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Interval censored (IC) failure time data are often observed in medical follow-up studies and clinical trials where subjects can only
be followed periodically, and the failure time can only be known to lie in an interval. In this paper, we propose a weightedWilcoxon-
type rank test for the problem of comparing two IC samples. Under a very general sampling technique developed by Fay (1999),
the mean and variance of the test statistics under the null hypothesis can be derived. Through simulation studies, we find that the
performance of the proposed test is better than that of the two existing Wilcoxon-type rank tests proposed by Mantel (1967) and
R. Peto and J. Peto (1972). The proposed test is illustrated by means of an example involving patients in AIDS cohort studies.

1. Introduction

Interval censored (IC) failure time data often arise from
medical studies such as AIDS cohort studies and leukemic
blood cancer follow-up studies. In these studies, patients were
divided into two groups according to different treatments.
For example, in leukemic cancer studies, one group of the
patients was treated with radiotherapy alone, and the other
group of patients was treated with initial radiotherapy along
with adjuvant chemotherapy.The two groups of patients were
examined every month, and the failure time of interest is
the time until the appearance of leukemia retraction; the
object is to test the difference of the failure times between the
two treatments. Some of the patients missed some successive
scheduled examinations and came back later with a changed
clinical status, and they contributed IC observations. For
our convenience, we assume that in such a medical study,
the underlying survival function can be either discrete or
continuous, and there are only finitely many scheduled
examination times. IC data only provide partial information
about the lifetime of the subject, and the data is one kind of
incomplete data. To deal with such incomplete data, Turnbull
[1] introduced a self-consistent algorithm to compute the
maximum likelihood estimate of the survival function for
arbitrarily censored and truncated data. For IC data, there

have been some related studies in the literature as well.
For example, Mantel [2] extends Gehan’s [3, 4] generalized
Wilcoxon [5] test to interval censored data, and R. Peto and
J. Peto [6] also develop a different version. Sun [7] applied
Turnbull’s algorithm to estimate the number of failures and
risks of IC data and then propose a log-rank type test.

Fay [8], Sun [7], Zhao and Sun [9], Sun et al. [10], and
Huang et al. [11] extend the log-rank test to interval censored
data. Petroni andWolfe [12] and Lim and Sun [13] generalize
Pepe and Fleming’s [14] weighted Kaplan-Meier (WKM) [15]
test to interval censored data.

For the purpose of comparing the power of the test sta-
tistics, Fay [8] proposed a model for generating interval
censored observation. A similar selection scheme can also be
seen in the Urn model of Lee [16] and mixed cased model
of Schick and Yu [17]. In this paper, we propose a Wilcoxon-
type weighted rank test to compare with the existing two
Wilcoxon-type rank tests proposed byMantel [2] and R. Peto
and J. Peto [6]. We restrict ourselves to the Wilcoxon-type
rank tests because these tests are simple to use and have the
robustness property that their powers are fairly stable under
different lifetime distributions.

This paper is organized as follows. In Section 2, we
review the Turnbull’s [1] algorithm and introduce Fay’s [8]
selection model for generating interval censored data. This
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Table 1: The probability of selected interval.

True value of𝑋 Selected interval Probability
(0,1] 𝑝

1
𝑎
1

1 (0,2] 𝑝
1
(1 − 𝑎

1
)𝑎
2

(0,3] 𝑝
1
(1 − 𝑎

1
)(1 − 𝑎

2
)

(1,2] 𝑝
2
𝑎
1
𝑎
2

2 (0,2] 𝑝
2
(1 − 𝑎

1
)𝑎
2

(1,3] 𝑝
2
𝑎
1
(1 − 𝑎

2
)

(0,3] 𝑝
2
(1 − 𝑎

1
)(1 − 𝑎

2
)

(2,3] 𝑝
3
𝑎
2

3 (1,3] 𝑝
3
𝑎
1
(1 − 𝑎

2
)

(0,3] 𝑝
3
𝑎
1
(1 − 𝑎

1
)(1 − 𝑎

2
)

selection model can be extended to a more general one,
and the consistency property can be found in Schick and
Yu [17]. In Section 3, we introduce Mantel’s [2] and R. Peto
and J. Peto’s [6] generalized Wilcoxon-type rank tests and
propose our weighted rank test. In Section 4, a simulation
study is conducted to compare the performance of the three
tests under different configurations. Finally, an application to
AIDS cohort study is presented in Section 5.

2. Data Treatment

Assume that 𝑋 is the lifetime random variable of a survival
study, measured in discrete units and taking values 0 = 𝑥

0
<

𝑥
1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑚
. Let 𝑈 = {(𝑥

𝑖
, 𝑥
𝑗
], 0 ≤ 𝑖 < 𝑗 ≤ 𝑚} be the

collection of all 𝑚(𝑚 + 1)/2 admissible intervals, and define
𝑝
𝑗
= 𝑃(𝑋 = 𝑥

𝑗
), where ∑𝑚

𝑗=1
𝑝
𝑗
= 1, so that 𝐹(𝑥) = ∑

𝑥𝑗≤𝑥
𝑝
𝑗
,

and 𝑆(𝑥) = ∑
𝑥𝑗>𝑥

𝑝
𝑗
. Note that the observed failure time data

in a clinical trial can be discretized if the underlying variable
is continuous.

2.1. Turnbull’s Algorithm. Suppose that there is a sample of
𝑛 i.i.d. observations (𝑋

𝑖

𝐿
, 𝑋
𝑖

𝑅
] of 𝑋, 𝑖 = 1, 2, . . . , 𝑛. Here,

(𝑋
𝑖

𝐿
, 𝑋
𝑖

𝑅
] is the IC observation of the 𝑖th individual in the

sample, where 𝑋
𝑖

𝐿
, 𝑋
𝑖

𝑅
∈ {𝑥
0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
}, and 𝑋

𝑖

𝐿
< 𝑋
𝑖

𝑅
.

The case 𝑋
𝑖

𝑅
= 𝑥
𝑚

is to denote that the failure time of
the 𝑖th subject occurs after the last examination time 𝑥

𝑚−1
.

Turnbull [1] proposed an algorithm to estimate the unknown
probabilities 𝑝 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑚
). The algorithm can be

described by the following four steps.

Step 1. Start with initial values 𝑝(0) = (𝑝
(0)

1
, 𝑝
(0)

2
, . . . , 𝑝

(0)

𝑚
).

Step 2. Obtain improved estimates 𝑝(1)
𝑗

by setting

𝑝
(1)

𝑗
=

1

𝑛

𝑛

∑

𝑖=1

𝛼
𝑖

𝑗
𝑝
(0)

𝑗

∑
𝑚

𝑙=1
𝛼
𝑖

𝑙
𝑝
(0)

𝑙

, 𝑗 = 1, 2, . . . , 𝑚,

where 𝛼
𝑖

𝑗
= 𝐼 {𝑥

𝑗
∈ (𝑋
𝑖

𝐿
, 𝑋
𝑖

𝑅
]} .

(1)

Step 3. Return to Step 1 with 𝑝
(1) replacing 𝑝

(0).

Step 4. Stop when the required accuracy has been achieved.

Table 2: Selection probability 𝑄(𝐼) for all admissible intervals.

Interval 𝐼 Probability 𝑄(𝐼)

(0,1] 𝑝
1
𝑎
1

(1,2] 𝑝
2
𝑎
1
𝑎
2

(2,3] 𝑝
3
𝑎
2

(0,2] (𝑝
1
+ 𝑝
2
)(1 − 𝑎

1
)𝑎
2

(1,3] (𝑝
2
+ 𝑝
3
)𝑎
1
(1 − 𝑎

2
)

(0,3] (𝑝
1
+ 𝑝
2
+ 𝑝
3
)(1 − 𝑎

1
)(1 − 𝑎

2
)

The algorithm is simple and converges fairly rapidly. The
estimate 𝑝 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑚
) yielded from the iteration is

in fact the unique maximum likelihood estimate of 𝑝 =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) and is a self-consistent estimate.

2.2. Return Probability Model. To comply with the periodical
clinical inspection, Fay [8] proposed a simulation model
for generating IC data. He assumed that the probability
for a patient to return to the clinic for inspection at time
points 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚−1
are i.i.d. Bernulli random variables

𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚−1
; that is, 𝑃(𝐴

𝑖
= 1) = 𝑞, 𝑃(𝐴

𝑖
= 0) = 1 − 𝑞,

0 < 𝑞 < 1, 𝑖 = 1, 2, . . . , 𝑚 − 1. 𝐴
𝑖
= 1 means that the

patient returned to the clinic at the inspection time 𝑥
𝑖
, and

𝐴
𝑖

= 0 means that the patient missed the inspection. In
our model, we always assume that 𝐴

𝑚
= 1. The failure time

𝑋 is independent of (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚−1
), and the observable

random interval is

(𝑋
𝐿
, 𝑋
𝑅
]=(𝑥
𝑠𝑗
, 𝑥
𝑡𝑗
] , where 𝑠

𝑗
=max
𝑙

{0≤𝑙<𝑗 :𝐴
𝑙
=1} ,

𝑡
𝑗
=min
𝑙

{𝑗≤𝑙≤𝑚 :𝐴
𝑙
=1} ,

𝑥
𝑠𝑗
< 𝑋 ≤ 𝑥

𝑡𝑗
.

(2)

2.2.1. Model Consistency. Under Fay’s [8] selectionmodel, the
consistency property has been proved. This selection model
can be generalized to the case that the return probability at
each examination time pointmay be different; say that𝑃(𝐴

𝑖
=

1) = 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑚. To demonstrate the generalized

return model, we set 𝑚 = 3 and 𝑥
1

= 1, 𝑥
2

= 2, and
𝑥
3
= 3. The selection probabilities for all admissible intervals

are shown in Tables 1 and 2.
It is not difficult to see that the selection probability of the

interval 𝐼 = (𝑥
𝑢
, 𝑥
𝑣
] is

𝑄 {𝐼} = 𝑃 (𝐼) [𝑎
𝑢
×

𝑣−1

∏

𝑖=𝑢+1

(1 − 𝑎
𝑖
) × 𝑎
𝑣
] ,

𝑢 = 0, 1, 2, . . . , 𝑣 − 1, 𝑣 = 1, 2, . . . , 𝑚 − 1,

(3)

𝑄 {(𝑥
𝑢
, 𝑥
𝑚
]}

=𝑃 ((𝑥
𝑢
, 𝑥
𝑚
]) [𝑎
𝑢
×

𝑚−1

∏

𝑖=𝑢+1

(1−𝑎
𝑖
)] , 0≤𝑢≤𝑚−1,

(4)

where 𝑃(𝐼) = (𝑝
𝑢+1

+ 𝑝
𝑢+2

+ ⋅ ⋅ ⋅ + 𝑝
𝑣
), 𝑥
0
= 0, and 𝑎

0
= 1.

For instance, the interval (0, 2] may be selected under two



Journal of Applied Mathematics 3

possibilities. First, the true value of 𝑋 is 𝑋 = 1, and the
patient who missed the inspection at 𝑥

1
= 1 then goes to

inspection at 𝑥
2
= 2; in this case, the interval is selected with

probability 𝑝
1
(1 − 𝑎
1
)𝑎
2
. Second, the true value of𝑋 is𝑋 = 2,

and the patient missed the inspection at 𝑥
1
= 1 then goes to

inspection at 𝑥
2
= 2; in this case, the interval is selected with

probability𝑝
2
(1−𝑎
1
)𝑎
2
, and therefore𝑄{(0, 2]} = (𝑝

1
+𝑝
2
)(1−

𝑎
1
)𝑎
2
.

The generalized return probability model can be viewed
as a special case of the mixed case model in Schick and
Yu [17]; under very mild conditions, the estimate of 𝑝 =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) computed by Turnbull’s algorithm is still

consistent.

3. Wilcoxon-Type Rank Tests for Interval
Censored Data

Two-sample Wilcoxon rank test is a well-known method to
test whether two samples of exact data come from the same
population.Themethod is constructed by ranking the pooled
samples and giving an appropriate rank to each observation.
However, this ranking technique is in general not admissible
for intervals. In this section, we will discuss how to generalize
the ranking technique and then propose a Wilcoxon-type
rank test for IC data to compare with two existing rank tests
proposed by Mantel [2] and R. Peto and J. Peto [6]. Suppose
that two samples of IC data for 𝑋 and 𝑌 are, respectively,
(𝑋
𝑖

𝐿
, 𝑋
𝑖

𝑅
], 𝑖 = 1, 2, . . . , 𝑛

1
and (𝑌

𝑖

𝐿
, 𝑌
𝑖

𝑅
], 𝑖 = 1, 2, . . . , 𝑛

2
.

To test whether these two samples come from the same
population is equivalent to testing the equality of survival
functions 𝑆

𝑋
(𝑡) and 𝑆

𝑌
(𝑡), for all 𝑡 ≥ 0; that is,

𝐻
0
: 𝑆
𝑋
(𝑡) = 𝑆

𝑌
(𝑡) , ∀𝑡 ≥ 0. (5)

3.1. Mantel’s Test. Mantel [2] extended Gehan’s [3, 4] general-
ized Wilcoxon test to interval censored data by defining the
score of the 𝑘th observation as the number of observations
that are definitely greater than the 𝑘th observation minus the
number of observations that are definitely less than the 𝑘th
observation. He proposed the test statistic

𝑊 =

𝑛1

∑

𝑘=1

𝑉
𝑘
, where 𝑉

𝑘
=

𝑛1+𝑛2

∑

ℎ=1

𝑉
𝑘ℎ
,

𝑉
𝑘ℎ

=

{{

{{

{

1 if we know for sure obs-𝑘 > obs-ℎ,
−1 if we know for sure obs-𝑘 < obs-ℎ,
0 if not sure.

(6)

Under 𝐻
0
, the test statistic is approximately normal dis-

tributed with mean 0 and variance

Var (𝑊) = 𝑛
1
𝑛
2

𝑛1+𝑛2

∑

𝑘=1

𝑉
2

𝑘

(𝑛
1
+ 𝑛
2
) (𝑛
1
+ 𝑛
2
− 1)

. (7)

3.2. R. Peto and J. Peto’s Test. Different from the Mantel’s
generalized version, R. Peto and J. Peto [6] defined the score
of the 𝑖th observation as

𝑈
𝑖
=

𝑓 (𝑆 (𝑋
𝑖

𝐿
)) − 𝑓 (𝑆 (𝑋

𝑖

𝑅
))

𝑆 (𝑋
𝑖

𝐿
) − 𝑆 (𝑋

𝑖

𝑅
)

, (8)

where 𝑆 is the estimated survival function, 𝑓(𝑦) = 𝑦
2
− 𝑦;

hence,𝑈
𝑖
= 𝑆(𝑋

𝑖

𝐿
)+𝑆(𝑋

𝑖

𝑅
)−1.They proposed the test statistic

𝑍
2
=

(𝑌
2

1
/𝑛
1
+ 𝑌
2

2
/𝑛
2
)

𝑠2
, where 𝑌

1
=

𝑛1

∑

𝑖=1

𝑈
𝑖
,

𝑌
2
=

𝑛1+𝑛2

∑

𝑖=𝑛1+1

𝑈
𝑖
,

𝑠
2
=

∑
𝑛1+𝑛2

𝑖=1
𝑈
2

𝑖

(𝑛
1
+ 𝑛
2
− 1)

.

(9)

Under𝐻
0
, the test statistic𝑍2 is approximately distributed as

𝜒
2

1
.

3.3. Our Proposed Wilcoxon-Type Weighted Rank Test. To
transform an IC data to exact, we first assign each inspection
time 𝑥

𝑖
a primary rank 𝑅

𝑖
; for instance, 𝑅

𝑖
= 𝑖. Rewrite any

observation, say (𝑋
𝑗

𝐿
, 𝑋
𝑗

𝑅
], as (𝑋𝑗

𝐿
, 𝑋
𝑗

𝑅
] = (𝑥

𝑢
(𝑗) , 𝑥
𝑣
(𝑗)], where

𝑥
𝑢
(𝑗) , 𝑥
𝑣
(𝑗) ∈ {0, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
}, and 𝑥

𝑢
(𝑗) < 𝑥

𝑣
(𝑗) . Then, we

associate the observation (𝑋
𝑗

𝐿
, 𝑋
𝑗

𝑅
] with the weighted rank

rank ((𝑋𝑗
𝐿
, 𝑋
𝑗

𝑅
]) =

𝑣
(𝑗)

∑

𝑙=𝑢
(𝑗)
+1

𝑝
𝑙

𝑝
𝑢
(𝑗)
+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑣
(𝑗)

𝑅
𝑙
. (10)

Let𝑊
1
,𝑊
2
be, respectively, the average weighted rank of the

𝑋 and 𝑌 samples, so that

𝑊
1
=

1

𝑛
1

𝑛1

∑

𝑖=1

rank ((𝑋𝑖
𝐿
, 𝑋
𝑖

𝑅
])

=
1

𝑛
1

𝑛1

∑

𝑖=1

(

𝑣
(𝑖)

∑

𝑙=𝑢
(𝑖)
+1

𝑝
𝑙

𝑝
𝑢
(𝑖)
+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑣
(𝑖)

𝑅
𝑙
) ,

𝑊
2
=

1

𝑛
2

𝑛2

∑

𝑗=1

rank ((𝑌𝑗
𝐿
, 𝑌
𝑗

𝑅
])

=
1

𝑛
2

𝑛2

∑

𝑗=1

(

𝑣
(𝑗)

∑

𝑙=𝑢
(𝑗)
+1

𝑝
𝑙

𝑝
𝑢
(𝑗)
+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑣
(𝑗)

𝑅
𝑙
) .

(11)

To test whether two IC samples come from the same popula-
tion, we propose the test statistic

W.R.T =
𝑊
1
−𝑊
2

√Var (𝑊
1
) + Var (𝑊

2
)

. (12)

Under 𝐻
0
, the central limit theorem implies that W.R.T

is approximately distributed as a standard normal random
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variable. However, the mean and variance of 𝑊
1
and 𝑊

2

may depend on the probability space where they are defined;
it means, different selection probability for IC intervals in
(4) leads to different mean and variance of 𝑊

1
and 𝑊

2
. We

therefore only consider the selection model of Fay defined in
Section 2.2. In this model, the selection probability of an IC
interval is in one of the following categories:

(i) 𝑄 {(0, 𝑥
𝑟
]} =

𝑟

∑

𝑗=1

𝑝
𝑗
𝑞(1 − 𝑞)

𝑟−1

, 1 ≤ 𝑟 < 𝑚, (13)

(ii) 𝑄 {(0, 𝑥
𝑚
]} =

𝑚

∑

𝑗=1

𝑝
𝑗
(1 − 𝑞)

𝑚−1

, (14)

(iii) 𝑄 {(𝑥
𝑢
, 𝑥
𝑣
]} =

𝑣

∑

𝑗=𝑢+1

𝑝
𝑗
𝑞
2
(1 − 𝑞)

𝑟−1

, 1 ≤ 𝑢 < 𝑣 < 𝑚,

(15)

(iv) 𝑄 {(𝑥
𝑢
, 𝑥
𝑚
]} =

𝑚

∑

𝑗=𝑢+1

𝑝
𝑗
𝑞(1 − 𝑞)

𝑚−𝑢−1

, 1 ≤ 𝑢 < 𝑚.

(16)

Consider the probability space (𝑈, 2𝑈, 𝑄), where the probabil-
itymeasure𝑄 is defined in Section 2. To compute the variance
of𝑊
1
and𝑊

2
, we define a random variable𝑍 on this space by

assigning value𝑍{(𝑥
𝑢
, 𝑥
𝑣
]} to the interval (𝑥

𝑢
, 𝑥
𝑣
] in𝑈, where

𝑍 {(𝑥
𝑢
, 𝑥
𝑣
]} =

𝑣

∑

𝑙=𝑢+1

𝑝
𝑙

𝑝
𝑢+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑣

𝑅
𝑙
, 0 ≤ 𝑢 < 𝑣 ≤ 𝑚.

(17)

The value 𝑍{(𝑥
𝑢
, 𝑥
𝑣
]} can be viewed as the weighted rank of

(𝑥
𝑢
, 𝑥
𝑣
]. If 𝑅

𝑙
, 𝑙 = 1, 2, . . . , 𝑚 are chosen as in the Wilcoxon

test for exact data, then our proposed test statistic W.R.T is
a Wilcoxon-type weighted rank test. Under this probability
space, the expectation 𝐸(𝑍) can be simplified as in the
following theorem.

Theorem 1. Suppose that 𝑍 is the random variable defined
on the probability space (𝑈, 2𝑈, 𝑄) according to (17). Then, the
expectation of 𝑍, 𝐸(𝑍), can be simplified as

𝐸 (𝑍) =

𝑚

∑

𝑙=1

𝑝
𝑙
𝑅
𝑙
, (18)

which is independent of the choice of 𝑞.

Proof. It is obvious that 𝐸(𝑍) can be written as 𝐸(𝑍) =

∑
𝑚

𝑙=1
𝑏
𝑙
𝑝
𝑙
𝑅
𝑙
, where the coefficients 𝑏

𝑙
, 𝑙 = 1, 2, . . . , 𝑚 are to be

determined. The theorem is, hence, proved if we can show
that all the coefficients 𝑏

𝑙
are ones.

Consider 𝑏
1
first. An interval (𝑥

𝑢
, 𝑥
𝑣
] contributes 𝑝

1
𝑅
1
in

𝐸(𝑍) if and only if it contains the point 𝑥
1
. Therefore, it must

be of the form (0, 𝑥
𝑣
], 𝑣 = 1, 2, . . . , 𝑚. For intervals (0, 𝑥

𝑣
],

1 ≤ 𝑣 ≤ 𝑚− 1, the probabilities𝑄{(0, 𝑥
𝑣
]} are defined in (13).

For interval (0, 𝑥
𝑚
], the probability 𝑄{(0, 𝑥

𝑚
]} is defined in

(14). Therefore, the coefficient 𝑏
1
is

𝑏
1
=

𝑚−1

∑

𝑣=1

𝑞(1 − 𝑞)
𝑣−1

+ (1 − 𝑞)
𝑚−1

= 𝑞
1 − (1 − 𝑞)

𝑚−1

1 − (1 − 𝑞)
+ (1 − 𝑞)

𝑚−1

= 1.

(19)

Next, consider the coefficient 𝑏
𝑗
for 1 < 𝑗 ≤ 𝑚 − 1. An

interval contributes 𝑝
𝑗
𝑅
𝑗
if and only if it contains the point

𝑥
𝑗
. Therefore, it must be of the form (𝑥

𝑢
, 𝑥
𝑣
], where 0 ≤ 𝑢 <

𝑗 ≤ 𝑣 ≤ 𝑚. It is necessary to study the contribution of the
interval (𝑥

𝑢
, 𝑥
𝑣
] to 𝑏
𝑗
in four different categories.

(i) 𝑢 = 0, 𝑣 ≤ 𝑚 − 1.

By (13), this category contributes∑𝑚−1
𝑣=𝑗

𝑞(1 − 𝑞)
𝑣−1.

(ii) 𝑢 = 0, 𝑣 = 𝑚.

By (14), the interval (0, 𝑥
𝑚
] contributes (1 − 𝑞)

𝑚−1.

(iii) 1 ≤ 𝑢 < 𝑣 ≤ 𝑚 − 1.

By (15), this category contributes ∑
𝑗−1

𝑢=1
∑
𝑚−1

𝑣=𝑗
𝑞
2
(1 −

𝑞)
𝑣−𝑢−1.

(iv) 𝑢 ≥ 1, 𝑣 = 𝑚.

By (16), this category contributes∑𝑗−1
𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1.

Consequently, the coefficient of 𝑏
𝑗
is

𝑏
𝑗
=

𝑚−1

∑

𝑣=𝑗

𝑞(1 − 𝑞)
𝑣−1

+ (1 − 𝑞)
𝑚−1

+

𝑗−1

∑

𝑢=1

𝑚−1

∑

𝑣=𝑗

𝑞
2
(1 − 𝑞)

𝑣−𝑢−1

+

𝑗−1

∑

𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1

= 𝑞

(1 − 𝑞)
𝑗−1

[1 − (1 − 𝑞)
𝑚−𝑗

]

1 − (1 − 𝑞)
+ (1 − 𝑞)

𝑚−1

+

𝑗−1

∑

𝑢=1

𝑞(𝑞

(1 − 𝑞)
𝑗−𝑢−1

[1 − (1 − 𝑞)
𝑚−𝑗

]

1 − (1 − 𝑞)
)

+

𝑗−1

∑

𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1

= (1 − 𝑞)
𝑗−1

− (1 − 𝑞)
𝑚−1

+ (1 − 𝑞)
𝑚−1

+

𝑗−1

∑

𝑢=1

𝑞(1 − 𝑞)
𝑗−𝑢−1

−

𝑗−1

∑

𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1

+

𝑗−1

∑

𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1
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Table 3: The mean, sample variance, and sample deviation of 𝑞.

𝑛 𝑞 0.8 0.5 0.3
Estimate 0.8001 0.5029 0.3024

50 Variance 0.0020 0.0021 0.0012
Std. 0.0448 0.0461 0.0341

Estimate 0.8039 0.5036 0.3012
100 Variance 0.0010 0.001 0.0005

Std. 0.0320 0.0312 0.0233
Estimate 0.8009 0.4977 0.3033

150 Variance 0.0005 0.0008 0.0004
Std. 0.0225 0.0277 0.0207

= (1 − 𝑞)
𝑗−1

+ (1 − (1 − 𝑞)
𝑗−1

)

= 1.

(20)

Finally, the proof for the case 𝑗 = 𝑚 is

𝑏
𝑚
=

𝑚−1

∑

𝑢=1

𝑞(1 − 𝑞)
𝑚−𝑢−1

+ (1 − 𝑞)
𝑚−1

= 1 − (1 − 𝑞)
𝑚−1

+ (1 − 𝑞)
𝑚−1

= 1.

(21)

The variance of 𝑍, Var(𝑍), is

Var (𝑍) = 𝐸 (𝑍
2
) − 𝐸
2
(𝑍)

=

𝑚(𝑚+1)/2

∑

𝑖=1

𝑄 (𝐼
𝑖
) 𝑅
2
(𝐼
𝑖
) − 𝐸
2
(𝑍) ,

(22)

where 𝑄(𝐼
𝑖
) and 𝑅(𝐼

𝑖
) are the selected probability and the

weighted rank of the 𝑖th admissible interval of 𝐼
𝑖
, respectively,

𝐼
𝑖
∈ 𝑈.
Consider the formulas (13)–(16), the selection probability

𝑄(𝐼) depends on 𝑝 = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) and 𝑞; therefore, the

likelihood function can be written as

𝐿 (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
, 𝑞) = 𝑃 (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑚
) 𝐺 (𝑞) , (23)

where 𝐺(𝑞) = 𝑞
𝑘1(1 − 𝑞)

𝑘2 , 𝑘
1
and 𝑘

2
are positive inte-

gers determined by the sample. Since the probability 𝑝 =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
) can be estimated by Turnbull’s [1] algorithm

discussed in Section 2.2, and 𝑞 can also be estimated by
𝑘
1
/(𝑘
1
+ 𝑘
2
) trivially.

For demonstration, we set 𝑚 = 6, inspection times 𝑥
𝑖
=

𝑖, 𝑖 = 1, 2, . . . , 6, and the true lifetime 𝑋 is exponentially
distributed with 𝜆 = 1/3. For different sample sizes 𝑛 =

50, 100, and 150, different return probabilities of inspection
𝑞 = 0.8, 0.5, and 0.3, and simulation with 100 replications,
Table 3 presents the estimates of 𝑞 and sample variance and
sample deviation of 𝑞. To show the normality of W.R.T, we
assume that the two populations (sample size 𝑛

1
= 𝑛
2

=

30) are coming from the same distribution exponential (1/5).

−2 −1.5 −1 −0.5 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 1: CDF of standard normal and simulation result of W.R.T.
Line: standard normal. Point: simulation result of W.R.T (𝑞 = 0.5).

By simulation with 10000 replications and different return
probabilities of inspection 𝑞 = 0.8, 0.5, and 0.3, Table 4
presents the quantiles of W.R.T and 𝑁(0, 1). Figure 1 shows
the CDF plots of𝑁(0, 1) and W.R.T with 𝑞 = 0.5.

4. Simulation Study

In this section, we carry out simulation studies to compare
the performance ofW.R.T test withMantel’s [2] and Peto’s [6]
tests. In the study, we assume that the failure time random
variable is distributed as exponential, total sample sizes are
𝑛 = 100 and 200, and each sample has (𝑛/2) subjects. The
interval censored data are generated by the following four
steps.

Step 1. Generate a failure time 𝑡
𝑗
from some distribution.

Step 2. Create a 0, 1 sequence 𝐴 = {𝐴
0
, 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} with

probabilities 𝑃(𝐴
𝑖
= 1) = 𝑞, 𝑖 = 1, 2, . . . , 𝑚 − 1, and 𝑃(𝐴

0
=

1) = 𝑃(𝐴
𝑚
= 1) = 1.

Step 3. The observation is (𝑎, 𝑏], if 𝑎 < 𝑡
𝑗
≤ 𝑏, 𝐴

𝑎
= 𝐴
𝑏
= 1,

and 𝐴
𝑎+1

= 𝐴
𝑎+2

= ⋅ ⋅ ⋅ = 𝐴
𝑏−1

= 0.

Step 4. Repeat Step 1 to Step 3 for 𝑛 times.
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Table 4: The quantiles of W.R.T and𝑁(0, 1).

Quantile Normal (0,1) W.R.T
0.8 0.5 0.3

0.05 −1.6449 −1.6757 −1.6421 −1.6786

0.10 −1.2816 −1.3083 −1.2855 −1.3064

0.15 −1.0364 −1.0543 −1.0354 −1.0700

0.20 −0.8416 −0.8647 −0.8494 −0.8649

0.25 −0.6745 −0.6874 −0.6892 −0.6877

0.30 −0.5244 −0.5326 −0.5351 −0.5338

0.35 −0.3853 −0.3883 −0.3966 −0.3946

0.40 −0.2533 −0.2623 −0.2651 −0.2663

0.45 −0.1257 −0.1247 −0.1379 −0.1314

0.50 0 −0.0007 −0.0152 0.0002

0.55 0.1257 0.1296 0.1136 0.1306

0.60 0.2533 0.2582 0.2503 0.2604

0.65 0.3853 0.3879 0.3789 0.4012

0.70 0.5244 0.5336 0.5176 0.5501

0.75 0.6745 0.6814 0.6549 0.6954

0.80 0.8416 0.8535 0.8215 0.8611

0.85 1.0364 1.0508 1.0146 1.0734

0.90 1.2816 1.2758 1.2628 1.3346

0.95 1.6449 1.6368 1.6458 1.6747

We consider three return probabilities, 𝑞 = 0.8, 0.5, and
0.3, two sets of inspection time points, 𝑚 = 6, 10, and 1000
replications at significance level 0.05.

In the case of𝑚 = 6, 6 return points, we set the hazards 1/3
for population 1 and 1/3𝑒

𝛽 for population 2. Figure 2 shows
the density plot of exponential distribution with 𝛽 = −0.4,
−0.2, 0, 0.2, 0.4. In the case of 𝑚 = 10, 10 return points, we
set the hazards 1/4 for population 1 and 1/4𝑒

𝛽 for population
2. Figure 3 shows the density plot of exponential distribution
with 𝛽 = −0.6, −0.3, 0, 0.3, 0.6. Tables 5 and 6 present the
powers of the three tests with sample size 𝑛 = 100 and 200.
Simulation result shows that when the failure times come
from the exponential distribution, our proposed test W.R.T
is the most powerful.

5. An Application to AIDS Cohort Study

Consider the data of 262 hemophilia patients in De Gruttola
and Lagakos [18], among them, 105 patients received at least
1,000𝜇g/kg of blood factor for at least one year between
1982 and 1985, and the other 157 patients received less than
1,000𝜇g/kg in each year. In this medical study, patients were
treated between 1978 and 1988, the observations (𝑋

𝐿
, 𝑋
𝑅
] for

the 262 patients, based on a discretization of the time axis
into 6-month intervals.The failure time of interest is the time
of HIV seroconversion. The object is to test the difference of
the failure times between the two treatments. Applying our
proposed test, namely, W.R.T, Mantel’s [2] and Peto’s [6] tests
to this data set, the values of the three test statistics are −7.815,
−7.352, and 56.476, respectively. All the three 𝑃 values are
less than 0.001 and have the same conclusion that the HIV
seroconversion appeared in the two groups of patients being
significantly different.

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

Figure 2: Density plot of exponential distribution with hazards
1/3𝑒
𝛽.

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Figure 3: Density plot of exponential distribution with hazards
1/4𝑒
𝛽.
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Table 5: Power comparison of tests under exponential distribution with sample 𝑛 = 100.

m 𝑞 Test 𝛽

−0.4 −0.2 0 0.2 0.4
W.R.T 0.419 0.131 0.050 0.150 0.371

0.8 Mantel 0.391 0.120 0.047 0.143 0.362
Peto 0.385 0.122 0.050 0.140 0.361

W.R.T 0.383 0.123 0.045 0.132 0.345
6 0.5 Mantel 0.360 0.121 0.041 0.124 0.344

Peto 0.345 0.109 0.045 0.124 0.336

W.R.T 0.313 0.102 0.042 0.103 0.254
0.3 Mantel 0.307 0.101 0.040 0.096 0.255

Peto 0.294 0.099 0.040 0.101 0.248

m 𝑞 Test 𝛽

−0.6 −0.3 0 0.3 0.6
W.R.T 0.801 0.289 0.047 0.264 0.779

0.8 Mantel 0.736 0.246 0.051 0.236 0.737
Peto 0.717 0.242 0.050 0.237 0.740

W.R.T 0.793 0.278 0.048 0.275 0.712
10 0.5 Mantel 0.754 0.247 0.045 0.262 0.678

Peto 0.718 0.240 0.052 0.256 0.663

W.R.T 0.680 0.238 0.052 0.239 0.662
0.3 Mantel 0.667 0.215 0.048 0.223 0.640

Peto 0.624 0.216 0.049 0.224 0.632

Table 6: Power comparison of tests under exponential distribution with sample 𝑛 = 200.

m 𝑞 Test 𝛽

−0.4 −0.2 0 0.2 0.4
W.R.T 0.710 0.268 0.049 0.196 0.642

0.8 Mantel 0.678 0.251 0.053 0.192 0.632
Peto 0.667 0.253 0.054 0.190 0.630

W.R.T 0.656 0.201 0.050 0.193 0.573
6 0.5 Mantel 0.636 0.193 0.046 0.184 0.561

Peto 0.621 0.188 0.047 0.188 0.558

W.R.T 0.549 0.182 0.058 0.171 0.523
0.3 Mantel 0.537 0.182 0.057 0.168 0.506

Peto 0.523 0.181 0.052 0.164 0.501

m 𝑞 Test 𝛽

−0.6 −0.3 0 0.3 0.6
W.R.T 0.984 0.520 0.049 0.473 0.945

0.8 Mantel 0.964 0.472 0.050 0.441 0.930
Peto 0.957 0.460 0.050 0.439 0.927

W.R.T 0.971 0.484 0.046 0.448 0.957
10 0.5 Mantel 0.961 0.458 0.045 0.424 0.946

Peto 0.948 0.434 0.039 0.415 0.944

W.R.T 0.942 0.429 0.053 0.402 0.901
0.3 Mantel 0.927 0.413 0.050 0.387 0.892

Peto 0.908 0.385 0.060 0.368 0.889
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