
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 291410, 8 pages
http://dx.doi.org/10.1155/2013/291410

Research Article
Efficient Algorithms for Optimal 4-Bit Reversible
Logic System Synthesis

Zhiqiang Li,1 Hanwu Chen,2 Guowu Yang,3 and Wenjie Liu4

1 College of Information Engineering, Yangzhou University, Yangzhou 225009, China
2 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
3 University of Electronic Science and Technology Chengdu, Sichuan, Chengdu 611731, China
4Nanjing University of Information Science & Technology, Nanjing 210044, China

Correspondence should be addressed to Zhiqiang Li; yzqqlzq@163.com

Received 8 February 2013; Accepted 23 February 2013

Academic Editor: Xiaoyu Song

Copyright © 2013 Zhiqiang Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Owing to the exponential nature of the memory and run-time complexity, many methods can only synthesize 3-bit reversible
circuits and cannot synthesize 4-bit reversible circuits well. We mainly absorb the ideas of our 3-bit synthesis algorithms based
on hash table and present the efficient algorithms which can construct almost all optimal 4-bit reversible logic circuits with many
types of gates and at mini-length cost based on constructing the shortest coding and the specific topological compression; thus, the
lossless compression ratio of the space of n-bit circuits reaches near 2×𝑛!.This paper presents the first work to create all 3120218828
optimal 4-bit reversible circuits with up to 8 gates for the CNT (Controlled-NOT gate, NOT gate, and Toffoli gate) library, and it
can quickly achieve 16 steps through specific cascading created circuits.

1. Introduction

Quantum computer is equivalent to quantum Turing
machine, and quantum Turing machine is equivalent to a
quantum logic circuit. Therefore, the quantum computer can
be constructed by cascading and combining the quantum
logical gates. Nowadays, many kinds of reversible quantum
gates have been proposed, for example, CNOTgate [1], Toffoli
gate, and Fredkin gate [2]. How to automatically construct
the quantum circuit at small cost using given quantum gates?
Several approaches for reversible logic circuit synthesis
have been presented. Song et al. [3] presented algebraic
characteristics of reversible gates. Iwama et al. [4] introduced
transformation rules for CNOT-based circuits. Miller et al.
[5] gave a synthesis method based on truth table and used
template technology to simplify the circuit. Mishchenko
and Perkowski [6] proposed a Reed Muller-based algorithm
for optimizing quantum circuit. Gupta et al. [7] also gave
a heuristic algorithm based on Reed Muller; Li et al. [8]
proposed a general template algorithm. Shende et al.
[9, 10] reduced the synthesis for reversible logic circuit

to permutation and gave an effective recursive algorithm.
Then, Yang et al. [11] reduced the synthesis for reversible
logic circuit to group theory and presented a novel algorithm
based on group-theory algebraic software GAP, while its
performance was better than most others. Until today,
we have not found a general and effective algorithm for
multivariable quantum circuit synthesis. Owing to the
exponential nature of the memory and run-time complexity,
many existing methods can only synthesize 3-bit reversible
circuits, and they perform only four steps for the CNP library
in 4-bit circuit synthesis with mini-length for memory
overflow [11–13], however, [14–16] are able to achieve 12
steps by using an enhanced bidirectional synthesis approach.
We mainly absorb the ideas of our efficient 3-bit synthesis
algorithms based on hash table and present the novel and
efficient algorithms which can construct almost all optimal
4-bit reversible logic circuits [17]. Using lossless compression
and cascading created circuits, our algorithms can get all
the mini-length circuits whose lengths range from 0 to 8
with numbers 1, 28, 576, 9886, 147841, 1986374, 24375385,
274500662, and 2819198076, respectively; it can synthesize

2 Journal of Applied Mathematics

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0

Figure 1: Quantum reversible logic circuit.

Table 1: True table.

Input Output
⟨𝑥
2
, 𝑥
1
, 𝑥
0
⟩
2

𝑥
2

𝑥
1

𝑥
0

⟨𝑦
2
, 𝑦
1
, 𝑦
0
⟩
2

𝑦
2

𝑦
1

𝑦
0

0 0 0 0 2 0 1 0
1 0 0 1 6 1 1 0
2 0 1 0 0 0 0 0
3 0 1 1 1 0 0 1
4 1 0 0 7 1 1 1
5 1 0 1 3 0 1 1
6 1 1 0 5 1 0 1
7 1 1 1 4 1 0 0

all the optimal 16-gate mini-length circuits for the CNT
library.

2. Background

Definition 1. Let𝑀 be a finite set; then, a permutation of𝑀 is
a bijection 𝜎 : 𝑀 → 𝑀. If |𝑀| = 𝑚, 𝜎 is an 𝑚 permutation.
Normally, the permutation of group theory begins from one,
but our program in c++ can work well if the permutation
contains zero. Let 𝑀 = {0, 1, . . . , 𝑚 − 1}, and a permutation
𝜎 = (

0 1 ⋅⋅⋅ 𝑚−1

𝑝0 𝑝1 ⋅⋅⋅ 𝑝𝑚−1
) = (𝑝

0
, 𝑝
1
, . . . , 𝑝

𝑚−1
). It can be denoted

as the cyclic form; for example, 𝜏 = (𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑖
), 𝑖 ⩽ 𝑚;

that is, 𝑎
1

󳨃→ 𝑎
2
⋅ ⋅ ⋅ 󳨃→ 𝑎

𝑖
󳨃→ 𝑎
1
, 𝜎−1 = (

𝑝0 𝑝1 ⋅⋅⋅ 𝑝𝑚−1

0 1 ⋅⋅⋅ 𝑚−1
), and

𝜋
𝑒
= (
0 1 ⋅⋅⋅ 𝑚−1

0 1 ⋅⋅⋅ 𝑚−1
) is the identity permutation of 𝑀, such that

𝜋
𝑒
∘ 𝜎 = 𝜎 ∘ 𝜋

𝑒
= 𝜎 for any permutation 𝜎 of𝑀.

The reversible function can be described by per-
mutation or truth table. The 3-bit reversible logic
circuit in Figure 1 can be described by the permutation
𝜎 = (

0 1 2 3 4 5 6 7

2 6 0 1 7 3 5 4
) = (2, 6, 0, 1, 7, 3, 5, 4) = (0 2)(1 6 5 3)

(4 7) or the truth table in Table 1, where the input or
output is ⟨𝑥

𝑛−1
, . . . , 𝑥

1
, 𝑥
0
⟩
2

= ∑
𝑛−1

𝑖=0
(𝑥
𝑖
⋅ 2
𝑖
) and ⟨𝑦

𝑛−1
, . . . ,

𝑦
1
, 𝑦
0
⟩
2
= ∑
𝑛−1

𝑖=0
(𝑦
𝑖
⋅ 2
𝑖
), respectively. Let the permutations of

NOT gate, Toffoli gate, and CNOT gate be 𝜎
1
, 𝜎
2
, 𝜎
3
; then,

𝜎 = 𝜎
1
∘ 𝜎
2
∘ 𝜎
3
= 𝜎
1
𝜎
2
𝜎
3
.

In order not to repeat explanation, the following defini-
tions are given.

(1) Let𝐶 be any 𝑛-bit reversible logic circuit with length 𝑙;
it is a cascade of quantum gates 𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑙
, denoted

by 𝐶 = 𝑔
1
𝑔
2
⋅ ⋅ ⋅ 𝑔
𝑙
.

(2) Let 𝑆𝐹 = {1, 2, . . . , 𝑛!}, 𝑆𝑀 = {1, 2, . . . , 𝑚}, and 𝑆𝐵 =

{0, 1}.

(3) For permutation𝜎 = (0, 1, . . . , 𝑛−1), there are 𝑛! kinds
of permutations, which are denoted by 𝜎

1
, 𝜎
1
, . . . , 𝜎

𝑛!
,

respectively.

(4) Let 𝜋(𝑔) be the permutation of quantum gate 𝑔; then,
the permutation of circuit𝐶 is𝜋(𝐶) ≡ 𝜋(𝑔

1
𝑔
2
⋅ ⋅ ⋅ 𝑔
𝑙
) =

𝜋(𝑔
1
)𝜋(𝑔
2
) ⋅ ⋅ ⋅ 𝜋(𝑔

𝑙
).

(5) Let cost(𝐶) be the cost of quantum circuit 𝐶 and
cost(𝑔) be the cost of quantum gate 𝑔.

(6) All the circuits in the paper are the reversible logic
circuits.

Because permutation is often used in our algorithms,
the effective expression of permutation is very important
to improve the algorithms. Thus, we present the shortest
coding scheme with saving plenty of space, which maps a
permutation to an integer with the fewest bytes.

Definition 2. Let 𝑂
𝑖

𝑝
be ordinal number of 𝑝

𝑖
in sequence

𝑝
0
, 𝑝
1
, . . . , 𝑝

𝑖
, . . . , 𝑝

2
𝑛
−1
; then, it is the number of members

which are both smaller than and before 𝑝
𝑖
; that is,

𝑂
𝑖

𝑝
=

𝑖−1

∑

𝑗=0

sgn (𝑝
𝑖
− 𝑝
𝑗
) , sgn (𝑥) = {

1, (𝑥 > 0) ,

0, else. (1)

Ordinal numbers of all members in the sequence
𝑝
0
, 𝑝
1
, . . . , 𝑝

𝑖
, . . . , 𝑝

2
𝑛
−1

construct ordinal number sequence:
(𝑂
0

𝑝
, 𝑂
1

𝑝
, . . . , 𝑂

2
𝑛
−1

𝑝
), and obviously 𝑂

0

𝑝
≡ 0 and 𝑂

2
𝑛
−1

𝑝
≡

𝑃
2
𝑛
−1
. For example, the ordinal number sequence of 𝜎 =

(2, 6, 0, 1, 7, 3, 5, 4) is (0, 1, 0, 1, 4, 3, 4, 4).

Lemma 3. The ordinal number of 𝑝
𝑖
in Definition 2 can also

be defined as

𝑂
𝑖

𝑝
= 𝑝
𝑖
−

2
𝑛
−1

∑

𝑗=𝑖+1

sgn (𝑝
𝑖
− 𝑝
𝑗
) . (2)

Proof. From (1),𝑂𝑖
𝑝
is the number ofmembers which are both

smaller than and before 𝑝
𝑖
, and ∑

2
𝑛
−1

𝑗=𝑖+1
sgn(𝑝

𝑖
− 𝑝
𝑗
) is the

number of members which are both smaller than and after
𝑝
𝑖
; so, the sum of them is the number of members which are

smaller than 𝑝
𝑖
in the sequence 𝑂

𝑖

𝑝
+ ∑
2
𝑛
−1

𝑗=𝑖+1
sgn(𝑝

𝑖
− 𝑝
𝑗
) =

|{0, 1, . . . , 𝑝
𝑖
− 1}| = 𝑝

𝑖
.

Theorem 4. One can get the ordinal number sequence in
Definition 2 by 22𝑛−2 − 2

𝑛−1 comparison times merely.

Proof. Thecomparison times using (1) and Lemma 3 are 𝑖 and
2
𝑛
− 1 − 𝑖 for computing 𝑂

𝑖

𝑝
, respectively, and comparison

times are all ∑2
𝑛
−1

𝑖=1
𝑖 = ∑

2
𝑛
−1

𝑖=1
(2
𝑛
− 1 − 𝑖) = 2

2𝑛−1
− 2
𝑛−1 for

computing ordinal number sequence.These two formulas can
be chosen depending on condition to reduce the comparisons
times. We use (1) if 𝑖 < 2

𝑛
− 1 − 𝑖; that is, 𝑖 ≤ 2

𝑛−1
− 1,

and use Lemma 3 if 𝑖 > 2
𝑛
− 1 − 𝑖; that is, 𝑖 ≥ 2

𝑛−1. So, our
method is that using (1) when 𝑝

𝑖
is in the first half part of the

sequence, and otherwise using Lemma 3, their comparison
times are∑2

𝑛−1
−1

𝑖=1
𝑖 and∑

2
𝑛
−1

𝑖=2
𝑛−1(2
𝑛
−1− 𝑖), respectively. Finally,

the whole comparison times are∑2
𝑛−1
−1

𝑖=1
𝑖+∑
2
𝑛
−1

𝑖=2
𝑛−1(2
𝑛
−1−𝑖) =

2
2𝑛−2

− 2
𝑛−1; it is lesser than the half of 22𝑛−1 − 2

𝑛−1.

Journal of Applied Mathematics 3

Definition 5. The shortest coding of the permutation (𝑝
0
,

𝑝
1
, . . . , 𝑝

2
𝑛
−1
) is Code(𝑝

0
, 𝑝
1
, . . . , 𝑝

2
𝑛
−1
) = ∑
2
𝑛
−1

𝑖=1
(𝑂
𝑖

𝑝
⋅ 𝑖!).

Lemma 6. If the ordinal number sequences of two permuta-
tions are the same, then the two permutations must be also the
same.

Proof. Suppose that we get any two permutations of the set
𝑆 = {0, 1, . . . , 2

𝑛
− 1}, 𝑃 = (𝑝

0
, 𝑝
1
, . . . , 𝑝

2
𝑛
−1
), and 𝑄 =

(𝑞
0
, 𝑞
1
, . . . , 𝑞

2
𝑛
−1
); if their ordinal number sequences are all

𝐵 = (𝑏
0
, 𝑏
1
, . . . , 𝑏

2
𝑛
−1
), then we will prove that 𝑃 = 𝑄; namely,

for all 𝑖 ∈ {0, 1, . . . , 2
𝑛
− 1}, 𝑝

2
𝑛
−1−𝑖

= 𝑞
2
𝑛
−1−𝑖

.

Proof by Mathematical Induction

Basis. Clearly, 𝑂2
𝑛
−1

𝑝
= 𝑏
2
𝑛
−1
, 𝑂2
𝑛
−1

𝑞
= 𝑏
2
𝑛
−1
; then, 𝑃 has 𝑏

2
𝑛
−1

elements which are lesser than 𝑝
2
𝑛
−1
; that is, 𝑝

2
𝑛
−1

is (𝑏
2
𝑛
−1

+

1)th small element in 𝑆. Similarly, 𝑞
2
𝑛
−1

is (𝑏
2
𝑛
−1

+ 1)th small
element in 𝑆, and so 𝑝

2
𝑛
−1

= 𝑞
2
𝑛
−1

= 𝑏
2
𝑛
−1
; that is, 𝑝

2
𝑛
−1−𝑖

=

𝑞
2
𝑛
−1−𝑖

for 𝑖 = 0.

Inductive Assumption. Let 𝑝
2
𝑛
−1−𝑖

= 𝑞
2
𝑛
−1−𝑖

for 𝑖 = 0, 1, . . . , 𝑗.

Inductive Step. When 𝑖 = 𝑗 + 1, 𝑂2
𝑛
−2−𝑗

𝑝 = 𝑏
2
𝑛
−2−𝑗

, and 𝑃

has 𝑏
2
𝑛
−2−𝑗

elements which are both lesser than and before
𝑝
2
𝑛
−2−𝑗

; that is, 𝑝
2
𝑛
−2−𝑗

is (𝑏
2
𝑛
−2−𝑗

+ 1)th small element in
{𝑝
0
, 𝑝
1
, . . . , 𝑝

2
𝑛
−2−𝑗

}, and let 𝑇
𝑝

= {𝑝
2
𝑛
−1−𝑗

, 𝑝
2
𝑛
−𝑗
, . . . , 𝑝

2
𝑛
−1
},

𝑇
𝑞

= {𝑞
2
𝑛
−1−𝑗

, 𝑞
2
𝑛
−𝑗
, . . . , 𝑞

2
𝑛
−1
}; then {𝑝

0
, 𝑝
1
, . . . , 𝑝

2
𝑛
−2−𝑗

} =

𝑆 − 𝑇
𝑝
; that is, 𝑝

2
𝑛
−2−𝑗

is (𝑏
2
𝑛
−1−𝑗

+ 1)th small element in
𝑆 − 𝑇

𝑝
. Similarly, 𝑞

2
𝑛
−2−𝑗

is (𝑏
2
𝑛
−1−𝑗

+ 1)th small element in
𝑆 − 𝑇
𝑞
. Now, using the inductive assumption, we get 𝑇

𝑝
= 𝑇
𝑞
;

that is, 𝑆 − 𝑇
𝑝

= 𝑆 − 𝑇
𝑞
, and so 𝑝

2
𝑛
−2−𝑗

= 𝑞
2
𝑛
−2−𝑗

; thus,
𝑝
2
𝑛
−1−𝑖

= 𝑞
2
𝑛
−1−𝑖

for 𝑖 = 𝑗 + 1.

Lemma 7. The coding function Code maps each ordinal
number sequence to a distinct coding.

Proof. Let 𝑐 = Code(𝑝
0
, 𝑝
1
, . . . , 𝑝

2
𝑛
−1
) = ∑

2
𝑛
−1

𝑖=1
𝑂
𝑖

𝑝
⋅ 𝑖!; that

is, the function Code maps ordinal number sequence 𝐵 =

(𝑂
0

𝑝
, 𝑂
1

𝑝
, . . . , 𝑂

2
𝑛
−1

𝑝
) to coding 𝑐, and so the remainder is 𝑂1

𝑝

when 𝑐 is divided by 2, the quotient is∑2
𝑛
−1

𝑖=2
(𝑂
𝑖

𝑝
⋅ 𝑖!/2), and the

remainder is𝑂2
𝑝
when this quotient is divided by 3. Follow the

same steps; the recursive formula is 𝑛
1
= 𝑐, 𝑛
𝑖+1

= ⌊𝑛
𝑖
/(𝑖+1)⌋,

𝑂
𝑖

𝑝
= 𝑛
𝑖
− (𝑖 + 1)𝑛

𝑖+1
, 𝑖 ∈ {1, 2, . . . , 2

𝑛
− 1}. Clearly, the

coding function Code maps each ordinal number sequence
to a distinct coding, and vice versa; so, it is a one-to-one
correspondence between each coding and ordinal number
sequence.

Theorem 8. The function Code is the shortest coding function.

Proof. 2𝑛 different elements in {0, 1, . . . , 2
𝑛
−1} totally have 2𝑛!

permutations. According to Lemma 6, two different ordinal
number sequences corresponding to two permutations must
be different, and according to Lemma 7, coding function
Code maps each ordinal number sequence to a distinct
coding. So, the codings of all permutations are different.

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0

𝐺

𝑃𝜎(𝑔1) 𝑃𝜎(𝑔2)
𝑔1 𝑔2

𝑃𝜎(𝐺) Simplification

1
2

Figure 2: The line permutation of quantum circuit.

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0

𝐺

𝑔1 𝑔2

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0
𝑔1𝑔2

𝑅1(𝐺)

Figure 3: The direction transform of quantum circuit.

By Definition 5, max(𝑂𝑖
𝑝
) = 𝑖, min(𝑂𝑖

𝑝
) = 0, min(𝐻(𝑝

0
,

𝑝
1
, . . . , 𝑝

2
𝑛
−2
, 𝑝
2
𝑛
−1
)) = min(∑2

𝑛
−1

𝑖=1
(𝑂
𝑖

𝑝
⋅ 𝑖!)) = ∑

2
𝑛
−1

𝑖=1
(min(𝑂𝑖

𝑝
)⋅

𝑖!) = ∑
2
𝑛
−1

𝑖=1
(0 ⋅ 𝑖!) = 0, max(𝐻(𝑝

0
, 𝑝
1
, . . . , 𝑝

2
𝑛
−2
, 𝑝
2
𝑛
−1
)) =

max(∑2
𝑛
−1

𝑖=1
(O𝑖
𝑝
⋅𝑖!)) = ∑

2
𝑛
−1

𝑖=1
(max(𝑂𝑖

𝑝
)⋅𝑖!) = ∑

2
𝑛
−1

𝑖=1
(𝑖⋅𝑖!) = 2

𝑛
!−

1. So, the number of all codings is 𝐿 = MAX𝐻−MIN𝐻+1 =

2
𝑛
! − 1 − 0 + 1 = 2

𝑛
! (𝑛 > 0). There are 2𝑛 different elements

in {0, 1, . . . , 2
𝑛
−1} corresponding to 2

𝑛
! different coding, and

thus theminimumnumber of all the codings is 2𝑛!.Therefore,
the function Code is the shortest coding function.

The subject of topology is concerned with those fea-
tures of geometry which remain unchanged after twisting,
stretching, or other deformations of a geometrical space; any
continuous change which can be continuously undone is
allowed, but cannot be broken.

Definition 9. Line permutation is the operation which per-
mutes quantum lines in quantum circuit without break.
Obviously, it is a specific topological transformation. Let
𝑃
𝜎
(𝑔) be quantum gate 𝑔 being operated by line permutation

𝜎. The circuit 𝐺 = 𝑔
1
𝑔
2
, operated by line permutation 𝜎, is

𝑃
𝜎
(𝐺) = 𝑃

𝜎
(𝑔
1
𝑔
2
) = 𝑃
𝜎
(𝑔
1
)𝑃
𝜎
(𝑔
2
).

For example, in Figure 2, quantum circuit 𝐺 is operated
by line permutation 𝜎, where 𝜎 = (

0 1 2

2 0 1
) = (0 2)(0 1).

The circuit after applying topological transformation can
be simplified, because the gate’s function cannot be changed
when the order of its same kind of points is changed.

Consider 𝑃
𝜎
(𝐶) = 𝑃

𝜎
(𝑔
1
𝑔
2
⋅ ⋅ ⋅ 𝑔
𝑙
) = 𝑃

𝜎
(𝑔
1
)𝑃
𝜎
(𝑔
2
) ⋅ ⋅ ⋅

𝑃
𝜎
(𝑔
𝑙
). If there are 𝑚 basal gates in quantum gate library 𝐿,

𝑔
1
, 𝑔
2
, . . ., and 𝑔

𝑚
, then 𝐿 = ⋃

𝑗∈𝑆𝐹,𝑖∈𝑆𝑀
𝑃
𝜎𝑗(𝑔𝑖)

, and the set of
all permutations of the gates in 𝐿 is 𝜎 = ⋃

𝑗∈𝑆𝐹,𝑖∈𝑆𝑀
𝑃
𝜎𝑗
(𝜋(𝑔
𝑖
)).

The set of all circuits of 𝑆 operated by line permutation 𝜎

is denoted by 𝑃
𝜎
(𝑆) = {𝑃

𝜎
(𝐺) | 𝐺 ∈ 𝑆}.

Definition 10. Direction transform (Figure 3) has two kinds
of operations, obverse direction transform and reverse direc-
tion transform. It is also a specific topological transformation;

4 Journal of Applied Mathematics

the obverse direction transform 𝑏 of gate 𝑔 is denoted by
𝑅
𝑏
(𝑔). Thus, 𝑅

0
(𝑔) = 𝑔, 𝑅

1
(𝑔) = 𝑔

−1. Gate 𝑔 is symmetric, if
𝑔 = 𝑔

−1, and otherwise it is asymmetric. Let circuit𝐺 = 𝑔
1
𝑔
2
,

and the two gates are symmetric; then, 𝑅
1
(𝐺) = 𝑅

1
(𝑔
1
𝑔
2
) =

𝑔
−1

2
𝑔
−1

1
= 𝑔
2
𝑔
1
.

Consider 𝑅
1
(𝐶) = 𝑅

1
(𝑔
1
𝑔
2
⋅ ⋅ ⋅ 𝑔
𝑙
) = (𝑔

1
𝑔
2
⋅ ⋅ ⋅ 𝑔
𝑙
)
−1

=

𝑔
−1

𝑙
𝑔
−1

𝑙−1
⋅ ⋅ ⋅ 𝑔
−1

2
𝑔
−1

1
. 𝑅
1
(𝐶) = 𝑔

𝑙
𝑔
𝑙−1

⋅ ⋅ ⋅ 𝑔
2
𝑔
1
, if all the gates

in 𝐶 are symmetric. Direction transform can be used in our
synthesis algorithms only if all quantum gates are symmetric
or their inverse gates are all in the quantum gate library.

The set of all circuits of 𝑆 operated by direction transform
𝑏 is denoted by 𝑅

𝑏
(𝑆) = {𝑅

𝑏
(𝐺) | 𝐺 ∈ 𝑆}.

From Definitions 9 and 10, the following properties can
be gotten.

Property 1. 𝑃
𝜎
(𝑃
𝜏
(𝐶)) = 𝑃

𝜎∘𝜏
(𝐶) and 𝑃

𝜎
(𝑃
𝜎
−1(𝐶)) =

𝑃
𝜎
−1(𝑃
𝜎
(𝐶)) = 𝐶, but 𝑃

𝜎
(𝑃
𝜏
(𝐶)) ̸= 𝑃

𝜏
(𝑃
𝜎
(𝐶)), where 𝑃

𝜎
(𝑃
𝜏
(𝐶))

denotes the circuit 𝐶 being operated by line permutation 𝜏

and line permutation 𝜎; so, 𝑃
𝜎
(𝑃
𝜏
(𝐶)) = 𝑃

𝜏∘𝜎
(𝐶). 𝜎 ∘ 𝜎

−1
=

𝜎
−1

∘ 𝜎 = 𝜋
𝑒
, and thus 𝑃

𝜎
−1(𝑃
𝜎
(𝐶)) = 𝑃

𝜎
(𝑃
𝜎
−1(𝐶)) = 𝑃

𝜋𝑒
(𝐶) =

𝐶. Normally, 𝜏 ∘ 𝜎 ̸= 𝜎 ∘ 𝜏; hence, 𝑃
𝜎
(𝑃
𝜏
(𝐶)) ̸= 𝑃

𝜏
(𝑃
𝜎
(𝐶)).

Property 2. 𝑅
𝑏1
(𝑅
𝑏2
(𝐶)) = 𝑅

𝑏2
(𝑅
𝑏1
(𝐶)) = 𝑅

𝑏1⊕𝑏2
(𝐶), where

𝑅
𝑏1
(𝑅
𝑏2
(𝐶)) denotes the circuit𝐶 being operated by direction

transform 𝑏1 and direction transform 𝑏2. The circuit is not
changed, if 𝑏1 = 𝑏2, and otherwise, it is operated by reverse
direction transform; thus, 𝑅

𝑏1
(𝑅
𝑏2
(𝐶)) = 𝑅

𝑏1⊕𝑏2
(𝐶). In the

same way, 𝑅
𝑏2
(𝑅
𝑏1
(𝐶)) = 𝑅

𝑏1⊕𝑏2
(𝐶).

Property 3. 𝑅
𝑏
(𝑃
𝜎
(𝐶)) = 𝑃

𝜎
(𝑅
𝑏
(𝐶)), where𝑅

𝑏
(𝑃
𝜎
(𝐶))denotes

the circuit 𝐶 being operated by line permutation 𝜎 and
direction transform 𝑏, and 𝑃

𝜎
(𝑅
𝑏
(𝐶)) denotes that the circuit

𝐶 is operated by direction transform 𝑏 and line permutation
𝜎. Line permutation is vertical transform, and direction
transform is horizontal transform; so, the order of the two
operations does not affect their compound function, and thus
𝑅
𝑏
(𝑃
𝜎
(𝐶)) = 𝑃

𝜎
(𝑅
𝑏
(𝐶)).

We show by Properties 1, 2, and 3 that the order of the
previous topological transformations except the line permu-
tations in quantum circuits can not affect their compound
functions.

Lemma 11. For all 𝑘 ∈ 𝑆𝐹, for all 𝑏 ∈ 𝑆𝐵, 𝑐𝑜𝑠𝑡(𝐶) =

𝑐𝑜𝑠𝑡(𝑅
𝑏
(𝑃
𝜎𝑘
(𝐶))).

Proof. Consider any quantum gate 𝑔, operated by any line
permutation 𝜎

𝑘
, whose type is not changed so, cost(𝑃

𝜎𝑘
(𝑔)) =

cost(𝑔). When any quantum circuit 𝐶 is operated by any
direction transform, its directionmay be changed, but its cost
can not be changed; thus, for all 𝑏 ∈ 𝑆𝐵, cost(𝑅

𝑏
(𝐶)) =

cost(𝐶), and then cost(𝑅
𝑏
(𝑃
𝜎
(𝐶))) = cost(𝑃

𝜎
(𝐶)) =

∑
𝑙

𝑖=1
cost(𝑃

𝜎
(𝑔
𝑖
)) = ∑

𝑙

𝑖=1
cost(𝑔

𝑖
) = cost(𝐶), where cost(𝐶)

of optimal 𝐶 should be minimal with the cost function. If for
all 𝑖 ∈ {1, 2, . . . , 𝑙}, cost(𝑔

𝑖
) = 1, then cost(𝐶) = 𝑙; that is,

the length of 𝐶 is minimal, and thus minimum cost standard
degenerates to mini-length standard.

Lemma 12. Any optimal circuit after any specific topological
transformation must be optimal.

Proof. Let the circuit 𝐶 be optimal, and circuit 𝐷 =

𝑅
𝑏
(𝑃
𝜎
(𝐶)). Assume that circuit 𝐷 is not optimal, and so

there is an optimal circuit 𝐸 with 𝜋(𝐸) = 𝜋(𝐷) and
cost(𝐸) < cost(𝐷); thus, 𝜋(𝑅

𝑏
(𝑃
𝜎
−1(𝐸))) = 𝜋(𝑅

𝑏
(𝑃
𝜎
−1(𝐷))) =

𝜋(𝑅
𝑏
(𝑃
𝜎
−1(𝑅
𝑏
(𝑃
𝜎
(𝐶))))) = 𝜋(𝐶). Let circuit 𝐹 = 𝑅

𝑏
(𝑃
𝜎
−1(𝐸));

by the Lemma 11, there is𝜋(𝐹) = 𝜋(𝐶), and cost(𝐹) = cost(𝐸),
cost(𝐷) = cost(𝐶). Thus, cost(𝐹) < cost(𝐶); that is, the
functions of circuit𝐹 and circuit𝐶 are the same, but𝐹 ismore
optimal than 𝐶 in contradiction to 𝐶 being optimal.

Lemma 13. By Definition 9, for all 𝑘 ∈ 𝑆𝐹, 𝑃
𝜎𝑘
(𝐿) = 𝐿.

Proof. By permutation group theory, for all 𝑖, 𝑗 ∈ 𝑆𝐹,
𝜎
𝑖
𝜎
𝑗

∈ {𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛!
}, and 𝑖 ̸= 𝑗 → 𝜎

𝑖
̸= 𝜎
𝑗
, and thus

for all 𝑘 ∈ 𝑆𝐹, 𝜎
𝑖
𝜎
𝑘

̸= 𝜎
𝑗
𝜎
𝑘
, |{𝜎
1
𝜎
𝑘
, 𝜎
2
𝜎
𝑘
, . . . , 𝜎

𝑛!
𝜎
𝑘
}| = 𝑛!,

{𝜎
1
𝜎
𝑘
, 𝜎
2
𝜎
𝑘
, . . . , 𝜎

𝑛!
𝜎
𝑘
} = {𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛!
}. Similarly, we have

∀𝑘 ∈ 𝑆𝐹, {𝜎
𝑘
𝜎
1
, 𝜎
𝑘
𝜎
2
, . . . , 𝜎

𝑘
𝜎
𝑛!
} = {𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛!
} .

(3)

For all 𝑘 ∈ 𝑆𝐹, 𝐿new = 𝑃
𝜎𝑘
(𝐿) = 𝑃

𝜎𝑘
(⋃
𝑗∈𝑆𝐹,𝑖∈𝑆𝑀

𝑃
𝜎𝑗
(𝑔
𝑖
)) =

⋃
𝑗∈𝑆𝐹,𝑖∈𝑆𝑀

𝑃
𝜎𝑗𝜎𝑘

(𝑔
𝑖
)
(3)

= ⋃
𝑖∈𝑆𝑀

(⋃
𝑗∈𝑆𝐹

𝑃
𝜎𝑗
(𝑔
𝑖
)) = ⋃

𝑗∈𝑆𝐹,𝑖∈𝑆𝑀
𝑃
𝜎𝑗

(𝑔
𝑖
) = 𝐿.

Definition 14. Let 𝐺 be a circuit, Min(𝜋(𝐺)) =

min{𝑅
𝑏
(𝑃
𝜎𝑗
(𝜋(𝐺))) | 𝑗 ∈ 𝑆𝐹, 𝑏 ∈ 𝑆𝐵}, and thus ∃𝑘 ∈ 𝑆𝐹,

∃𝑐 ∈ 𝑆𝐵, 𝑅
𝑐
(𝑃
𝜎𝑘
(𝜏)) = Min(𝜋(𝐺)). Let Min(𝐺) = 𝑅

𝑐
(𝑃
𝜎𝑘
(𝐺));

Min(𝐺) is the minimal permutation circuit of 𝐺. All circuits
gotten by all the specific topological transformations of
𝐺 compose the set 𝑆 = ⋃

𝑗∈𝑆𝐹,𝑏∈𝑆𝐵
𝑅
𝑏
(𝑃
𝜎𝑗
(𝐺)). The func-

tion GetMin(𝜏, 𝜎, 𝑏) returns the minimal permutation
𝜋, line permutation 𝜎 and direction transform 𝑏, where
𝜋 = 𝑅

𝑏
(𝑃
𝜎
(𝜏)) = Min(𝜏).

Theorem 15. From Definition 14,Min(𝐺) is a circuit of 𝑆, and
𝑆 can be gotten only byMin(𝐺); that is, the lossless compression
ratio of the space is near 2 × 𝑛!.

Proof. Obviously, all the minimal permutation circuits
of 𝑆 must be Min(𝐺), 𝑆 = ⋃

𝑗∈𝑆𝐹,𝑏∈𝑆𝐵
𝑅
𝑏
(𝑃
𝜎𝑗
(𝐺)),

Min(𝐺) = 𝑅
𝑐
(𝑃
𝜎𝑘
(𝐺)). Let 𝑆

󸀠 be the set of all circuits
gotten by all the specific topological transformations
of Min(𝐺); thus, 𝑆

󸀠
= ⋃

𝑗∈𝑆𝐹,𝑏∈𝑆𝐵
𝑅
𝑏
(𝑃
𝜎𝑗
(Min(𝐺))) =

⋃
𝑗∈𝑆𝐹,𝑏∈𝑆𝐵

𝑅
𝑏
(𝑃
𝜎𝑗
(𝑅
𝑐
(𝑃
𝜎𝑘
(𝐺))))

Property 3
= ⋃

𝑗∈𝑆𝐹,𝑏∈𝑆𝐵
𝑅
𝑏⊕𝑐

(𝑃
𝜎𝑘𝜎𝑗

(𝐺))
(3)

= ⋃
𝑗∈𝑆𝐹,𝑏∈𝑆𝐵

𝑅
𝑏
(𝑃
𝜎𝑗
(𝐺)) = 𝑆, where |𝑆𝐹| = 𝑛!,

|𝑆𝐵| = 2; that is, |𝑆𝐹| × |𝑆𝐵| = 2 × 𝑛!, and few specific
topological transformation circuits may be the same. Thus
|𝑆| ≤ 2 × 𝑛! and |𝑆| ≈ 2 × 𝑛!. Then, the lossless compression
ratio of the set 𝑆 is near 2 × 𝑛!.

Let 𝐿
𝑛,𝐺

be an 𝑛-bit quantum gate library with gates 𝐺,
and 𝑇(𝐿

𝑛,𝐺
) a set of all 𝑛-bit reversible circuits synthesized

by any gates in 𝐿
𝑛,𝐺

. For example, 2 × 𝑛!|
𝑛=4

= 48. The
average compression ratio of 𝑇(𝐿

4,CNT), whose circuits are
synthesized 8 layers at minimal cost, is 47.95.

Journal of Applied Mathematics 5

Table 2: All the specific topological transformations of 3-bit logic circuit.

Line permutation Obverse direction Coding Reverse direction Coding

(
0 1 2

0 1 2
) = 𝜋

𝑒

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0

A

23759

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0 28679

(
0 1 2

1 0 2
) = (0 1)

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0 25199

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0 34439

(
0 1 2

0 2 1
) = (1 2)

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0 11951

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0 16985

(
0 1 2

1 2 0
) = (0 1) (0 2)

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0
1

2
B

8949

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0
1

2

18903

(
0 1 2

2 0 1
) = (0 2) (0 1)

𝑥1

𝑥2

𝑥0

𝑦1

𝑦

1
2

2

𝑦0 14975

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

2
1

𝑦0 32969

(
0 1 2

2 1 0
) = (0 2)

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0 9333

𝑥1

𝑥2

𝑥0

𝑦1

𝑦2

𝑦0 29241

Given two quantum logic circuits, 𝐷 and 𝐺, ∃ℎ, 𝑗 ∈ 𝑆𝐹,
∃𝑏, 𝑐 ∈ 𝑆𝐵, 𝑅

𝑏
(𝑃
𝜎ℎ
(𝐺)) = 𝑅

𝑐
(𝑃
𝜎𝑗
(𝐷)) → 𝐺,𝐷 ∈ 𝑆 →

Min(𝐷) = Min(𝐺).
Taking all specific topological transformations of a 3-bit

circuit as an example, there are 2 × 𝑛!|
𝑛=3

= 12 kinds of
transformations. In Table 2, the bidirectional arrow expresses
exchanging the two quantum lines, and the minimal permu-
tation circuit of all circuits is circuit 𝐵 by computing coding.

The way of computing the shortest coding of circuit 𝐴 in
Table 2 is given.

(1) By Definition 1, the permutation of circuit 𝐴 is 𝜎 =

(0, 1, 2, 3, 6, 7, 5, 4).

(2) By Definition 2, the ordinal number sequence of 𝜎 is
(0, 1, 2, 3, 4, 5, 4, 4).

(3) By Definition 5, the shortest coding is 23759.

Definition 16. Given two circuit sets 𝑆 and 𝑄, the set of all
circuits of 𝑆 cascaded by all circuits of𝑄 is denoted by 𝑆×𝑄 =

{𝐺
1
𝐺
2
| 𝐺
1
∈ 𝑆 ∧ 𝐺

2
∈ 𝑄}.

Lemma 17. Given two circuit sets 𝑆 and𝑄,𝑃
𝜎
(𝑆×𝑄) = 𝑃

𝜎
(𝑆)×

𝑝
𝜎
(𝑄).

Proof. By Definition 16, 𝑆 × 𝑄 = {𝐺
1
𝐺
2
| 𝐺
1
∈ 𝑆 ∧ 𝐺

2
∈ 𝑄},

thus𝑃
𝜎
(𝑆×𝑄) = 𝑃

𝜎
({𝐺
1
𝐺
2
| 𝐺
1
∈ 𝑆∧𝐺

2
∈ 𝑄}) = {𝑃

𝜎
(𝐺
1
𝐺
2
) |

𝐺
1

∈ 𝑆 ∧ 𝐺
2

∈ 𝑄} = {𝑃
𝜎
(𝐺
1
)𝑃
𝜎
(𝐺
2
) | 𝑃
𝜎
(𝐺
1
) ∈ 𝑃

𝜎
(𝑆) ∧

𝑃
𝜎
(𝐺
2
) ∈ 𝑃
𝜎
(𝑄)} = 𝑃

𝜎
(𝑆) × 𝑃

𝜎
(𝑄).

Theorem 18. Given the set 𝑆
𝑙
of all optimal circuits with length

𝑙,Min(𝑆
𝑙+1

) = Min((⋃
𝑏∈𝑆𝐵

𝑅
𝑏
(Min(𝑆

𝑙
))) × 𝐿) = Min(𝑆

𝑙
× 𝐿).

For saving memory, we only store minimal permutation
circuits Min(𝑆

𝑙
). The common computing method is that,

firstly, 𝑆
𝑙
can be gotten by decompressing Min(𝑆

𝑙
), secondly,

𝑆
𝑙+1

can be gotten by 𝑆
𝑙
×𝐿, and lastly,Min (𝑆

𝑙+1
) can be gotten

by compressing 𝑆
𝑙
×𝐿. Its number of decompressing circuit is

2 × 𝑛! × |Min(𝑆
𝑙
)|, but ours is zero based onTheorem 15. The

number of cascading circuit and the number of compressing
circuit in the common method all are 𝑛! times than ours; so,
our method is better.

3. New Synthesis Algorithm

A quantum logic gate realizes certain permutation in essence;
quantum circuit is the cascade of some quantum gates, and
so the basic function of quantum circuit can be represented
the multiplication of permutations. The basic idea of the
hash-based 3-bit synthesis algorithm which we previously

6 Journal of Applied Mathematics

Hash table

Key:

𝑆[𝑖]

· · ·· · ·

· · ·

· · ·· · ·· · ·· · ·

· · · · · · · · · · · ·

Red black tree

0 1 2 3 65535

29 bit 16 bit

Figure 4: The data structure of the minimal permutation circuit
with length 𝑖.

advanced is constructing an optimal circuit using WFS,
making a one-to-one correspondence between the elements
in the hash table and different circuits. Thus, we need only
one step to check whether the circuit of the same function
has already been found to decide whether it is optimal. But it
is unfeasible if we use this algorithm directly in 4-bit circuit
synthesis, since the length of the hash table is at least 𝑛2!; so, it
is extremely memory consuming. Otherwise, if we use DFS,
it will be meaningless that the algorithm runs too slowly or
can not realize optimal. To sum up, we adopt the BFS, with
higher speed andmore synthesis capability, and some lossless
data compression methods to reduce memory consumption.

(1) Represent the permutation using the shortest encod-
ing.Only ⌈log2

𝑛
!

2
|
𝑛=4

⌉ = 45 bits is required to represent
4-bit circuit permutations using the permutation
encoding method in Definition 5, rather than 64 bits
as usual.

(2) Compress the optimal circuits without loss. Using
line permutation alone, nearly 𝑛!|

𝑛=4
= 24 times

compression can be reached, while using both line
permutation and direction transformation, nearly 𝑛!×
2|
𝑛=4

= 48 times compression can be reached, which
is the backbone of this paper.

(3) Use hash table with length 2
16 in the top of the data

structure, with each element pointing to a different
RB tree in Figure 4 and each node in the tree reduces 2
bytes. Hash table and RB tree always remain effective,
and RB tree can also allocate the memory dynami-
cally.Therefore the data structure can not only permit
a faster access speed, but also save memory space.

How to determine the length of hash table? Let the
permutation of 𝑛-bit circuit be 𝜋, whose shortest coding is
Code(Min(𝜋)), {0, 1}⌈log

𝑛!

2
⌉ in binary. Use the rear 𝑘 × 8 bits as

the hash address, the rest ⌈log𝑛!
2
⌉−𝑘×8 bits as the value of the

nodes in the RB tree. Suppose that the length of the elements
in hash table is 𝑗 bytes; so, hash table uses 𝑗 × 2

8𝑘 bytes while
the RB tree saves 𝑘 × |𝑆[𝑖]| bytes, and the maximum space
this structure saves is max𝑓𝑚(𝑘, 𝑗, 𝑖) = 𝑘 × |𝑆[𝑖]| − 𝑗 × 2

8𝑘.
Take the 4-bit circuit based on CNT quantum gate library as
an example; each element in hash table is a pointer pointing
to the different tree, taking 4 bytes. The number of minimum
permutation circuits with length 8 is 58777916, when 𝑘 = 2,

and themaximumof the function is𝑓𝑚(2, 4, 8) = 117293688;
so, the optimal length of hash table is 28𝑘|

𝑘=2
= 65536.

In this paper, we use BFS to get all the first 𝑁 layers
of optimal circuits. If the gate library is determined, then
the optimal circuits are determined. In order to save time,
we store all minimum permutation circuits in the first 𝑁

layers in a file. If CNT gate library is used, then 𝑁 = 8,
and we get a 700MB file. As there are considerable gates in
the 4-bit circuit quantum gate library, thus lots of optimal
circuits are generated at each length. When a circuit reaches
a certain length, the memory will overflow, and so 𝑁 has
practical upper lower limit related to memory. After the
lossless compression mentioned earlier, only the minimum
permutation circuits are stored, saving 47.95 times less of
circuits. The length of the overall synthesis circuits reaches 8
instead of 6, 117.7 times larger; the synthesizable length grows
form 12 to 16 [14].

3.1. Minimal Length Algorithm. The node type of our RB tree
is defined as follows:

struct rbtnode {

gate; // the gate is in the end of the circuit 𝐺
cpm; // the permutation of the circuit Min(𝐺)
binv; // the current circuit is inverted or not
lnpm; //Min(𝜋(𝐺))≡GetMin(𝜋(𝐺); binv; lnpm)
pcpm; // the permutation of the previous circuit
pbinv; // the previous circuit is inverted or not

}

To enhance readability, two ways are used to simplify the
algorithms.

(1) All permutations are not transformed into the rele-
vant shortest codings.

(2) The hash table in the top of Figure 4 is omitted, and
all the minimum permutation circuits in each layer
are only saved in a RB tree; for example, 𝑆[𝑖] is the
RB tree which has saved all minimum permutation
circuits with length 𝑖.

3.2. Algorithm for the Minimal Permutation Quantum
Reversible Logic Circuits Representation in QML. For more
details, see Algorithm 2.

3.3. General Algorithm for the Quantum Reversible Logic Cir-
cuits Representation in QML (Algorithm 1). For more details,
see Algorithm 3.

4. Experimental Results

Our experiments were conducted using many benchmark
functions for 4-bit reversible logic circuits synthesis, and
[14, 15] dealt with the synthesis of 4-qubit circuit for the high
complexity of the algorithm. Based on CNP quantum gate
library, using the mini-length as criteria, [14] added 4 layers

Journal of Applied Mathematics 7

Input: Quantum Gate Library 𝐿

Output:max 𝑙, 𝑁[0 . . .max 𝑙], 𝑆[0 . . .max 𝑙]
1: 𝑆[0] = {cmp : 𝜋

𝑒
}, 𝑗 = 0,𝑁[0] = 1

2:while𝑁[𝑗] ̸= 0 do
3: 𝑗 = 𝑗 + 1, 𝑆[𝑗] = Ø
4: for each node Node x in 𝑆[𝑗 − 1] do
5: 𝑐 = Node𝑥.cpm
6: for V = 0 to 1 do
7: if V = 1 then
8: 𝑐 = 𝑐

−1

9: end if
10: for each gate 𝑔 in 𝐿 do
11: 𝑝 = 𝑐 ∘ 𝜋(𝑔), 𝜋 = GetMin (𝑝, 𝜎, 𝑏)

12: if𝜋 ∉ ⋃
𝑗

𝑖=0
𝑆[𝑖] then

13: 𝑆[𝑗] = 𝑆[𝑗] ∪ {(gate : 𝑔, cpm : 𝜋, lnpm :

𝜎, binv : 𝑏, pcpm : 𝑝,
pbinv : V)}

14: ifmemory overflow error then
15: free 𝑆[𝑗], 𝑗 = 𝑗 − 1, go to 23
16: end if
17: end if
18: end for
19: end for
20: end for

21: 𝑁[𝑗] = ∑

𝐺∈𝑆[𝑗]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋃

𝑖∈𝑆𝐹,𝑏∈𝑆𝐵

𝑅
𝑏
(𝑃
𝜎𝑖
(𝐺))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

22: endwhile
23: max 𝑙 = 𝑗

Algorithm 1: Quantum Minimum Length (QML).

in the basis of [11] through bidirection synthesis, and another
4 layers by combining DFS, thus realized a 12 layers synthesis
of arbitrary circuits. Yet [14] can only synthesize the first 4
layers of the optimal circuit at a time, while in our previous
study, for example, the hash-based 3-bit synthesis algorithm,
the average speed of the mini-length and minimum cost are
49.15 and 365.13 times of [11], respectively. In this paper, we
used CNT quantum gate library and mini-length criteria,
creating all optimal circuits with up to 8 gates. By bidirection
cascading the generated circuits, we can quickly synthesize
the optimal quantum circuits within the length of 16, without
consuming more memory. Our bidirection cascading is quite
different with the bidirection synthesis used in [14]; they
calculated the head and tail of the circuit, respectively, then
moved forward to the middle. In order to avoid repeated
computation, we first synthesize the former parts of the
circuit, then perform specific topology transformations on
them and reuse them in the latter part.

To evaluate the ability of the algorithmwhile synthesizing
complicated circuits, we have run our program on a great
number of circuits, and none of them has been found not
to be synthesized. Then, we only give two examples. (1) We
cascaded the two optimal circuits 4 49 and Hwb4 to get
one circuit in Figure 5A. By using the generated all minimal
permutation circuits with up to 8 gates, it took only 35 s to
generate circuit B. It is easy to prove that the permutation of

Input:Quantum Gate Library 𝐿, minimal permutation 𝑝,
circuit length 𝑙

Output:Circuit of minimal permutation 𝑝 with mini-length
1: compute 𝑆[0 . . .max 𝑙] as in QML(𝐿) for the first time;
2: 𝑖 = 𝑙,mynode [𝑖] = 𝑠 [𝑖].find(𝑝)
3: pcpm𝑥 = mynode [𝑖].pcpm
4: while 𝑖 > 1 do
5: 𝑖 = 𝑖 − 1

6: mynode [𝑖] = 𝑆 [𝑖].find(pcpm𝑥)

7: pcpm 𝑥 = mynode [𝑖].pcpm
8: endwhile
9: 𝜎 = mynode [1].lnpm, 𝑏 = mynode [1].binv
10: 𝐺
1
= 𝑃
𝜎
𝑅
𝑏
(mynode [1].gate)

11: for 𝑖 = 2 to 𝑙 do
12: 𝜎 = mynode [𝑖].lnpm, 𝑏 = mynode [𝑖].binv
13: 𝑐 = mynode [𝑖].pbinv, 𝑔 = mynode [𝑖].gate
14: 𝐺

𝑖
= 𝑅
𝑏
(𝑃
𝜎
(𝑅
𝑐
(𝐺
𝑖−1

) 𝑔))

15: end for
16: return𝐺

𝑙

Algorithm 2: Minimal Quantum Representation (MQR).

Input:Quantum Gate Library 𝐿, permutation 𝑝

Output:Circuit of permutation 𝑝 with mini-length
1: if∃𝑙 ∈ {0, 1, 2, . . . ,max 𝑙},GetMin(𝑝, 𝜎, 𝑏) ∈ 𝑆[𝑙] then
2: 𝐺 = MQR(GetMin(𝑝, 𝜎, 𝑏), 𝑙)
3: return𝑅

𝑏
(𝑃
𝜎
−1 (𝐺))

4: else if ∃𝑖 ∈ 𝑆𝐹, ∃𝑏 ∈ 𝑆𝐵, ∃𝑙 ∈ {1, 2, . . . ,max 𝑙},
∃Node𝑥 ∈ 𝑆[𝑙],
GetMin(𝑅

𝑏
(𝑃
𝜎𝑖
(𝑝)) ∘ (Node𝑥.cpm)

−1

, 𝜏, 𝑐)

∈ 𝑆[max 𝑙] then
5: 𝐺

2
= MQR(Node𝑥.cpm, 𝑙)

6: 𝜌 = GetMin (𝑅
𝑏
(𝑃
𝜎𝑖
(𝑃)) ∘ (Node𝑥.cpm)

−1

, 𝜏, 𝑐)

7: 𝐺
1
= MQR (𝜌,max 𝑙)

8: return𝑅
𝑏
(𝑃
𝜎
−1

𝑖

(𝑅
𝑐
(𝑃
𝜏−1

(𝐺
1
)) 𝐺
2
))

9: else
10: returnNULL
11: end if

Algorithm 3: Quantum Minimum Representation (QMR).

both A and B are (15,2,3,12,5,9,1,11,0,10,14,6,4,8,7,13). (2) Syn-
thesized Alhagi01 (2,12,8,13,0,9,6,15,10,11,14,4,5,3,1,7) circuit is
given in Figure 6.

5. Conclusions

Based on the idea that the synthesis of reversible logic
circuit is a permutation problem in essence, we present the
novel and efficient quantum circuit synthesis algorithms.
Among them, we elaborately construct a shortest encoding
method of the permutation and compress the memory space
of the 𝑛-bit optimal circuits to 2 × 𝑛! times less using
certain topology transformation of quantum circuits. By

8 Journal of Applied Mathematics

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

A: B:
QMR(𝐿4,CNT , 𝜋1)

Figure 5: The 4-bit reversible logic circuits synthesis.

a
b
c
d

a
b
c
d

Figure 6: Alhagi01 circuit synthesis.

bidirectional cascading of the generated optimal circuits,
using several quantum gates and the mini-length cost metric,
our algorithms can efficiently generate most optimal 4-bit
reversible logic circuits.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China (nos. 61070240, 61170321, 61272175,
and 61103235), the Natural Science Foundation of College
of Jiangsu Province (no. 10KJB520021), and Specialized
Research Fund for the Doctoral Program of Higher Educa-
tion (no. 20110092110024).

References

[1] R. P. Feynman, “Quantummechanical computers,” Foundations
of Physics, vol. 16, no. 6, pp. 507–531, 1986.

[2] E. Fredkin and T. Toffoli, “Conservative logic,” International
Journal of Theoretical Physics, vol. 21, no. 3-4, pp. 219–253, 1982.

[3] X. Song, G. Yang, M. Perkowski, and Y. Wang, “Algebraic
characterization of reversible logic gates,”Theory of Computing
Systems, vol. 39, no. 2, pp. 311–319, 2006.

[4] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation
rules for designing CNOT-based quantum circuits,” in Proceed-
ings of the 39th Annual Design Automation Conference (DAC
’02), pp. 419–424, New Orleans, La, USA, June 2002.

[5] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation
based algorithm for reversible logic synthesis,” in Proceedings of
the 40th Design Automation Conference, pp. 318–323, San Jose,
Calif, USA, June 2003.

[6] A.Mishchenko andM. Perkowski, “Logic synthesis of reversible
wave cascades,” in Proceedings of 11th IEEE International Work-
shop on Logic Synthesis, pp. 197–202, New Orleans, La, USA,
2002.

[7] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis
of reversible logic circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no. 11,
pp. 2317–2330, 2006.

[8] W. Li, H. Chen, and Z. Li, “Application of semi-template in
reversible logic circuit,” in Proceedings of the 11th International
Conference on Computer Supported Cooperative Work in Design
(CSCWD ’07), pp. 332–336, Melbourne, Australia, April 2007.

[9] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
“Reversible logic circuit synthesis,” in IEEE/ACM International
Conference on Computer Aided Design (ICCAD ’02), pp. 353–
360, San Jose, Calif, USA, November 2002.

[10] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
“Synthesis of reversible logic circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
22, no. 6, pp. 710–722, 2003.

[11] G. Yang, X. Song, W. N. N. Hung, M. A. Perkowski, and C.-
J. Seo, “Synthesis of reversible circuits with minimal costs,”
Calcolo, vol. 45, no. 3, pp. 193–206, 2008.

[12] G. Yang, X. Song, and M. Perkowski, “Fast synthesis of exact
minimal reversible circuits using group theory,” in Proceedings
of the Asia and South Pacific Design Automation Conference
(ASP-DAC ’05), vol. 2, pp. 18–21, Shanghai, China, 2005.

[13] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski,
“Optimal synthesis of multiple output Boolean functions using
a set of quantum gates by symbolic reachability analysis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 9, pp. 1652–1663, 2006.

[14] G. Yang, X. Song, W. N. N. Hung, and M. A. Perkowski, “Bi-
direction synthesis for reversible circuits,” in Proceedings of
the IEEE Computer Society Annual Symposium on VLSI: New
Frontiers in VLSI Design (ISVLSI’05), pp. 14–19, Tampa, Fla,
USA, May 2005.

[15] G. Yang, X. Song, W. N. N. Hung, and M. A. Perkowski,
“Bi-directionalsynthesis of 4-bit reversible circuits,” Computer
Journal, vol. 51, no. 2, pp. 207–215, 2008.

[16] G. Yang, F. Xie, W. N. N. Hung, X. Song, and M. A. Perkowski,
“Realization and synthesis of reversible functions,” Theoretical
Computer Science, vol. 412, no. 17, pp. 1606–1613, 2011.

[17] Z. Li, H. Chen, B. Xu, and W. Liu, “Fast algorithm for 4-
qubit reversible logic circuits synthesis,” in Proceedings of
the IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence) (CEC ’08), pp. 2202–
2207, Hongkong, China, 2008.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

