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A modified parallel variable distribution (PVD) algorithm for solving large-scale constrained optimization problems is developed,
which modifies quadratic subproblem 𝑄𝑃𝑙 at each iteration instead of the 𝑄𝑃0

𝑙
of the SQP-type PVD algorithm proposed by C. A.

Sagastizábal and M. V. Solodov in 2002.The algorithm can circumvent the difficulties associated with the possible inconsistency of
𝑄𝑃
0

𝑙
subproblem of the original SQP method. Moreover, we introduce a nonmonotone technique instead of the penalty function

to carry out the line search procedure with more flexibly. Under appropriate conditions, the global convergence of the method is
established. In the final part, parallel numerical experiments are implemented on CUDAbased onGPU (Graphics Processing unit).

1. Introduction

In this paper, we consider the following nonlinear program-
ming problem:

min 𝑓 (𝑥) ,

s.t. 𝑐 (𝑥) ≤ 0,
(1)

where 𝑓 : 𝑅𝑛 → 𝑅 and 𝑐(𝑥) : 𝑅𝑛 → 𝑅
𝑚 are all continuously

differentiable. Suppose the feasible set𝑋 in (1) is described by
a system of inequality constraints:

𝑍 = {𝑥 ∈ 𝑅
𝑛
| 𝑐𝑖 (𝑥) ≤ 0, 𝐼 = {𝑖 | 𝑖 = 1, 2, . . . , 𝑚}} . (2)

In this paper, we give a new algorithm based on the method
in [1], which partitions the problem variables 𝑥 ∈ 𝑅𝑛 into 𝑝
blocks 𝑥1, . . . , 𝑥𝑝, such that

𝑥 = (𝑥1, . . . , 𝑥𝑝) , 𝑥𝑙 ∈ 𝑅
𝑛𝑙 , 𝑙 = 1, . . . , 𝑝,

𝑝

∑

𝑙=1

𝑛𝑙 = 𝑛. (3)

And assume that 𝑋 has block-separable structure. Specifi-
cally,

𝑐 (𝑥) = {𝑐1 (𝑥1) , 𝑐2 (𝑥2) , . . . , 𝑐𝑝 (𝑥𝑝)} ,

𝑐𝑙 (𝑥𝑙) : 𝑅
𝑛𝑙 → 𝑅

𝑚𝑙 , 𝑙 ∈ {1, 2, . . . , 𝑝} ,

𝑝

∑

𝑙=1

𝑚𝑙 = 𝑚.

(4)

Parallel variable distribution (PVD) algorithm for solving
optimization problems was first proposed by Ferris and
Mangasarian [2], in 1994, in which the variables are dis-
tributed among 𝑝 processors. Each processor has the pri-
mary responsibility for updating its block of variables while
allowing the remaining secondary variables to change in a
restricted fashion along some easily computable directions.
The distinctive novel feature of this algorithm is the presence
of the “forget-me-not” term which allows for a change
in “secondary” variables. This makes PVD fundamentally
different from the block Jacobi [3] and coordinate descent [4]
methods. The forget-me-not approach improves robustness
and accelerates convergence of the algorithm and is the key
to its success. In 1997, Solodov [5] proposed useful gener-
alizations that consist, for the general unconstrained case,
of replacing exact global solution of the subproblems by
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a certain natural sufficient descent condition, and, for the
convex case, of inexact subproblem solution in the PVD
algorithm. Solodov [6] proposed an algorithm applied the
PVD approach to problems with general convex constraints
directly use projected gradient residual function as the direc-
tion and show that the algorithm converges, provided that
certain conditions are imposed on the change of secondary
variables. In 2002, Sagastizábal and Solodov [1] proposed
two new variants of PVD for the constrained case. Without
assuming convexity of constraints, but assuming block-
separable structure, they showed that PVD subproblems can
be solved inexactly by solving their quadratic programming
approximations.This extends PVD to nonconvex (separable)
feasible sets and provided a constructive practical way of
solving the parallel subproblems. For inseparable constraints,
but assuming convexity, they developed a PVDmethod based
on suitable approximate projected gradient directions. The
approximation criterion was based on a certain error bound
result, and it was readily implementable. In 2011, Zheng
et al. [7] gave a parallel SSLE algorithm, in which the PVD
subproblems are solved inexactly by serial sequential linear
equations, for solving large-scale constrained optimization
with block-separable structure. Without assuming the con-
vexity of constraints, the algorithm is proved to be globally
convergent to a KKT point. Han et al. [8] proposed an
asynchronous PVT algorithm for solving large-scale linearly
constrained convex minimization problems with the idea
of [9] in 2009, which based on the idea that a constrained
optimization problem is equivalent to a differentiable uncon-
strained optimization problem by introducing the Fischer
Function. And in particular, different from [9] the linear rate
of convergence does not depend on the number of processors.

In this paper, we use [1] as our main reference on SQP-
type PVD method for problems (1) and (4). Firstly, we intro-
duce the algorithm in [1] simply. The original problem is
distributed into 𝑝 parallel subproblems which treatment
among 𝑝 parallel processors. The algorithm of [1] may result
in that the linear constraints in quadratic programming
subproblems are inconsistent or the solution of quadratic
programming subproblems is unbounded, so that the algo-
rithm may fail. This drawback has been overcome by many
researchers, such as [10]. In [1], exact penalty function is
used as merit function to carry out the line-search. For the
penalty function, as pointed out by Fletcher and Leyffer [11],
the biggest drawback is that the penalty parameter estimates
could be problematic to obtain. To overcome this drawback,
we use a nonmonotone technique to carry out the line search
instead of penalty function.

Recent research [12–14] indicates that the monotone line
search technique may have some drawbacks. In particular,
enforcing monotonicity may considerably reduce the rate
of convergence when the iteration is trapped near a nar-
row curved valley, which can result in very short steps or
zigzagging. Therefore, it might be advantageous to allow
the iterative sequence to occasionally generate points with
nonmonotone objective values. Grippo et al. [12] generalized
the Armijo rule and proposed a nonmonotone line search
technique for Newton’s method which permits increase in
function value, while retaining global convergence of the

minimization algorithm. In [15], Sun et al. give several
nonmonotone line search techniques, such as nonmonotone
Armijo rule, nonmonotoneWolfe rule, nonmonotone F-rule,
and so on. Several numerical tests show that the nonmono-
tone line search technique for unconstrained optimization
and constrained optimization is efficient and competitive [12–
14, 16]. Recently, [17] gives a method to overcome the draw-
back of zigzagging with nonmonotone line search technique
to determine the step length, which makes the algorithm
more flexible.

In this paper, we combine [1] with the ideas of [10, 17] and
propose an infeasible SQP-type Parallel Variable Distribution
algorithm for constrained optimization with nonmonotone
technique.

The paper is organized as follows. The algorithm is
presented in Section 2. In Section 3, undermild assumptions,
some global convergence results are proved. The numerical
results are shown in Section 4. And conclusions are given in
the last section.

2. A Modified SQP-Type PVD Method with
Nonmonotone Technique

To describe our algorithm, we first give themodified quadrat-
ic subproblems of SQP method. Given 𝑥𝑘 ∈ 𝑅𝑛, we distribute
it into 𝑝 blocks, as the iterate 𝑥𝑘

𝑙
∈ 𝑅
𝑛𝑙 , 𝑙 = 1 . . . , 𝑝, 𝐻𝑙 ∈

𝑅
𝑛𝑙×𝑛𝑙 , 𝑙 = 1, 2, . . . , 𝑝 denote an approximate Hessian.
We use 𝑧𝑙 ∈ 𝑅 to perturb the subproblem of 𝑄𝑃0

𝑙
of [1]

and give a new subproblem 𝑄𝑃𝑙 instead of it. Consider

𝑄𝑃𝑙 (𝑥
𝑘

𝑙
, 𝐻
𝑘

𝑙
)

=

{{{{{{{{

{{{{{{{{

{

min
(𝑑𝑙 ,𝑧𝑙)∈𝑅

𝑛𝑙+1

𝑧𝑙 +
1

2
𝑑
𝑇

l 𝐻
𝑘

𝑙
𝑑𝑙

s.t. (𝑔
𝑘

𝑙
)
𝑇

𝑑𝑙 ≤ 𝑧𝑙,

𝑐𝑖 (𝑥
𝑘

𝑙
) + ∇𝑐𝑖(𝑥

𝑘

𝑙
)
𝑇

𝑑𝑙 ≤ 𝑧𝑙,

𝑖 ∈ 𝐼𝑙 = {1, . . . , 𝑚𝑙} .

(5)

For convenience, given 𝑥, the 𝑙th block of ∇𝑓(𝑥) will be
denoted by

𝑔𝑙 = (𝐼𝑛𝑙×𝑛𝑙 0𝑛𝑙×𝑛𝑙) ∇𝑓 (𝑥) . (6)

In (5), 𝑔𝑘
𝑙
is 𝑔𝑙 in step 𝑘. Note that (5) is always feasible for

𝑑𝑙 = 0, 𝑧𝑙 = max𝑖∈𝐼𝑙{𝑐𝑖(𝑥
𝑘

𝑙
), 0}. To test whether constraints

are satisfied or not, we denote the violation function ℎ(𝑥) as
follows:

ℎ (𝑥) =
𝑐(𝑥)
+ , (7)

where 𝑐𝑖(𝑥)
+
= max{𝑐𝑖(𝑥), 0}, 𝑖 ∈ 𝐼, ‖ ⋅ ‖ denotes the Euclidean

norm on 𝑅𝑚. It is easy to see that ℎ(𝑥) = 0 if and only if 𝑥 is a
feasible point (ℎ(𝑥) > 0 if and only if 𝑥 is infeasible).

We describe our modified PVD algorithm as follows.

Algorithm A. Consider the following.
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Step 0. Start with any 𝑥0 ∈ 𝑅
𝑛. Choose parameters 𝑢 ∈ (0,

1/2), 𝛽 ∈ (1/2, 1), 𝛾 ∈ (0, 1), positive integer 𝑀 > 0, and
positive definite matrices 𝐻0

𝑙
∈ 𝑅
𝑛𝑙×𝑛𝑙 , 𝑙 ∈ {1, 2, . . . , 𝑝}. Set

𝑘 = 0,𝑚(𝑘) = 0.

Having 𝑥𝑘, check a stopping criterion. If it is not satisfied,
compute 𝑥𝑘+1 as follows.

Step 1. Parallelization. For each processor 𝑙 ∈ {1, 2, . . . , 𝑝},
solve subproblem (5) to get (𝑑𝑘

𝑙
, 𝑧
𝑘

𝑙
). If 𝑑𝑘

𝑙
= 0, 𝑙 = 1, . . . , 𝑝

stop, otherwise return to Step 2.

Step 2. Synchronization. Set

𝑑𝑘 = (𝑑
𝑘

1
, . . . , 𝑑

𝑘

𝑝
) , 𝑔

𝑇

𝑘
= ((𝑔

𝑘

1
)
𝑇

, . . . , (𝑔
𝑘

𝑝
)
𝑇

) ,

𝐻𝑘 = (

𝐻
𝑘

1

. . .
𝐻
𝑘

𝑝

).

(8)

If𝑔𝑇
𝑘
𝑑𝑘 ≤ −(1/2)𝑑

𝑇

𝑘
𝐻𝑘𝑑𝑘, return to Step 3; otherwise, set 𝜆𝑘 =

1 and return to Step 4.

Step 3. Choose 𝜆𝑘 which is the largest one in the sequence
{1, 𝛾, 𝛾

2
, . . .} satisfying:

𝑓 (𝑥𝑘 + 𝜆𝑑𝑘) ≤ max
0≤𝑗≤𝑚(𝑘)

[𝑓 (𝑥𝑘−𝑗)] − 𝜆𝜇𝑑
𝑇

𝑘
𝐻𝑘𝑑𝑘. (9)

Step 4. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝑘𝑑𝑘. Let ℎ = max0≤𝑗≤𝑚(𝑘)[ℎ(𝑥𝑘−𝑗)]. If
ℎ(𝑥𝑘+1) ≤ 𝛽ℎ, then set𝑚(𝑘 + 1) = min{𝑚(𝑘) + 1,𝑀}, update
𝐻
𝑘

𝑙
to 𝐻𝑘+1
𝑙
, 𝑙 = 1, . . . , 𝑝, set 𝑘 = 𝑘 + 1, and go to Step 1.

Otherwise, let 𝑘 = 𝑘+ 1, call Restoration Algorithm of [17] to
obtain 𝑥𝑟

𝑘
, let 𝑥𝑘 = 𝑥

𝑟

𝑘
,𝑚(𝑘) = 𝑚(𝑖), and go to Step 1.

Remark 1. In Step 3 of Algorithm A, the nonmonotone
parameter𝑚(𝑘) satisfies

𝑚(0) = 0, 0 ≤ 𝑚 (𝑘) ≤ min {𝑚 (𝑘 − 1) + 1,𝑀} ,

𝑘 ≥ 1.
(10)

For the convenience, we denote 𝑓(𝑥𝑙(𝑘))=max0≤𝑗≤𝑚(𝑘)[𝑓(𝑥𝑘−𝑗)],
where 𝑘 − 𝑚(𝑘) ≤ 𝑙(𝑘) ≤ k.

In a restoration algorithm, we aim to decrease the value of
ℎ(𝑥)more precisely, we will use a trust region type method to
obtain ℎ(𝑥𝑘) → 0, 𝑘 → ∞ by the help of the nonmonotone
technique. Let

𝑀
𝑖

𝑘
(𝑑) = ℎ (𝑥

𝑖

𝑘
) − ℎ (𝑥

𝑖

𝑘
+ 𝑑) ,

Ψ
𝑖

𝑘
(𝑑) = ℎ (𝑥

𝑖

𝑘
) −

(𝑐 (𝑥
𝑖

𝑘
) + ∇𝑐(𝑥

𝑖

𝑘
)
𝑇

𝑑)
+
,

(11)

and 𝑟𝑖
𝑘
= 𝑀
𝑖

𝑘
(𝑑)/Ψ

𝑖

𝑘
(𝑑).

AlgorithmB is similar to the restoration phase given by Su
andYu [17], we describe theRestorationAlgorithmas follows.

Algorithm B. Consider the following.

Step 0. Assume 𝑥0
𝑘
= 𝑥𝑘, Δ

0
> 0, 𝑖 = 0, 𝜂 ∈ (0, 1),𝑚(𝑖) = 0.

Step 1. If ℎ(𝑥𝑖
𝑘
) ≤ 𝛽ℎ, then 𝑥𝑟

𝑘
= 𝑥
𝑖

𝑘
stop.

Step 2. Compute

max Ψ
𝑖

𝑘
(𝑑)

s.t. ‖𝑑‖ ≤ Δ
𝑖

(12)

to get 𝑑𝑖
𝑘
. Calculate 𝑟𝑖

𝑘
.

Step 3. If 𝑟𝑖
𝑘
≤ 𝜂, then let 𝑥𝑖+1

𝑘
= 𝑥
𝑖

𝑘
, Δ𝑖+1 = Δ𝑖/2, 𝑖 = 𝑖 + 1,

𝑚(𝑖) = min{𝑚(𝑖 − 1) + 1,𝑀} and go to Step 2.

Step 4. If 𝑟𝑖
𝑘
> 𝜂, then let 𝑥𝑖+1

𝑘
= 𝑥
𝑖

𝑘
+ 𝑑
𝑖

𝑘
, Δ𝑖+1 = 2Δ𝑖, 𝑖 = 𝑖 + 1,

𝑚(𝑖) = min{𝑚(𝑖 − 1) + 1,𝑀} and go to Step 1.

3. The Convergence Properties

To prove the global convergence of AlgorithmA, wemake the
following assumptions.

Assumptions

(A1) The iterate {𝑥𝑘} remains in compacted subset 𝑆 ⊂ 𝑅𝑛.
(A2) The objective function 𝑓 and the constraint functions

𝑐𝑗 (𝑗 ∈ 𝐼) are twice continuously differentiable on 𝑅
𝑛.

(A3) For all 𝑥𝑙 ∈ 𝑅
𝑛𝑙 , the set {∇𝑐𝑖(𝑥𝑙) : 𝑖 ∈ 𝐼𝑙(𝑥𝑙)} is

linearly independent, where 𝐼𝑙(𝑥𝑙) = {𝑖 ∈ 𝐼𝑙 : 𝑐𝑖(𝑥𝑙) =
Φ𝑙(𝑥𝑙), Φ𝑙(𝑥𝑙) = max𝑖∈𝐼𝑙{𝑐𝑖(𝑥𝑙), 0}}.

(A4) There exist two constants 0 < 𝑎 ≤ 𝑏 such that 𝑎‖𝑑𝑙‖
2
≤

𝑑
𝑇

𝑙
𝐻
𝑘

𝑙
𝑑𝑙 ≤ 𝑏‖𝑑𝑙‖

2, 𝑙 = 1, . . . , 𝑝 for all iteration 𝑘 and
𝑑𝑙 ∈ 𝑅

𝑛𝑙 .
(A5) The solution of problem (12) satisfies

Ψ
𝑖

𝑘
(𝑑) = ℎ (𝑥

𝑖

𝑘
) −

(𝑐 (𝑥
𝑖

𝑘
) + ∇𝑐(𝑥

𝑖

𝑘
)
𝑇

𝑑)
+

≥ 𝛽2Δ
𝑖min {ℎ (𝑥𝑖

𝑘
) , Δ
𝑖
} ,

(13)

where 𝛽2 is a constant.

Remark 2. Assumptions (A1) and (A2) are the standard
assumptions. (A3) is the LICQ constraint qualification. (A4)
plays an important role in obtaining the convergence results.
(A5) is the sufficient reduction condition which guarantees
the global convergence in a trust region method. Under the
assumptions, 𝑓 is bounded below and the gradient function
𝑔𝑙, 𝑙 = 1, . . . , 𝑝 is uniformly continuous in 𝑆𝑙, where 𝑆 =
(𝑆1, . . . , 𝑆𝑝).

Remark 3. We can use quasi-Newton BFGS methods to
update𝐻𝑘

𝑙
, different from [18], we can use a small modifica-

tion of 𝑦𝑘
𝑙
to make 𝐻𝑘

𝑙
reserve positive definite according to

the formula (33) of [17].
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Similar to Lemma 1 in [19], we can get the following con-
clusions.

Lemma 4. Suppose (A1)–(A4) hold, 𝐻𝑘
𝑙
, 𝑙 = 1, . . . , 𝑝 is a

symmetric positive definite, then 𝑑𝑘
𝑙
is well defined and (𝑑𝑘

𝑙
, 𝑧
𝑘

𝑙
)

is the unique KKT point of (5). Furthermore, 𝑑𝑘l is bounded
over compact subsets of 𝑆𝑙 × 𝑃𝑙, where 𝑃𝑙 is the set of symmetric
positive definite 𝑛𝑙 × 𝑛𝑙 matrices.

Proof. First note that the feasible set for (5) is nonempty, since
(𝑑𝑙, 𝑧𝑙) = (0,max𝑖∈𝐼𝑙{𝑐𝑖(𝑥𝑙), 0}) is always feasible. It is clear
that, if (𝑑𝑘

𝑙
, 𝑧
𝑘

𝑙
) is a solution to (5) if an only if 𝑑𝑘

𝑙
solves the

unconstrained problem

min
𝑑𝑙∈𝑅
𝑛𝑙

1

2
𝑑
𝑇

𝑙
𝐻
𝑘

𝑙
𝑑𝑙

+max{(𝑔𝑘
𝑙
)
𝑇

𝑑𝑙,max
𝑖∈𝐼𝑙

{𝑐𝑖 (𝑥
𝑘

𝑙
) + ∇𝑐𝑖(𝑥

𝑘

𝑙
)
𝑇

𝑑𝑙}} ,

(14)

𝑧𝑙 = max{(𝑔𝑘
𝑙
)
𝑇

𝑑𝑙,max
𝑖∈𝐼𝑙

{𝑐𝑖 (𝑥
𝑘

𝑙
) + ∇𝑐𝑖(𝑥

𝑘

𝑙
)
𝑇

𝑑𝑙}} . (15)

Since the function being minimized in (14) is strictly convex
and radially unbounded, it follows that 𝑑𝑘

𝑙
is well defined and

unique as a global minimizer for the convex problem (5) and
thus unique as a KKT point for that problem. So we have

𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
+ V𝑔
𝑘

𝑙
+ ∇𝑐𝑙(𝑥

𝑘

𝑙
)
𝑇

𝜇
𝑘

𝑙
= 0, (16)

1 − V −

𝑚𝑙

∑

𝑖=1

𝑢𝑖 = 0, (17)

due to (17) and 𝑢𝑖 ≥ 0, V ≥ 0, we have 𝑢𝑖, 𝑖 ∈ 𝐼𝑙 is
bounded. Since 𝑓, 𝑐𝑖 is twice continuously differentiable and
assumption (A1) holds, for all 𝑥𝑙 ∈ 𝑆𝑙, ‖ − (V𝑔𝑙 + ∇𝑐𝑙(𝑥

𝑘

𝑙
)
𝑇
𝜇
𝑘

𝑙
‖

is bounded, set the maximum is 𝑀. For (16), ‖𝐻𝑘
𝑙
𝑑
𝑘

𝑙
‖ ≤ 𝑀

and combining with Assumption (A4), we have 𝑎‖𝑑𝑘
𝑙
‖
2
≤

𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
≤ ‖𝑑
𝑘

𝑙
‖‖𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
‖ ≤ 𝑀‖𝑑

𝑘

𝑙
‖, so that ‖𝑑𝑘

𝑙
‖ ≤ 𝑀/𝑎;

therefore, 𝑑𝑘
𝑙
is bounded on 𝑆𝑙 × 𝑃𝑙.

Lemma 5. Suppose that 𝑥𝑘
𝑙
∈ 𝑅
𝑛𝑙 , 𝑙 = 1, . . . , 𝑝, 𝐻

𝑘

𝑙
is positive

definite matrix, and (𝑑𝑘
𝑙
, 𝑧
𝑘

𝑙
) is the solution of 𝑄𝑃𝑙. Then we

have the results (B1) and (B2).

(B1) The following inequality holds:

𝑧
𝑘

𝑙
≤ Φ𝑙 (𝑥

𝑘

𝑙
) −
1

2
(𝑑
𝑘

𝑙
)
𝑇

𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
, 𝑙 = 1, . . . , 𝑝, (18)

whereΦ𝑙(𝑥𝑙) = max𝑖∈𝐼𝑙{𝑐𝑖(𝑥𝑙), 0}.

(B2) If 𝑑𝑘
𝑙
= 0 then 𝑧𝑘

𝑙
= 0, 𝑙 = 1, . . . , 𝑝, and 𝑥𝑘 =

(𝑥
𝑘

1
, . . . , 𝑥

𝑘

𝑝
) is a KKT point of problem (1).

Proof. (B1) Since 𝑑𝑙 = 0, 𝑧𝑙 = max𝑖∈𝐼𝑙{𝑐𝑖(𝑥𝑙), 0} is a feasible
point of 𝑄𝑃l , from the optimality of (𝑑𝑘

𝑙
, 𝑧
𝑘

𝑙
), we have

𝑧
𝑘

𝑙
+
1

2
(𝑑
𝑘

𝑙
)
𝑇

𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
≤ 𝑧𝑙 + 0 = max

𝑖∈𝐼𝑙

{𝑐𝑖 (𝑥
𝑘

𝑙
) , 0} . (19)

Together with the definination of Φ𝑙(𝑥
𝑘

𝑙
), implies that (18)

holds.
(B2) Since (𝑑𝑘

𝑙
, 𝑧
𝑘

𝑙
) is the solution of (5), there exists V ∈ 𝑅

and 𝜇 ∈ 𝑅𝑚𝑙 such that the KKT condition of (5), while 𝑑𝑘
𝑙
= 0,

we have

V𝑔
𝑘

𝑙
+ ∇𝑐𝑙(𝑥

𝑘

𝑙
)
𝑇

𝜇
𝑘

𝑙
= 0, (20)

1 − V −

𝑚𝑙

∑

𝑖=1

𝑢
𝑘

𝑖
= 0, (21)

−𝑧
𝑘

𝑙
≤ 0, 𝑐𝑖 (𝑥

𝑘

𝑙
) − 𝑧
𝑘

𝑙
≤ 0, 𝑖 ∈ 𝐼𝑙, (22)

V𝑧
𝑘

𝑙
= 0, V ≥ 0, (23)

𝑢
𝑘

𝑖
[𝑐𝑖 (𝑥
𝑘

𝑙
) − 𝑧
𝑘

𝑙
] = 0, 𝑢

𝑘

𝑖
≥ 0, 𝑖 ∈ 𝐼𝑙. (24)

By the definition ofΦ𝑙(𝑥
𝑘

𝑙
) and (22),Φ𝑙(𝑥

𝑘

𝑙
) ≤ 𝑧
𝑘

𝑙
. Then, from

(18) and 𝑑𝑘
𝑙
= 0, Φ𝑙(𝑥

𝑘

𝑙
) ≥ 𝑧
𝑘

𝑙
. From (24), it follows that

𝑢
𝑘

𝑖
= 0, ∀𝑖 ∉ 𝐼

0

𝑙
= {𝑖 ∈ 𝐼𝑙 : 𝑐𝑖 (𝑥

𝑘

𝑙
) = Φ𝑙 (𝑥

𝑘

𝑙
)} . (25)

Hence, it follows from Assumption (A3) Together with (20)
and (21) that V > 0. For (23) we have 𝑧𝑘

𝑙
= 0.

From (22) and (24), we have

𝑢
𝑘

𝑖
𝑐𝑖 (𝑥
𝑘

𝑙
) = 0, 𝑢

𝑘

𝑖
≥ 0, 𝑖 ∈ 𝐼𝑙,

𝑐𝑖 (𝑥
𝑘

𝑙
) ≤ 0, 𝑖 ∈ 𝐼𝑙,

(26)

due to (20) and set 𝜌𝑘
𝑖
= 𝑢
𝑘

𝑖
/V, we have

𝑔
𝑘

𝑙
+ ∇𝑐𝑙(𝑥

𝑘

𝑙
)
𝑇

𝜌
𝑘

𝑙
= 0. (27)

Taking into account separability of constraints 𝑐(𝑥), and
let 𝐼 = ∪𝑝

𝑙=1
𝐼𝑙, then

𝜌
𝑘

𝑖
𝑐𝑖 (𝑥𝑘) = 0, 𝜌

𝑘

𝑖
≥ 0, 𝑖 ∈ 𝐼,

𝑐𝑖 (𝑥𝑘) ≤ 0, 𝑖 ∈ 𝐼,

𝑔𝑘 + ∇𝑐𝑖(𝑥𝑘)
𝑇
𝜌𝑘 = 0;

(28)

that is, 𝑥𝑘 is a KKT point of (1).

Lemma 6 (see [17, Lemma 3]). In Step 3, the line search pro-
cedure is well defined.

Lemma 7 (see [17, Lemma 4]). Under Assumption (A5), the
Restoration Algorithm (Algorithm B) terminates finitely.

From Lemmas 6 and 7, we know that the Algorithm A
and Algorithm B are well implemented.

The following Lemma implies that every cluster point of
{𝑥𝑘} which generated by Algorithm A is a feasible point of
problem (1).

Lemma 8. Let {𝑥𝑘} be an infinite sequence generated by Algo-
rithm A, then ℎ(𝑥𝑘) → 0 (𝑘 → ∞).
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Theorem 9. Suppose {𝑥𝑘} is an infinite sequence generated by
Algorithm A, 𝑑𝑘

𝑙
, 𝑙 = 1, . . . , 𝑝 is the solution of (5), 𝑑𝑘 =

(𝑑
𝑘

1
, . . . , 𝑑

𝑘

𝑝
), then lim𝑘→∞‖𝑑

𝑘

𝑙
‖ = 0, 𝑙 = 1, . . . , 𝑝.

Proof. By Assumption (A1), there exists a point 𝑥∗ such that
𝑥𝑘 → 𝑥

∗ for 𝑘 ∈ 𝐾, where 𝐾 is an infinite index set. By
Algorithm A and Lemma 8, we consider the following two
possible cases.

Case I. 𝐾0 = {𝑘 ∈ 𝐾 | 𝑔𝑇𝑘 𝑑𝑘 ≤ −(1/2)𝑑
𝑇

𝑘
𝐻𝑘𝑑𝑘} is an infinite

index set. In this case, we have

𝑓 (𝑥𝑘 + 𝜆𝑘𝑑𝑘) ≤ 𝑓 (𝑥𝑙(𝑘)) − 𝜆𝑘𝜇𝑑
𝑇

𝑘
𝐻𝑘𝑑𝑘

= 𝑓 (𝑥𝑙(𝑘)) − 𝜆𝑘𝜇

𝑝

∑

𝑙=1

𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
.

(29)

Since𝑚(𝑘 + 1) ≤ 𝑚(𝑘) + 1, we obtain

𝑓 (𝑥𝑙(𝑘+1)) = max
0≤𝑗≤𝑚(𝑘+1)

[𝑓 (𝑥𝑘+1−𝑗)]

≤ max
0≤𝑗≤𝑚(𝑘)+1

[𝑓 (𝑥𝑘+1−𝑗)]

= max {𝑓 (𝑥𝑙(𝑘)) , 𝑓 (𝑥𝑘+1)}

= 𝑓 (𝑥𝑙(𝑘)) .

(30)

Hence for𝑚(𝑘) ≤ 𝑀, it holds

𝑓 (𝑥𝑙(𝑘)) ≤ 𝑓 (𝑥𝑙(𝑙(𝑘)−1)) − 𝜆𝑙(𝑘)−1𝜇𝑑
𝑇

𝑙(𝑘)−1
𝐻𝑙(𝑘)−1𝑑𝑙(𝑘)−1

= 𝑓 (𝑥𝑙(𝑙(𝑘)−1)) − 𝜆𝑙(𝑘)−1𝜇

𝑝

∑

𝑙=1

(𝑑
𝑙(𝑘)−1

𝑙
)
𝑇

𝐻
𝑙(𝑘)−1

𝑙
𝑑
𝑙(𝑘)−1

𝑙
.

(31)

Since 𝑓 is bounded below, {𝑓(𝑥𝑙(𝑘))} converges. Due to (31),
we can obtain

lim
𝑘→∞

𝜆𝑙(𝑘)−1𝜇

𝑝

∑

𝑙=1

(𝑑
𝑙(𝑘)−1

𝑙
)
𝑇

𝐻
𝑙(𝑘)−1

𝑙
𝑑
𝑙(𝑘)−1

𝑙
= 0. (32)

By Lemma 6, there exists 𝜆 > 0 such that 𝜆𝑙(𝑘)−1 ≥ 𝜆. By
Assumption (A4), we obtain

lim
𝑘→∞


𝑑
𝑙(𝑘)−1

𝑙


= 0, 𝑙 = 1, . . . , 𝑝. (33)

From the uniform continuity of 𝑓(𝑥), this implies that

lim
𝑘→∞

𝑓 (𝑥𝑙(𝑘)−1) = lim
𝑘→∞

𝑓 (𝑥𝑙(𝑘)) . (34)

Let 𝑙(𝑘) = 𝑙(𝑘 +𝑀 + 2), for any given 𝑗 ≥ 1, we can have

lim
𝑘→∞


𝑑
𝑙(𝑘)−𝑗

𝑙


= 0, 𝑙 = 1, . . . , 𝑝, (35)

lim
𝑘→∞

𝑓 (𝑥
𝑙(𝑘)−𝑗

) = lim
𝑘→∞

𝑓 (𝑥𝑙(𝑘)) . (36)

If 𝑗 = 1, since {𝑙(𝑘)} ⊂ {𝑙(𝑘)}, (35) and (36) follow from (33)
and (34). For a given number 𝑗 > 1, we have

𝑓 (𝑥
𝑙(𝑘)−𝑗

)

≤ 𝑓 (𝑥
𝑙(𝑙(𝑘)−𝑗−1)

) − 𝜆
𝑙(𝑘)−𝑗−1

𝜇𝑑
𝑇

𝑙(𝑘)−𝑗−1
𝐻
𝑙(𝑘)−𝑗−1

𝑑
𝑙(𝑘)−𝑗−1

.

(37)

Using the same arguments above, we obtain

lim
𝑘→∞


𝑑
𝑙(𝑘)−𝑗−1

𝑙


= 0, 𝑙 = 1, . . . , 𝑝,

lim
𝑘→∞

𝑓 (𝑥
𝑙(𝑘)−𝑗−1

) = lim
𝑘→∞

𝑓 (𝑥𝑙(𝑘)) .

(38)

Therefore (35) and (36) hold for any given 𝑗 ≥ 1.
Now for any 𝑘, 𝑥𝑘+1 = 𝑥𝑙(𝑘) − ∑

𝑙(𝑘)−𝑘−1

𝑗=1
𝜆
𝑙(𝑘)−𝑗

𝑑
𝑙(𝑘)−𝑗

, from
Remark 1, we obtain 𝑙(𝑘) = 𝑙(𝑘 + 𝑀 + 2) < 𝑘 + 𝑀 + 2, that
is 𝑙(𝑘) − 𝑘 − 1 ≤ 𝑀 + 1. Since 𝑑

𝑙(𝑘)−𝑗
= {𝑑

l(𝑘)−𝑗
1

, . . . , 𝑑
𝑙(𝑘)−𝑗

𝑝 }

together with (35), we can obtain lim𝑘→∞‖𝑑𝑙(𝑘)−𝑗‖ = 0, 1 ≤
𝑗 ≤ 𝑙(𝑘) − 𝑘 − 1. Therefore,

lim
𝑘→∞


𝑥𝑘+1 − 𝑥𝑙(𝑘)


= 0. (39)

Since {𝑓(𝑥𝑙(𝑘))} admits a limit, by the uniform continuity
of 𝑓 on 𝑆, it holds

lim
𝑘→∞

𝑓 (𝑥𝑘) = lim
𝑘→∞

𝑓 (𝑥
𝑙(𝑘)−1

) = lim
𝑘→∞

𝑓 (𝑥𝑙(𝑘)) . (40)

Then by the relation (29), we have

lim
𝑘→∞

𝑝

∑

𝑙=1

𝜆𝑘𝜇𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
= 0. (41)

Using the same arguments for deriving (33), we obtain that

lim
𝑘→∞


𝑑
𝑘

𝑙


= 0, 𝑙 = 1, . . . , 𝑝. (42)

Case II. 𝐾0 is a finite index set, which implies 𝐾1 = {𝑘 ∈ 𝐾 |
𝑔
𝑇

𝑘
𝑑𝑘 > −(1/2)𝑑

𝑇

𝑘
𝐻𝑘𝑑𝑘} is an infinite index set.

If lim𝑘→∞‖𝑑
𝑘

𝑙
‖ = 0, 𝑙 = 1, . . . , 𝑝 does not hold, then

there exists a positive number 𝜀 > 0 and an infinite index
set 𝐾2, such that ‖𝑑𝑘

𝑙
‖ > 𝜀, for all 𝑘 ∈ 𝐾2 ⊂ 𝐾1. Since (𝑑

𝑘

𝑙
, 𝑧
𝑘

𝑙
)

is the solution of 𝑄𝑃𝑙. By the KKT condition of (5), we have

𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
+ V𝑔
𝑘

𝑙
+ ∇𝑐𝑙(𝑥

𝑘

𝑙
)
𝑇

𝜇
𝑘

𝑙
= 0, (43)

1 − V −

𝑚𝑙

∑

𝑖=1

𝑢𝑖 = 0, (44)

𝑔
𝑘𝑇

𝑙
𝑑
𝑘

𝑙
− 𝑧
𝑘

𝑙
≤ 0, (45)

𝑢𝑖 [𝑐𝑖 (𝑥
𝑘

𝑙
) + ∇𝑐𝑖(𝑥

𝑘

𝑙
)
𝑇

𝑑
𝑘

𝑙
− 𝑧
𝑘

𝑙
] = 0, 𝑢𝑖 ≥ 0, 𝑖 ∈ I𝑙. (46)

Since V ≥ 0, 𝑢𝑖 ≥ 0 and (44), we obtain 0 ≤ 𝑢𝑖 ≤ 1,
therefore there exists𝑀𝑙 satisfied ‖𝑢

𝑘

𝑙
‖ ≤ 𝑀𝑙.
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By Lemma 8, ℎ(𝑥𝑘) → 0 implies ℎ𝑙(𝑥
𝑘

𝑙
) → 0. Hence

there exists 𝑘0, such that for 𝑘 > 𝑘0, 𝑘 ∈ 𝐾2, it holds

ℎ𝑙 (𝑥
𝑘

𝑙
) ≤

𝑎𝜀
2

2𝑀𝑙

≤
𝑎

𝑑
𝑘

𝑙



2

2𝑀𝑙

≤
𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙

2𝑀𝑙

, 𝑙 = 1, . . . , 𝑝. (47)

Consequently, from (43), we deduce

V𝑔
𝑘𝑇

𝑙
𝑑
𝑘

𝑙
= −𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
− 𝜇
𝑘𝑇

𝑙
∇𝑐𝑙 (𝑥

𝑘

𝑙
) 𝑑
𝑘

𝑙

= −𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
+

𝑚𝑙

∑

𝑖=1

𝑢𝑖 (𝑐𝑖 (𝑥
𝑘

𝑙
) − 𝑧
𝑘

𝑙
)

≤ −𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
+𝑀𝑙ℎ𝑙 (𝑥

𝑘

𝑙
) −

𝑚𝑙

∑

𝑖=1

𝑢𝑖𝑧
𝑘

𝑙

≤ −𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
+𝑀𝑙ℎ𝑙 (𝑥

𝑘

𝑙
) −

𝑚𝑙

∑

𝑖=1

𝑢𝑖𝑔
𝑘𝑇

𝑙
𝑑
𝑘

𝑙
.

(48)

Together with (44), (47), and transpose

𝑔
𝑘𝑇

𝑙
𝑑
𝑘

𝑙
= (

𝑚𝑙

∑

𝑖=1

𝑢𝑖 + V)𝑔
𝑘𝑇

𝑙
𝑑
𝑘

𝑙

≤ −𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
+𝑀𝑙ℎ𝑙 (𝑥

𝑘

𝑙
)

≤ −𝑑
𝑘𝑇

l 𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
+
1

2
𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙

= −
1

2
𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙
.

(49)

Taking into account separability of constraints 𝑐(𝑥), then

𝑔
𝑇

𝑘
𝑑𝑘 =

𝑝

∑

𝑙=1

𝑔
𝑘𝑇

𝑙
𝑑
𝑘

𝑙

≤ −

𝑝

∑

𝑙=1

1

2
𝑑
𝑘𝑇

𝑙
𝐻
𝑘

𝑙
𝑑
𝑘

𝑙

= −
1

2
𝑑
𝑇

𝑘
𝐻𝑘𝑑𝑘,

(50)

which contradicts the definition of𝐾1.The proof is complete.

Theorem 10. Suppose {𝑥𝑘} is an infinite sequence generated
by Algorithm A and the assumptions in Theorem 9 hold. Then
every cluster point of {𝑥𝑘} is a KKT point of problem (1).

Proof. By Assumption (A2), there exists 𝑥∗, such that 𝑥𝑘 →
𝑥
∗
, 𝑘 ∈ 𝐾. From Lemma 8, we have ℎ(𝑥𝑘) → 0, 𝑘 ∈ 𝐾,

which means that 𝑥∗ is a feasible point. FromTheorem 9, we
have lim𝑘→∞‖𝑑

𝑘

𝑙
‖ = 0, 𝑙 = 1, . . . , 𝑝. By Lemma 5, 𝑑𝑘

𝑙
→

0 implies that 𝑧𝑘
𝑙
→ 0, 𝑙 = 1, . . . , 𝑝, that is, 𝑑∗

𝑙
= 0, 𝑙 =

1, . . . , 𝑝, 𝑧
∗

𝑙
= 0, 𝑙 = 1, . . . , 𝑝.

Compare the KKT condition of (5) with the KKT condi-
tion of problem (1), and let 𝜌∗ = (𝜌∗

1
, . . . 𝜌
∗

𝑝
), 𝜌
∗

𝑙
= (𝑢
∗

𝑖
/V, 𝑖 ∈

𝐼𝑙), 𝐼 = ∪
𝑝

𝑙=1
𝐼𝑙.

Table 1: Results for Algorithm A.

Problem 1
𝑛, ]
] = 3

𝑃

Algorithm A
Iteration
number

Iteration number
of 𝑄𝑃𝑙 subproblem

Running
times

𝑛 = 6 2 5 52 0.5
𝑛 = 12 4 10 66 0.5
𝑛 = 24 8 15 78 1
𝑛 = 48 16 9 46 2
𝑛 = 96 32 6 50 9
𝑛 = 192 64 7 24 13

Taking into account separability of constraints 𝑐(𝑥) and
𝑥, we conclude

𝑔
∗
+ 𝜌
∗
∇𝑐
∗
= 0, 𝑐 (𝑥

∗
) ≤ 0, 𝜌

∗

𝑖
≥ 0,

𝜌
∗𝑇

𝑖
𝑐𝑖 (𝑥
∗
) = 0, 𝑖 ∈ 𝐼.

(51)

Therefore 𝑥∗ is a KKT point of problem (1).

4. Numerical Results

To get some insight into computational properties of our
approach in Section 2, we considered the same test problems
taken from [1]. Choose Problem 1 of [1] as follows:

min
𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

V

∑
𝑡=1

𝑥(𝑖−1)V+𝑡𝑥(𝑗−1)V+𝑡

s.t.
V

∑
𝑡=1

𝑥
2

(𝑖−1)V+𝑡 − 1 = 0, 𝑖 = 1, . . . , 𝑝.

(52)

In our test, we only verify our convergence theory without
comparing with serial algorithms. In the future, we will
propose the convergent rate of the parallel algorithm.

Not having access to a parallel computer, we have carried
out on Graphics Processing Unit (GPU) to solve them
and implement the algorithm on Compute Unified Device
Architecture (CUDA) [20]. However, the input and output
are implemented by CPU. And all the subproblems are solved
on blocks which are constructed into many threads. If there
are 𝑝 blocks in GPU, which is equivalent to 𝑝 processors in
a parallel computer. Many threads of the block can achieve a
large number of vector calculations in current block.

We have implemented Algorithm A in C language. All
codes were run under Visual Studio 2008 and Cuda 4.0 on
the DELL Precision T7400. In Table 1, we report the number
of iterations and the running times for Algorithms A on
Problem (52).The results in Table 1 confirm that the proposed
approach certainly makes sense. We solve the subproblem
(5) which is a positive semidefinite quadratic programs by
the modified interior-point methods. And the Restoration
Algorithm of [17] is solved by Trust-region Approach com-
bined with local pattern search methods. All algorithms
are coded by C language without using any function from
optimization Toolbox; hence the results are not the best.
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In Table 1, 𝑛 denotes the dimensions of test problem and
] denotes the variable number of one block. There is less
iteration number of 𝑄𝑃𝑙 subproblem with more numbers
of blocks for high-dimensional problem, which shows the
algorithm is reliable.

5. Conclusion

The PVD algorithm which was proposed in 1994 is used to
solve unconstrained optimization problems or has a special
case of convex block-separable constraints. In 1997, M. V.
Solodov proposed useful generalizations that consist, for the
general unconstrained case, of replacing exact global solution
of the subproblems by a certain natural sufficient descent
condition, and, for the convex case, of inexact subproblem
solution in the PVD algorithm. M. V. Solodov proposed a
PVD approach in 1998 which applied to problems with gen-
eral convex constraints directly and show that the algorithm
converges. In 2002, C. A. Sagastizábal et al. propose two
variants of PVD for the constrained case: without assuming
convexity of constraints, but assuming block-separable struc-
ture and for inseparable constraints, but assuming convexity.
In this paper, we propose the modified algorithm of [1] used
to the general constraints but with block-separable structure.

In a word, the algorithm above is a special structure of the
objective function or constraints with a special structure. In
the further, we will study the parallel algorithm with general
inseparable constraints.
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