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This paper studies the pricing of intensity-based defaultable bonds where the volatility of default intensity is assumed to be random
and driven by two different factors varying on fast and slow time scales. Corrections to the constant intensity of default are obtained
and then how these corrections influence the term structure of interest rate derivatives is shown. The results indicate that the fast
scale correction produces a more significant impact on the bond price than the slow scale correction and the impact tends to
increase as time to maturity increases.

1. Introduction

In finance, the payoff for a defaultable bond would be less
than the promised amount when the risky asset of a firm
may default. The simplest type of the defaultable bond can
be modeled by defining the time of default as the first arrival
time of a Poisson process with a constant mean arrival
rate called intensity. However, it becomes a common sense
nowadays that the default intensity should be treated as a
stochastic process depending on the macroeconomic envi-
ronment. Refer to Jarrow and Protter [1], Duffie and Singleton
[2], and Bielecki and Rutkowski [3] for general reference on
default intensity. See also Jarrow and Turnbull [4], Lando [5],
Schonbucher [6] and Musiela and Rutkowski [7] for major
mathematical developments in default modeling.

This paper considers a stochastic intensitymodel ofwhich
motivation is described as follows. There is a recent paper
by Liang et al. [8] that studied the limitation of methods for
pricing credit derivatives under a reduced form framework
if the default intensity process follows the Vasicek model
[9]. In fact, the intensity given by the Vasicek model could
be negative, whereas it should not be the case. So, this
work adopts the Cox-Ingersoll-Ross (CIR) model [10] for
the intensity of default. On the other hand, there are studies
by B. Kim and J.-H. Kim [11] and Papageorgiou and Sircar
[12] presenting the pricing of defaultable derivatives under

a diffusion model for the default intensity. These works
are based upon multiscale stochastic volatility described by
Fouque et al. [13], where volatility follows both fast and slow
scale variations. In particular, the authors of [12] showed an
empirical evidence of the existence of two different scales
by the calibration of the model on corporate yield curves.
However, these papers consider a Vasicek model for the
interest rate which severely limits the practical applications of
the results since the interest rate is always positive. So, we take
both the underlying interest rate and the intensity of default as
CIRmodels whose solutions are always positive. In this sense,
our model is a fundamental extension of the aforementioned
models.

Also, as shown in [14], modeling the intensity of default
in terms of a Cox process turned out to be inappropriate
for producing loss distributions to capture real data which
exhibits a heavier tail. However, as stated by Papageor-
giou and Sircar [15] on multiname credit derivatives, the
introduction of multiscale stochastic volatility in the default
intensity process is enough to allow for a heavier tail in
the loss distribution, which is compatible with empirical
evidence from real data and also offsets the need for jump
characteristics and maintains closed-form expressions for
the conditional loss distribution. Given this observation, the
volatility of the CIR model for default intensity is assumed to
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be given by a function of two different time-scale stochastic
factors. The main concern of this paper is to investigate how
these factors influence the interest rate derivatives.

The remaining sections are organized as follows. In
Section 2, dynamics of a defaultable bond are formulated
in terms of a system of multiscale stochastic differential
equations of theCIR type and transformed into an asymptotic
partial differential equation. In Section 3, the solution of it is
approximated by using asymptotic analysis and subsequently
the convergence error is estimated. Section 4 studies, numer-
ically, the impact of the two scale factors in the stochastic
intensity of default on the price and the subsequent yield
curve of the bond. Section 5 is devoted to the pricing of a
European option for a defaultable bond. Final remarks are
given in Section 6.

2. Problem Formulation

In terms of short rate 𝑟
𝑡
, intensity 𝜆

𝑡
, two small positive

parameters 𝜖 and 𝛿, and two processes𝑌
𝑡
and𝑍

𝑡
representing

a fast scale factor and a slow scale factor of the volatility
of the intensity 𝜆

𝑡
, respectively, we assume that dynamics

of the joint process (𝑟
𝑡
, 𝜆
𝑡
, 𝑌
𝑡
, 𝑍
𝑡
) are given by the following

stochastic differential equations (SDEs):

𝑑𝑟
𝑡
= 𝑎 (𝑟

∗
− 𝑟
𝑡
) 𝑑𝑡 + 𝜎√𝑟

𝑡
𝑑𝑊
𝑟

𝑡
,

𝑑𝜆
𝑡
= 𝑎 (𝜆

∗
− 𝜆
𝑡
) 𝑑𝑡 + 𝑓 (𝑌

𝑡
, 𝑍
𝑡
)√𝜆
𝑡
𝑑𝑊
𝜆

𝑡
,

𝑑𝑌
𝑡
=

1

𝜖

(𝑚 − 𝑌
𝑡
) 𝑑𝑡 +

]√2

√𝜖

𝑑𝑊
𝑦

𝑡
,

𝑑𝑍
𝑡
= 𝛿𝑔 (𝑍

𝑡
) 𝑑𝑡 + √𝛿ℎ (𝑍

𝑡
) 𝑑𝑊
𝑧

𝑡

(1)

under a risk-neutral probability measure (or equivalent mar-
tingale measure), where 𝑊

𝑟

𝑡
, 𝑊𝜆
𝑡
, 𝑊𝑦
𝑡
, and 𝑊

𝑧

𝑡
are standard

Brownian motions with a correlation structure given by the
coefficients 𝜌

𝑟𝜆
, 𝜌
𝑟𝑦
, 𝜌
𝑟𝑧
, 𝜌
𝜆𝑦
, 𝜌
𝜆𝑧
, and 𝜌

𝑦𝑧
with 𝜌

𝑟𝜆
= 0. The

function 𝑓 : R2 → R+ is assumed to be bounded, smooth,
and strictly positive and the functions 𝑔 and ℎ satisfy the
Lipschitz and growth conditions so that the corresponding
SDE admits a unique strong solution. We note particularly
that the process 𝑌

𝑡
is an ergodic process whose invariant

distribution is given by the Gaussian probability distribution
function as

𝜙 (𝑦) =

1

√2𝜋]2
exp(−

(𝑦 − 𝑚)
2

2]2
) , 𝑦 ∈ R, (2)

which provides an important averaging tool for the unob-
served process 𝑌

𝑡
as documented well in [13]. Notation ⟨⋅⟩

is going to be used for the expectation with respect to this
invariant distribution.

Based on Lando [5], the price of zero-recovery defaultable
bond is given by the reduced form

𝑃
𝜖,𝛿

(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇)

= 𝐸
∗
[𝑒
−∫
𝑇

𝑡
(𝑟𝑠+𝜆𝑠)𝑑𝑠

| 𝑟
𝑡
= 𝑟, 𝜆

𝑡
= 𝜆, 𝑌

𝑡
= 𝑦, 𝑍

𝑡
= 𝑧]

(3)

under the risk-neutral probabilitymeasure. Here, theMarkov
property of the joint process (𝑟

𝑡
, 𝜆
𝑡
, 𝑌
𝑡
, 𝑍
𝑡
) was used. Of

course, the zero-recovery assumption is not appropriate from
an economic point of view but, for the purpose ofmathemati-
cal simplicity, we assume in this paper that the loss rate equals
one identically. Then, using the four-dimensional Feynman-
Kac formula (cf. [16]), we obtain a singularly and regularly
perturbed partial differential equation (PDE) problem given
by

L
𝜖,𝛿

𝑃
𝜖,𝛿

(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇) = 0, 𝑡 < 𝑇,

L
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1

𝜖

L
0
+

1

√𝜖

L
1
+L
2
+ √𝛿K

1
+ 𝛿K

2
+ √
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𝜖

K
3
,

𝑃
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(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇)





𝑡=𝑇

= 1,

(4)

where

L
0
= (𝑚 − 𝑦)
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+ ]
2 𝜕
2
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2
,
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𝜕
2
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,
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2
=

𝜕

𝜕𝑡
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∗
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1
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2
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𝜕
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2
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∗
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2
(𝑦, 𝑧) 𝜆

𝜕
2
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2
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2
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2

𝜕𝜆𝜕𝑧

,
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= 𝑔 (𝑧)
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1
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ℎ
2
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2
,
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(5)

Note that (1/𝜖)L
0
is the infinitesimal generator of the OU

process 𝑌
𝑡
. The operator L

1
contains the mixed partial

derivative due to the correlation between 𝑟
𝑡
and 𝑌

𝑡
as well

as between 𝜆
𝑡
and 𝑌

𝑡
. L
2
is the operator of the canonical

two-factor CIR model with volatility at the volatility level
𝑓(𝑦, 𝑧).K

1
includes the mixed partial derivatives due to the

correlation between 𝑟
𝑡
and 𝑍

𝑡
and between 𝜆

𝑡
and 𝑍

𝑡
. K
2
is

the infinitesimal generator of the process 𝑍
𝑡
. K
3
holds the

mixed partial derivative due to the correlation between𝑌
𝑡
and

𝑍
𝑡
.
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3. Multiscale Analysis

Since it is difficult to solve the PDE problem (4) itself, we are
interested in the following asymptotic expansions:

𝑃
𝜖,𝛿

(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇) =

∞

∑

𝑗=0

𝛿
𝑗/2

𝑃
𝜖
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𝑃
𝜖

𝑗
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∞

∑

𝑖=0

𝜖
𝑖/2

𝑃
𝑖,𝑗

(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇) , (7)

so that 𝑃𝜖,𝛿 is a series of the general term 𝜖
𝑖/2

𝛿
𝑗/2

𝑃
𝑖,𝑗
. Plugging

the expansion (6) into (4) leads to 𝑃
𝜖

0
and 𝑃

𝜖

1
given by the

solutions of the PDEs

(

1

𝜖

L
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√𝜖

L
1
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)𝑃
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0
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√𝜖

L
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𝜖

1
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K
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𝑃
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𝑡=𝑇

= 0,

(9)

respectively. From now on, we employ an analytic technique
of [13] to approximate the two terms 𝑃𝜖

0
and 𝑃

𝜖

1
based on the

ergodic property of theOrnstein-Uhlenbeck (OU) process𝑌
𝑡
.

3.1.TheLeadingOrder Term. Applying the expansion (7)with
𝑗 = 0 to (8) leads to

1

𝜖

L
0
𝑃
0,0

+

1

√𝜖

(L
0
𝑃
1,0

+L
1
𝑃
0,0

)

+ (L
0
𝑃
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1
𝑃
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2
𝑃
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)

+ √𝜖 (L
0
𝑃
3,0
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1
𝑃
2,0

+L
2
𝑃
1,0

)

+ ⋅ ⋅ ⋅ = 0

(10)

fromwhichwe obtain an affine formof the leading order term
𝑃
0,0

as follows.

Theorem 1. Assume that the partial derivative of 𝑃
𝑖,𝑗

with
respect to 𝑦 does not grow as much as 𝜕𝑃

𝑖,𝑗
/𝜕𝑦 ∼ 𝑒

𝑦
2
/2 as

𝑦 goes to infinity. Then the leading order term 𝑃
0

:= 𝑃
0,0

of
the expansion (7) with 𝑗 = 0 is independent of the fast scale
variable 𝑦 and further it has the affine representation

𝑃
0
(𝑇 − 𝜏, 𝑟, 𝜆, 𝑧; 𝑇) = �̆� (𝜏, 𝑧) 𝑒

−𝑟�̆�(𝜏)−𝜆�̆�(𝜏) (11)

with 𝜏 = 𝑇 − 𝑡, �̆�(0) = �̆�(0) = 0 and �̆�(0, 𝑧) = 1, where �̆�(𝜏),
�̆�(𝜏), and �̆�(𝜏, 𝑧) are given by,

�̆� (𝜏) =

2 (𝑒
𝛾1𝜏
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2𝛾
1
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1
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2 (𝑒
𝛾2𝜏

− 1)
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2
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,

�̆� (𝜏, 𝑧) = [

2𝛾
1
𝑒
(1/2)(𝛾1+𝑎)𝜏
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1
+ 𝑎) (𝑒

𝛾1𝜏 − 1)

]

2𝑎𝑟
∗
/𝜎
2

× [

2𝛾
2
𝑒
(1/2)(𝛾2+𝑎)𝜏
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+ (𝛾
2
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]

2𝑎𝜆
∗
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2
(𝑧)

,

𝛾
1
:= √𝑎

2
+ 2𝜎
2
, 𝛾

2
:= √𝑎

2
+ 2�̆�
2
(𝑧),

(12)

respectively. Here, �̆� is defined by

�̆�
2
(𝑧) := ⟨𝑓

2
⟩ (𝑧) = ∫

R

𝑓
2
(𝑦, 𝑧) 𝜙 (𝑦) 𝑑𝑦 (13)

in terms of 𝜙 (the invariant distribution of 𝑌
𝑡
).

Proof. Multiplying (10) by 𝜖 and letting 𝜖 go to zero, we
obtain the ordinary differential equation (ODE) L

0
𝑃
0

= 0.
Recalling that the operator L

0
is the generator of the OU

process 𝑌
𝑡
, the solution 𝑃

0
of this ODE must be independent

of the 𝑦 variable due to the assumed growth condition; 𝑃
0
=

𝑃
0
(𝑡, 𝑟, 𝜆, 𝑧; 𝑇). From the 𝑂(1/√𝜖) terms of (10), we have the

PDEL
0
𝑃
1,0

+ L
1
𝑃
0
= 0. If we apply the 𝑦-independence of

𝑃
0
to this PDE, then it reduces to the ODE L

0
𝑃
1,0

= 0 and
so 𝑃
1,0

is independent of 𝑦 by the same reason as in the case
of 𝑃
0
; 𝑃
1,0

= 𝑃
1,0

(𝑡, 𝑟, 𝜆, 𝑧; 𝑇). So far, the two terms 𝑃
0
and 𝑃
1,0

do not depend on the current level 𝑦 of the fast scale volatility
driving the process 𝑌

𝑡
.

One can continue to eliminate the terms of order 1, √𝜖,
𝜖, and so forth. From the 𝑂(1) terms of (10), we getL

0
𝑃
2,0

+

L
1
𝑃
1,0

+L
2
𝑃
0
= 0. This PDE becomes

L
0
𝑃
2,0

+L
2
𝑃
0
= 0 (14)

due to the 𝑦-independence of 𝑃
1,0

obtained above. Equation
(14) is a Poisson equation for 𝑃

2,0
with respect to the operator

L
0
in the 𝑦 variable. It is well known (cf. [17]) from the

Fredholm alternative (solvability condition) that it has a
solution only ifL

2
𝑃
0
is centered with respect to the invariant

distribution of 𝑌
𝑡
; that is,

⟨L
2
⟩𝑃
0
= 0,

⟨L
2
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𝜕

𝜕𝑡

+ 𝑎 (𝑟
∗
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𝜕

𝜕𝑟

+

1

2

𝜎
2
𝑟

𝜕
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𝜕𝑟
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∗
− 𝜆)

𝜕

𝜕𝜆

+

1
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�̆�
2
(𝑧) 𝜆

𝜕
2

𝜕𝜆
2
− (𝑟 + 𝜆) 𝐼.

(15)

Noting that (15) is nothing but a PDE corresponding to the
intensity with constant volatility replaced by the function
�̆�(𝑧), the affine solution of (15) is given by (11)-(12) from the
well-known solution in [6].
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3.2. The Correction Terms. Next, we derive the first-order
correction terms 𝑃

1,0
and 𝑃
0,1

from the leading order solution
𝑃
0
obtained above. Contrary to the result obtained in [12], the

correction terms are not given by closed form solutions in the
present case of a CIR model (instead of a Vasicek model) for
the interest rate.

Theorem 2. Assume that the partial derivative of 𝑃
𝑖,𝑗

with
respect to 𝑦 does not grow as much as 𝜕𝑃

𝑖,𝑗
/𝜕𝑦 ∼ 𝑒

𝑦
2
/2 as 𝑦

goes to infinity. The correction term 𝑃
1,0

is independent of the
variable 𝑦 and �̃�

𝜖

1,0
:= √𝜖𝑃

1,0
(𝑡, 𝑟, 𝜆, 𝑧; 𝑇) is given by
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(𝑇 − 𝜏, 𝑟, 𝜆, 𝑧; 𝑇)
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solution of the PDE
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𝑦
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Here, �̆�(𝜏) and �̆�(𝜏) are given by (12) and the function 𝜃 :

R2 → R is defined by the solution of

L
0
𝜃 (𝑦, 𝑧) = 𝑓

2
(𝑦, 𝑧) − ⟨𝑓

2
⟩ (𝑧) (18)

and 𝜃
𝑦
denotes the partial derivative with respect to the 𝑦

variable.

Proof. The 𝑂(√𝜖) terms of (10) lead to L
0
𝑃
3,0

+ L
1
𝑃
2,0

+

L
2
𝑃
1,0

= 0 which is a Poisson equation for 𝑃
3,0

and so the
solvability condition leads to the PDE

⟨L
1
𝑃
2,0

+L
2
𝑃
1,0

⟩ = 0. (19)

Meanwhile, from (14) and (15), we have

𝑃
2,0

= −L
−1

0
(L
2
− ⟨L
2
⟩) 𝑃
0
+ 𝑐 (𝑡, 𝑟, 𝜆, 𝑧) (20)

for some function 𝑐(𝑡, 𝑟, 𝜆, 𝑧) that does not rely on the 𝑦

variable. Plugging (20) into (19), a PDE for 𝑃
1,0

is obtained
as

⟨L
2
⟩𝑃
1,0

= ⟨L
1
L
−1

0
(L
2
− ⟨L
2
⟩)⟩𝑃
0

(21)

with the terminal condition 𝑃
1,0

(𝑡, 𝑟, 𝜆, 𝑧; 𝑇)|
𝑡=𝑇

= 0. This
implies that𝑃

1,0
is 𝑦-independent. Since we focus on the first-

order correction terms to 𝑃
0
, we reset (21) with respect to �̃�

𝜖

1,0

leading to

⟨L
2
⟩�̃�
𝜖

1,0
= H
1
𝑃
0
,

H
1
:= √𝜖 ⟨L

1
L
−1

0
(L
2
− ⟨L
2
⟩)⟩ .

(22)

To calculate the operatorH
1
, we first find

L
2
− ⟨L
2
⟩ =

1

2

(𝑓
2
(𝑦, 𝑧) − ⟨𝑓

2
⟩ (𝑧))

𝜕
2

𝜕𝜆
2

(23)

from (5) and so the operator H
1
is expressed as H

1
=

𝑞(𝑧)√𝜆𝜕
3

𝜆𝜆𝜆
+ 𝑠(𝑧)√𝑟𝜕

3

𝑟𝜆𝜆
, where 𝑞(𝑧) and 𝑠(𝑧) are the ones

given in the theorem. Then, from (15), Theorem 1 and the
change of variables 𝜏 = 𝑇 − 𝑡, the PDE (22) leads to

𝜕�̃�
𝜖

1,0

𝜕𝜏

= 𝑎 (𝑟
∗
− 𝑟)

𝜕�̃�
𝜖

1,0

𝜕𝑟

+

1

2

𝜎
2
𝑟

𝜕
2
�̃�
𝜖

1,0

𝜕𝑟
2

+ 𝑎 (𝜆
∗
− 𝜆)

𝜕�̃�
𝜖

1,0

𝜕𝜆

+

1

2

�̆�
2
(𝑧) 𝜆

𝜕
2
�̃�
𝜖

1,0

𝜕𝜆
2

− (𝑟 + 𝜆) �̃�
𝜖

1,0

+ �̆� (𝜏, 𝑧) 𝑒
−𝑟�̆�(𝜏)−𝜆�̆�(𝜏)

× (𝑞 (𝑧)√𝜆�̆�
3
(𝜏) + 𝑠 (𝑧)√𝑟�̆� (𝜏) �̆�

2
(𝜏))

(24)

with the initial condition �̃�
𝜖

1,0
(𝑇−𝜏, 𝑟, 𝜆, 𝑧; 𝑇)|

𝜏=0
= 0. Finally,

plugging �̃�
𝜖

1,0
of the form (16) into (24), we obtain the result

of Theorem 2 by direct computation.

Similarly, one can derive the correction term 𝑃
0,1

also as
follows.

Theorem 3. Assume that the partial derivative of 𝑃
𝑖,𝑗

with
respect to 𝑦 does not grow as much as 𝜕𝑃

𝑖,𝑗
/𝜕𝑦 ∼ 𝑒

𝑦
2
/2 as 𝑦

goes to infinity. The first correction term 𝑃
0,1

does not depend
on the variable 𝑦 and �̃�

𝛿

0,1
:= √𝛿𝑃

0,1
(𝑡, 𝑟, 𝜆, 𝑧; 𝑇) is given by

�̃�
𝛿

0,1
(𝑇 − 𝜏, 𝑟, 𝜆, 𝑧; 𝑇) = �̆� (𝜏, 𝑟, 𝜆, 𝑧) 𝑃

0
(𝑇 − 𝜏, 𝑟, 𝜆, 𝑧; 𝑇)

(25)

with �̆�(0, 𝑟, 𝜆, 𝑧) = 0, where �̆�(𝜏, 𝑟, 𝜆, 𝑧) is given by the solution
of the PDE

𝜕�̆�

𝜕𝜏

− {𝑎 (𝑟
∗
− 𝑟) − 𝜎

2
𝑟�̆� (𝜏)}

𝜕�̆�

𝜕𝑟

−

1

2

𝜎
2
𝑟

𝜕
2
�̆�

𝜕𝑟
2

− {𝑎 (𝜆
∗
− 𝜆) − �̆�

2
(𝑧) 𝜆�̆� (𝜏)}

𝜕�̆�

𝜕𝜆

−

1

2

�̆�
2
(𝑧) 𝜆

𝜕
2
�̆�

𝜕𝜆
2

= 𝑚 (𝜏, 𝑟, 𝜆, 𝑧) ,

𝑚 (𝜏, 𝑟, 𝜆, 𝑧) :=

1

�̆�

(𝑢 (𝑧)√𝑟�̆� (𝜏)

𝜕�̆�

𝜕𝑧

+ V (𝑧)√𝜆�̆� (𝜏)

𝜕�̆�

𝜕𝑧

) ,
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𝑢 (𝑧) := −√𝛿𝜌
𝑟𝑧
𝜎ℎ (𝑧) ,

V (𝑧) := −√𝛿𝜌
𝜆𝑧
𝜎 (𝑧) ℎ (𝑧) .

(26)

Here, �̆�(𝜏), �̆�(𝜏), and �̆�(𝜏, 𝑧) are given by (12) and 𝜎 is defined
by

𝜎 (𝑧) := ⟨𝑓⟩ (𝑧) = ∫

R

𝑓 (𝑦, 𝑧) 𝜙 (𝑦) 𝑑𝑦 (27)

in terms of 𝜙 (the invariant distribution of 𝑌
𝑡
).

Proof. Applying the expansion (7) with 𝑗 = 0 and 𝑗 = 1 to
(9) results in

1

𝜖

L
0
𝑃
0,1

+

1

√𝜖

(L
0
𝑃
1,1

+L
1
𝑃
0,1

)

+ (L
0
𝑃
2,1

+L
1
𝑃
1,1

+L
2
𝑃
0,1

)

+ √𝜖 (L
0
𝑃
3,1

+L
1
𝑃
2,1

+L
2
𝑃
1,1

)

+ ⋅ ⋅ ⋅

= −

1

√𝜖

K
3
𝑃
0
− (K
1
𝑃
0
+K
3
𝑃
1,0

)

− √𝜖 (K
1
𝑃
1,0

+K
3
𝑃
2,0

) + ⋅ ⋅ ⋅ .

(28)

Then, from the 𝑂(1/𝜖) term of (28), 𝑃
0,1

is 𝑦-independent
as the solution of the ODE L

0
𝑃
0,1

= 0 under the assumed
growth condition. Since both 𝑃

0
(obtained inTheorem 1) and

𝑃
0,1

are 𝑦-independent, from the 𝑂(1/√𝜖) terms of (28), we
have the ODE L

0
𝑃
1,1

= 0. So, by the same reason as in the
case of 𝑃

0,1
= 0, 𝑃

1,1
is also independent of 𝑦. Hence, the two

terms𝑃
0,1

and 𝑃
1,1

do not depend on the current level 𝑦 of the
fast scale volatility of intensity.

One can continue to remove the terms of order 1, √𝜖, 𝜖,
and so forth. From the 𝑂(1) terms and the 𝑦-independence
of𝑃
1,0

and𝑃
1,1
, we have the PDEL

0
𝑃
2,1

+L
2
𝑃
0,1

+K
1
𝑃
0
= 0.

This is a Poisson equation for 𝑃
2,1

with respect to the operator
L
0
in the𝑦 variable and so it has a solution only if ⟨L

2
⟩𝑃
0,1

=

−⟨K
1
⟩𝑃
0
holds. If we reset this PDE with respect to �̃�

𝛿

0,1
, then

we have

⟨L
2
⟩ �̃�
𝛿

0,1
= H
2
𝑃
0
,

H
2
:= −√𝛿 ⟨K

1
⟩ ,

(29)

where the operator H
2
is the same as H

2
= 𝑢(𝑧)√𝑟𝜕

2

𝑟𝑧
+

V(𝑧)√𝜆𝜕
2

𝜆𝑧
from the definition ofK

1
given by (5).

Using the operator (15), Theorem 1, and the change of
variable 𝜏 = 𝑇 − 𝑡, we write the PDE (29) as follows:

𝜕�̃�
𝛿

0,1

𝜕𝜏

= 𝑎 (𝑟
∗
− 𝑟)

𝜕�̃�
𝛿

0,1

𝜕𝑟

+

1

2

𝜎
2
𝑟

𝜕
2
�̃�
𝛿

0,1

𝜕𝑟
2

+ 𝑎 (𝜆
∗
− 𝜆)

𝜕�̃�
𝛿

0,1

𝜕𝜆

+

1

2

�̆�
2
(𝑧) 𝜆

𝜕
2
�̃�
𝛿

0,1

𝜕𝜆
2

− (𝑟 + 𝜆) �̃�
𝛿

0,1

+ 𝑒
−𝑟�̆�(𝜏)−𝜆�̆�(𝜏)

(𝑢 (𝑧)√𝑟�̆� (𝜏)

𝜕�̆�

𝜕𝑧

+ V (𝑧)√𝜆�̆� (𝜏)

𝜕�̆�

𝜕𝑧

) ,

(30)

where the initial condition �̃�
𝛿

0,1
(𝑇 − 𝜏, 𝑟, 𝜆, 𝑧; 𝑇)|

𝜏=0
= 0 is

satisfied. Plugging the form (25) into (30), we obtain the result
of Theorem 3 by direct computation.

3.3. Accuracy. Synthesizing Theorems 1, 2, and 3, we obtain
the following asymptotic representation of the price of the
defaultable bond at time 𝑡:

𝑃
𝜖,𝛿

(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇) ≈ �̃�
𝜖,𝛿

:= 𝑃
0
+ �̃�
𝜖

1,0
+ �̃�
𝛿

0,1

= (1 + �̆� (𝜏, 𝑟, 𝜆, 𝑧) + �̆� (𝜏, 𝑟, 𝜆, 𝑧))

× �̆� (𝜏, 𝑧) 𝑒
−𝑟�̆�(𝜏)−𝜆�̆�(𝜏)

,

(31)

where �̆�(𝜏), �̆�(𝜏), �̆�(𝜏, 𝑧), �̆�(𝜏, 𝑟, 𝜆, 𝑧), and �̆�(𝜏, 𝑟, 𝜆, 𝑧) are
given by (12), (17), and (3), respectively. We note that the
function 𝑔(𝑧) (the drift term of the slow scale variation) in
(1) does not affect the present form of the approximated bond
price �̃�𝜖,𝛿 due to the order of 𝛿 in front of 𝑔(𝑧) in (1). It should
influence the next order approximation.

In this approximation, the leading order price is deter-
mined by the functions �̆�(𝜏), �̆�(𝜏), and �̆�(𝜏, 𝑧) and the first-
order corrections are given by �̆�(𝜏, 𝑟, 𝜆, 𝑧) and �̆�(𝜏, 𝑟, 𝜆, 𝑧).
Here, �̆�(𝜏, 𝑟, 𝜆, 𝑧) is determined by the two group parameters
𝑞(𝑧) and 𝑠(𝑧) and �̆�(𝜏, 𝑟, 𝜆, 𝑧) is determined by 𝑢(𝑧) and V(𝑧).
These four group parameters absorb the original parameters
and functions related to 𝑌

𝑡
and 𝑍

𝑡
. The group parameter 𝑞(𝑧)

absorbs 𝜖, ], 𝜌
𝜆𝑦
, and 𝑓 while 𝑠(𝑧) absorbs 𝜖, ], 𝜌

𝑟𝑦
, and 𝑓.

The group parameter 𝑢(𝑧) absorbs 𝛿, 𝜌
𝑟𝑧
, and ℎ while V(𝑧)

absorbs 𝛿, 𝜌
𝜆𝑧
, and ℎ. Particularly, the functions 𝑓, 𝑔 and ℎ

determining the original model (1) need not be specified to
price the defaultable bond. The asymptotic expansions based
upon the ergodic property of the OU process 𝑌

𝑡
provide the

reduction of the model parameters and the absorption of the
model functions into the group parameters.

All the derivations given so far are formal (as usually done
in this kind of research work). So, we discuss the accuracy of
the asymptotic approximation (31) as shown in the following
theorem.



6 Journal of Applied Mathematics

Theorem 4. Let �̃�
𝜖,𝛿 be defined by (31). Then for any fixed

(𝑡, 𝑟, 𝜆, 𝑦, 𝑧) there exists a positive constant 𝐶, which depends
on (𝑡, 𝑟, 𝜆, 𝑦, 𝑧) but not on 𝜖 and 𝛿, such that

𝑃
𝜖,𝛿

(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇) − �̃�
𝜖,𝛿

(𝑡, 𝑟, 𝜆, 𝑧; 𝑇) ≤ 𝐶 (𝜖 + 𝛿) (32)

holds for all 0 < 𝜖, 𝛿 ≤ 1.

Proof. To prove the inequality (32), we first define a residual
𝑅
𝜖,𝛿 by writing 𝑃

𝜖,𝛿 as

𝑃
𝜖,𝛿

=

𝑖,𝑗=3

∑

𝑖,𝑗=0

𝜖
𝑖/2

𝛿
𝑗/2

𝑃
𝑖,𝑗

− 𝑅
𝜖,𝛿

. (33)

The second step is to computeL𝜖,𝛿𝑅𝜖,𝛿 using the properties of
𝑃
𝜖,𝛿, 𝑃
0
, . . . , 𝑃

3,3
obtained above. The last step is to write 𝑅

𝜖,𝛿

as a probabilistic representation (the Feynman-Kac formula)
and to show the desired estimate (32). This type of argument
is standard and our formulation would not make a different
impact on the derivation in Theorem 3.1 of [12]. So, we leave
the details there.

4. Numerical Experiment

In this section, we compute numerically the fast term factor
�̆� and the slow term factor �̆� of the stochastic volatility of
default intensity and investigate the impact of the multiscale
factors on the functional behavior of the bond price with the
constant volatility of default intensity.

Table 1 shows the average cumulative default rates of bond
issuers for the period of 1983–2009. It says, for instance, that
over a ten-year 𝐵-rated issuers were in default at a 44.982%
average rate between 1983 and 2009. Using this table, in gen-
eral, one can calculate the average default intensity between
time 0 and 𝑡 from the cumulative probability of default by
time 𝑡. For example, the average 20-year default intensity for
𝐵-rated issuers is given by −(1/20) ln(1 − 0.65493) = 0.0532.

Based on Table 1 and the data [13], we choose the
parameter values 𝑎 = 1.2, 𝑎 = 1.3, 𝜎 = 0.06, �̆�2 = 0.03, 𝑟∗ =
0.1, 𝜆 = 0.0455, and 𝜆

∗
= 0.0532. Maturity runs from 0 to 20

years and the interest rate is fixed as 𝑟 = 0.07. Figures 1 and 2
show the bond price correction term structure depending on
the group parameters (𝑞, 𝑠) and (𝑢, V), respectively, for the fast
term factor �̆� and the slow term factor �̆�. One can notice that
the fast scale correction creates a more significant impact on
the bond price than the slow scale correction and the impact
tends to increase as time to maturity increases.

5. Bond Option Pricing

In this section, we are interested in an asymptotic pricing
formula for a European option, where the underlying asset
itself is a zero-coupon bond with default risk.

Weuse notations𝑇 and𝑇
0
, 𝑇
0
< 𝑇, to denote thematurity

of the defaultable bond and thematurity of a European option
written on the defaultable bond, respectively. It is assumed
that the option becomes invalid when a default occurs prior
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Figure 1: The price correction term structure factor �̆� is shown
by dotted, dashed, and sold lines as functions of time to maturity,
respectively, for (𝑞, 𝑠) = (0.2, 0.1), (0.3, 0.4), and (0.6, 0.7).

0 2 4 6 8 10

0

0.002

0.004

0.006

0.008

0.01

0.012

Time to maturity (years)

Figure 2: The price correction term structure factor �̆� is shown
by dotted, dashed and sold lines as functions of time to maturity,
respectively, for (𝑢, V) = (0.1, 0.2), (0.3, 0.5), and (0.7, 0.8).

to 𝑇
0
. The short rate process 𝑟

𝑡
, the intensity process 𝜆

𝑡
, the

fast volatility process𝑌
𝑡
of the intensity, and the slow volatility

process 𝑍
𝑡
of the intensity are given by the SDEs (1).

The option price at time 𝑡 for an observed short rate 𝑟
𝑡
= 𝑟,

an intensity level 𝜆
𝑡
= 𝜆, a fast volatility level 𝑌

𝑡
= 𝑦, and a

slow volatility level 𝑍
𝑡
= 𝑧, denoted by 𝑄(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇

0
, 𝑇),

is defined by

𝑄 (𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇
0
, 𝑇)

= 𝐸
∗
[𝑒
−∫
𝑇0

𝑡
𝑟𝑠𝑑𝑠

ℎ (B (𝑇
0
, 𝑇)) | 𝑟

𝑡
= 𝑟, 𝜆

𝑡
= 𝜆, 𝑌

𝑡
= 𝑦, 𝑍

𝑡
= 𝑧]

(34)
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Table 1: Average cumulative default rates (%), 1983–2009 (source: Moody’s).

Rating Year 1 Year 2 Year 5 Year 7 Year 10 Year 15 Year 20
Aaa 0 0.016 0.086 0.182 0.187 0.187 0.187
Aa 0.024 0.066 0.247 0.318 0.408 0.989 2.583
A 0.057 0.187 0.806 1.297 2.099 3.521 6.536
Baa 0.196 0.543 2.027 3.130 4.815 8.719 12.603
Ba 1.209 3.434 11.444 15.600 21.128 30.467 38.152
B 4.550 10.519 26.24 35.054 44.982 57.136 65.493
Caa 15.383 26.969 50.339 57.783 71.993 82.434 86.669
Ca-C 36.207 48.440 70.176 74.757 78.014 78.014 —
All rated 1.761 3.620 8.046 9.991 12.100 14.990 18.002

under an equivalent martingale measure, where the bond
priceB(𝑇

0
, 𝑇) is given by

B (𝑇
0
, 𝑇) = 𝑃

𝜖,𝛿
(𝑇
0
, 𝑟
𝑇0
, 𝜆
𝑇0
, 𝑌
𝑇0
, 𝑍
𝑇0
; 𝑇)

= 𝐸
∗
[𝑒
−∫
𝑇

𝑇0

(𝑟𝑠+𝜆𝑠)𝑑𝑠

| 𝑟
𝑇0
, 𝜆
𝑇0
, 𝑌
𝑇0
, 𝑍
𝑇0
]

(35)

and ℎ is the payoff function of the option at time 𝑇
0
. Here,

it is assumed that the payoff function ℎ is at best linearly
growing at infinity and is a smooth function.This smoothness
assumption may be too severe in practical point of view as ℎ
is not differentiable at the exercise price in the case of classical
European call or put option. The smoothness assumption on
ℎ, however, can be removed similarly to the argument in
[18] or [12]. So, for simplicity, ℎ is assumed to be a smooth
function.

By the four-dimensional Feynman-Kac formula, we
transform the above integral form (34) into the PDE
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∗
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𝜕𝑄

𝜕𝜆

+

1

2

𝑓
2
(𝑦, 𝑧) 𝜆

𝜕
2
𝑄

𝜕𝜆
2

+

1

𝜖

(𝑚 − 𝑦)

𝜕𝑄

𝜕𝑦

+

]2

𝜖

𝜕
2
𝑄

𝜕𝑦
2

+ 𝛿𝑔 (𝑧)

𝜕𝑄

𝜕𝑧

+

1

2

𝛿ℎ
2
(𝑧)

𝜕
2
𝑄

𝜕𝑧
2

+ 𝜌
𝑟𝑦
𝜎√𝑟

]√2

√𝜖

𝜕
2
𝑄

𝜕𝑟𝜕𝑦

+ 𝜌
𝑟𝑧
𝜎√𝑟√𝛿ℎ (𝑧)

𝜕
2
𝑄

𝜕𝑟𝜕𝑧

+ 𝜌
𝜆𝑦
𝑓 (𝑦, 𝑧)√𝜆

]√2

√𝜖

𝜕
2
𝑄

𝜕𝜆𝜕𝑦
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𝜆𝑧
𝑓 (𝑦, 𝑧)√𝜆√𝛿ℎ (𝑧)

𝜕
2
𝑄

𝜕𝜆𝜕𝑧

+ 𝜌
𝑦𝑧

]√2

√𝜖

√𝛿ℎ (𝑧)

𝜕
2
𝑄

𝜕𝑦𝜕𝑧

− (𝑟 + 𝜆)𝑄 = 0

(36)

with the terminal condition 𝑄(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇
0
, 𝑇)|
𝑡=𝑇0

=

ℎ(𝑃
𝜖,𝛿

(𝑇
0
, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇)). Then, keeping the notation used in

Section 3 but with a different terminal condition, the option
price 𝑄(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇

0
, 𝑇) is given by the solution of the PDE

problem

L
𝜖,𝛿

𝑄 (𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇
0
, 𝑇) = 0,

𝑄 (𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇
0
, 𝑇)




𝑡=𝑇0

= ℎ (𝑃
𝜖,𝛿

(𝑇
0
, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇)) .

(37)

Taking the asymptotic expansions

𝑄 = 𝑄
𝜖

0
+ √𝛿𝑄

𝜖

1
+ 𝛿𝑄
𝜖

2
+ ⋅ ⋅ ⋅ , (38)

𝑄
𝜖

𝑘
= 𝑄
0,𝑘

+ √𝜖𝑄
1,𝑘

+ 𝜖𝑄
2,𝑘

+ 𝜖
3/2

𝑄
3,𝑘

+ ⋅ ⋅ ⋅ ,

𝑘 = 0, 1, 2, . . . ,

(39)

𝑄 (𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇
0
, 𝑇)




𝑡=𝑇0

= ℎ (𝑃
0
(𝑇
0
, 𝑟, 𝜆, 𝑧; 𝑇))

+ �̃�
𝜖

1,0
(𝑇
0
, 𝑟, 𝜆, 𝑧; 𝑇) ℎ


(𝑃
0
(𝑇
0
, 𝑟, 𝜆, 𝑧; 𝑇))

+ �̃�
𝛿

0,1
(𝑇
0
, 𝑟, 𝜆, 𝑧; 𝑇) ℎ


(𝑃
0
(𝑇
0
, 𝑟, 𝜆, 𝑧; 𝑇))

+ ⋅ ⋅ ⋅ ,

(40)

where 𝑃
0
, �̃�𝜖
1,0
, and �̃�

𝛿

0,1
are given by Theorems 1, 2, and 3,

respectively, we employ the same asymptotic analysis as in
Section 3 to derive an asymptotic pricing formula for the
bond option.

First, the terms of order 1/𝜖 and 1/√𝜖 in the asymptotic
PDE (37) yield the𝑦-independence of𝑄

0,0
(in brief,𝑄

0
),𝑄
1,0
,

and 𝑄
0,1

under the same growth condition as in Section 3.
The 𝑂(1) terms in (37) give a Poisson equation for 𝑄

2,0

from which the solvability condition ⟨L
2
⟩𝑄
0
= 0 has to be

satisfied. From (40), the corresponding terminal condition is
given by 𝑄

0
|
𝑡=𝑇0

= ℎ(𝑃
0
(𝑇
0
, 𝑟, 𝜆, 𝑧; 𝑇)). Then we have

𝑄
0
(𝑡, 𝑟, 𝜆, 𝑧; 𝑇

0
, 𝑇)

= 𝐸
∗
[𝑒
−∫
𝑇0

𝑡
𝑟𝑠𝑑𝑠

ℎ (𝑃
0
(𝑇
0
, 𝑟, 𝜆, 𝑧; 𝑇)) | 𝑟

𝑡
= 𝑟, 𝜆

𝑡
= 𝜆, 𝑍

𝑡
= 𝑧] ,

(41)

where 𝑃
0
(𝑇
0
, 𝑟, 𝜆, 𝑧; 𝑇) is given by (11) in Theorem 1 at time

𝑡 = 𝑇
0
.
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The 𝑂(√𝜖) terms in (37) lead to a Poisson equation for
𝑄
3,0
, where the solvability condition is given by ⟨L

1
𝑄
2,0

+

L
2
𝑄
1,0

⟩ = 0. If we put 𝑄
1,0

:= √𝜖𝑄
1,0
, then this solvability

condition leads to

⟨L
2
⟩𝑄
1,0

(𝑡, 𝑟, 𝜆, 𝑧; 𝑇
0
, 𝑇) = H

1
𝑄
0
(𝑡, 𝑟, 𝜆, 𝑧; 𝑇

0
, 𝑇) (42)

with a terminal condition given by

𝑄
1,0

(𝑡, 𝑟, 𝜆, 𝑧; 𝑇
0
, 𝑇) |
𝑡=𝑇0
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(𝑇
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, 𝑟, 𝜆, 𝑧; 𝑇) ℎ


(𝑃
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, 𝑟, 𝜆, 𝑧; 𝑇))

(43)

from (40), where the operatorH
1
is given by (22) and �̃�

𝜖

1,0
is

given by the solution (16) in Theorem 2. Then, by applying
the Feynman-Kac formula to (42) and (43), we obtain the
following probabilistic representation:

𝑄
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(𝑡, 𝑟, 𝜆, 𝑧; 𝑇
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(44)

Now, the 𝑂(√𝛿) terms in (37) lead to a Poisson equation for
𝑄
2,1

such that the solvability condition ⟨L
2
𝑄
0,1

⟩ = −⟨K
1
𝑄
0
⟩

holds. If we let𝑄
0,1

:= √𝛿𝑄
0,1
, then this solvability condition

leads to

⟨L
2
⟩𝑄
0,1

(𝑡, 𝑟, 𝜆, 𝑧; 𝑇
0
, 𝑇) = H
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𝑄
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(𝑡, 𝑟, 𝜆, 𝑧; 𝑇

0
, 𝑇) , (45)

where the operator H
2
is given by (29). Also, from the

terminal condition (40), we have

𝑄
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(46)

where �̃�
𝛿

0,1
is given by the solution (25) in Theorem 3. By

applying the Feynman-Kac formula to (45) and (46), we have
the following probabilistic representation:

𝑄
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(𝑡, 𝑟, 𝜆, 𝑧; 𝑇
0
, 𝑇)

= 𝐸
∗
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𝑇0

𝑡
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𝑡
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𝑡
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2
𝑄
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𝜆
𝑡
= 𝜆, 𝑍

𝑡
= 𝑧] .

(47)

Synthesizing the above results, we obtain an asymptotic
pricing formula for a European option written on the default-
able bond as follows.

Theorem 5. The option price 𝑄(𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇
0
, 𝑇) defined by

(34)-(35) is given by

𝑄 (𝑡, 𝑟, 𝜆, 𝑦, 𝑧; 𝑇
0
, 𝑇) ≈ 𝑄

0
(𝑡, 𝑟, 𝜆, 𝑧; 𝑇

0
, 𝑇)

+ 𝑄
1,0

(𝑡, 𝑟, 𝜆, 𝑧; 𝑇
0
, 𝑇)

+ 𝑄
0,1

(𝑡, 𝑟, 𝜆, 𝑧; 𝑇
0
, 𝑇) ,

(48)

where 𝑄
0
, 𝑄
1,0
, and 𝑄

0,1
are given by (41), (44), and (47),

respectively.

6. Conclusion

Based upon a reduced form framework of credit risk, this
paper investigates the term structure of interest rate deriva-
tives by utilizing an asymptotic expansion method. Mainly,
it is focused on the multiscale stochastic volatility of default
intensity of the CIR type. Firstly, we obtain an approximation
to the value of the defaultable bond as an extension of the
known affine solution for the constant volatility. A small
correction to the case of the constant volatility has a useful
feature that the original model parameters and functions
are replaced by the four group parameters. They melt into
the group parameters in the averaged form by the ergodic
property of the fast mean-reverting OU process, which is a
desirable outcome for the purpose of calibration in practical
applications. Secondly, we find out the dependence structure
of the two scale factors of the stochastic volatility on the
bond price and subsequent yield curve, which suggests some
flexibility of the multifactor intensity model. This paper,
however, has not tested the model to prove this flexibility
from empirical evaluation. Furthermore, it is necessary to
illustrate the performance of the model setup for the fitting
of yield curves.Themodel calibration and empirical evidence
are left to future extensions which also include the pricing
of the credit default swap (CDS) spread as opposed to
studies based on a Cox process such as [19]. Furthermore, it
should be interesting to apply the framework of this paper to
multiname intensity models for the pricing of collateralized
debt obligation (CDO).
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