (𝑚3


− 𝑦3)} ,

(9)
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Input: Circuit model C, a temporal assertion 𝑠, running cycles 𝑐𝑦𝑐𝑙𝑒𝑠;
Output: Boolean: true or false;
BEGIN
(1) 𝑖 = 0;
(2) 𝑠𝑤𝑖𝑡𝑐ℎ(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝑠)){

(3) case always :{
(4) 𝑤ℎ𝑖𝑙𝑒(𝑖 < 𝑐𝑦𝑐𝑙𝑒𝑠){

(5) 𝑖𝑓(!𝐴𝑠𝑠𝐶ℎ𝑘(𝐶, 𝑠, 𝑖)){;
(6) return false;}
(7) 𝑖+ = 𝑑𝑒𝑝(𝑠)}

(8) } /∗ end while ∗/
(9) case eventually:{
(10) 𝑤ℎ𝑖𝑙𝑒(𝑖 < 𝑐𝑦𝑐𝑙𝑒𝑠){

(11) 𝑖𝑓(𝐴𝑠𝑠𝐶ℎ𝑘(𝐶, 𝑠, 𝑖)){;
(12) return true;}
(13) 𝑖+ = 𝑑𝑒𝑝(𝑠)}

(14) } /∗ end while ∗/
(15) }/∗ end case ∗/
(16) case never :{
(17) 𝑤ℎ𝑖𝑙𝑒(𝑖 < 𝑐𝑦𝑐𝑙𝑒𝑠){

(18) 𝑖𝑓(𝐴𝑠𝑠𝐶ℎ𝑘(𝐶, 𝑠, 𝑖)){;
(19) return false;}
(20) 𝑖+ = 𝑑𝑒𝑝(𝑠)}

(21) } /∗ end while ∗/
(22) }/∗ end case ∗/
(23) deafult :{
(24) 𝑟𝑒𝑡𝑢𝑟𝑛 𝐴𝑠𝑠𝐶ℎ𝑘(𝐶, 𝑠, 𝑖);
(25) }/∗ end switch ∗/
(26) }

END ;

Algorithm 2: Assertion checking: 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐴𝑠𝑠𝐶ℎ𝑘 (C, 𝑠, 𝑐𝑦𝑐𝑙𝑒𝑠).

where 𝑥1 denotes the next state of 𝑥1. For the ith cycle, we
use 𝑥1

[𝑖]
to denote variable name in current cycle.

To illustrate the problem clearly, we define polynomial set
representation PM[𝑖] for ith cycle as follows:

PM [𝑖]

= {(𝑦1
[𝑖]
−(𝑚1

[𝑖]
+𝑚4
[𝑖]
−𝑚1
[𝑖]
∗ 𝑚) ∗ (1 − 𝑚1

[𝑖]
∗ 𝑚4
[𝑖]
)) ,

(𝑦2
[𝑖]
−(𝑚2

[𝑖]
+𝑚3
[𝑖]
−𝑚2
[𝑖]
∗ 𝑚3) ∗ (1−𝑚2

[𝑖]
∗ 𝑚3
[𝑖]
)) ,

(1 − 𝑚3
[𝑖]
− 𝑦3
[𝑖]
) , (1 − 𝑚4

[𝑖]
−𝑚3
[𝑖]
∗𝑚2
[𝑖]
) ,

(𝑚1
[𝑖+1]

−𝑦1
[𝑖]
) , (𝑚2

[𝑖+1]
−𝑦2
[𝑖]
) , (𝑚3

[𝑖+1]
−𝑦3
[𝑖]
)} .

(10)

Therefore, we have PM = {⋃
7

𝑖=0
PM[𝑖]}.

For any boolean variable 𝑎, we will impose an extra
constraint: 𝑎∗𝑎−𝑎.Thus, we should define the corresponding
constraints set as follows: CNS[𝑖] = {𝑎

[𝑖]
∗𝑎
[𝑖]
−𝑎
[𝑖]
} for all bit-

level variables in the ith cycle.
In the same manner, we have CNS = {⋃7

𝑖=0
CNS[𝑖]}.

The sequential properties of this counter circuit can be
specified by the following assertions:

𝐺
1
= {assert always (𝑚1 = 𝐻&𝑚2 = 𝐻&𝑚3 =

𝐻) |⇒ (𝑚1 = 𝐻&𝑚2 = 𝐻&𝑚3 = 𝐻)},

NOT

XOR

XOR

OR

AND

𝑚1

𝑚2

𝑚3

𝑚4

𝑦1

𝑦2

𝑦3

𝑉0

𝑉1

𝑉2

Figure 3: Synchronous counter.

𝐺
2
= {assert always (𝑚1 = 𝐻&𝑚2 = 𝐻&𝑚3 =

𝐻) |⇒ (𝑚1 = 𝐻&𝑚2 = 𝐻&𝑚3 = 𝐻)},
𝐺
3
= {assert always (𝑚1 = 𝐻&𝑚2 = 𝐻&𝑚3 =

𝐻) |⇒ (𝑚1 = 𝐻&𝑚2 = 𝐻&𝑚3 = 𝐻)}, and the rest
may be deduced by analogy.
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Table 1: Polynomial representations for properties to be verified.

No. Precondition Expected consequent
0 𝑚1

[0]
,𝑚2
[0]
,𝑚3
[0]

N/A
Cycle1 N/A (𝑚1

[1]
, 𝑚2
[1]
, 𝑚3
[1]
− 1)

Cycle2 N/A (𝑚1
[2]
, 𝑚2
[2]
− 1,𝑚3

[2]
)

Cycle3 N/A (𝑚1
[3]
, 𝑚2
[3]
− 1,𝑚3

[3]
− 1)

Cycle4 N/A (𝑚1
[4]
− 1,𝑚2

[4]
, 𝑚3
[4]
)

Cycle5 N/A (𝑚1
[5]
− 1,𝑚2

[5]
, 𝑚3
[5]
− 1)

Cycle6 N/A (𝑚1
[6]
− 1,𝑚2

[6]
− 1,𝑚3

[6]
)

Cycle7 N/A (𝑚1
[7]
− 1,𝑚2

[7]
− 1,𝑚3

[7]
− 1)

Afterward, we will demonstrate the verification process
step by step.

Firstly, we calculate the sequential depth and have

𝑑𝑒𝑝(𝐺
1
) = 2, 𝑑𝑒𝑝(𝐺

2
) = 2, and 𝑑𝑒𝑝(𝐺

2
) = 2.

Secondly, to verify a given property hold or not, we have
to build a system model with 8 cycles at most and check
𝑑𝑒𝑝(𝐺

1
) = 2 steps.

The circuit model to be verified is below:

SM = PM⋃CNS. (11)

The properties of this counter can be specified as the
following PSL assertions listed in Table 1.

6.2. Assertion Checking Using Maple. We run this example
by using Maple 13 software. Before running, we manually
translated all models into polynomials. The experiment is
performed on a Computer with a 2.40GHz CPU (Intel i5
M450) and 512MB of memory. It took about 0.04 seconds
and 0.81MB of memory to find this error when applying
Groebner method:

[>with(Groebner)
[> CM := ⋅ ⋅ ⋅ /∗ Circuit Model ∗/
[> TDEG := 𝑡𝑑𝑒𝑔(

𝑚1
[0]
, 𝑚2
[0]
, 𝑚3
[0]
, 𝑚4
[0]
, 𝑚1
[1]
, 𝑚2
[1]
,

𝑚3
[1]
, 𝑚4
[1]
, 𝑚1
[2]
, 𝑚2
[2]
, 𝑚3
[2]
, 𝑚4
[2]
,

𝑦1
[0]
, 𝑦1
[1]
, 𝑦1
[2]
, 𝑦2
[0]
, 𝑦2
[1]
, 𝑦2
[2]
,

𝑦3
[0]
, 𝑦3
[1]
, 𝑦3
[2]
)

[> CGB := 𝐵𝑎𝑠𝑖𝑠(G,TDEG)
[> 𝑟𝑒𝑡 := 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑚(𝑚3

[0]
− 1,CGB,TDEG)

[> 𝑟𝑒𝑡 = 0.

As shown in maple outputs, the given circuit has been
modeled as polynomial set CM (its Groebner basis is denoted
by CGB) and assertion representation as (𝑚3

[0]
− 1). From

the running result, we have return value of 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑚
is 0 which means CGB be divided with no remainder by
(𝑚3
[0]
−1). Thus, from the previously mentioned verification

principles, it is easy to conclude that the SERE assertion 𝐺
1

holds under this circuit model after 1 cycle. Other results are
shown in Table 2.

Table 2: Result table.

Cycle no. Polynomial Result
Cycle1 𝑚1

[0]
, 𝑚2
[0]
, 𝑚3
[0]
− 1 𝑟𝑒𝑡 = 0

Cycle2 𝑚1
[1]
, 𝑚2
[1]
− 1,𝑚3

[1]
𝑟𝑒𝑡 ̸= 0,𝑚1

[1]
fails

Cycle3 𝑚1
[2]
, 𝑚2
[2]
− 1,𝑚3

[2]
− 1 Stop

From Table 2, when checking 𝐺
2
assertion, the result

𝑟𝑒𝑡 := 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑚 (𝑚1
[1]
,CGB,TDEG) = 1 ̸= 0 so that we

can conclude the assertion does not hold and theremust exist
some error in the original circuit.This case is a fairly complete
illustration of how our checking algorithm works.

7. Conclusion

In this paper, we presented a new method for constrained
SERE temporal assertions checking by combining symbolic
simulation with symbolic algebraic approaches. We modi-
fied the original PSL specification to adapt our verification
requirements and rebuilt a new constrained class of boolean
and temporal layer.

We first introduce a notion of symbolic constant for data
path verification, which can gain great state coverage for
simulation based verification. This method allows users to
deal with more than one state and many input combinations
at a time. This advantage comes directly from the fact that
many vectors are simulated at once using symbolic value.

We then defined a constrained simple subset of SERE
and proposed an practical algebraization method for each
temporal operator. For sequential circuits verification, we
introduce a parameterized polynomial set modeling method
based on time frame expansion.

Our approach is based on polynomial models construc-
tion for both circuits and assertions. In other words, symbolic
simulation is performed on data-flow model and its unrolled
form in polynomial representation. Our method is to even-
tually translate a simulation based verification problem into a
pure algebraic zero set determination problem by previously
mentioned steps, which can be performed on any general
symbolic algebraic tool. An experimental evaluation using
maple has shown that the method is extremely efficient and
useful.

Furthermore, we can summarize the advantages of our
checking method as follows:

(1) from the real case, we see that SERE properties verifi-
cation can be achieved easier using symbolic algebraic
than traditional method. Complex test bench or test
vector is not essential for this approach;

(2) this advantage comes directly from the fact that many
vectors are simulated at once using symbolic value;

(3) for assertion property verification, an efficient slicing
reduction technique can be applied to gain perfor-
mance improvement.

Basically, our method can be taken as a useful theoretical
insight for verification methodology.

Finally, we plan to explore further tradeoffs and combine
numeric computation with symbolic simulation for boosting
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performance, in particular, and to apply this method to more
industrial case studies.
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