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We prove two new fixed point theorems in the framework of partially ordered metric spaces. Our results generalize and improve
many recent fixed point theorems in the literature.

1. Introduction and Preliminaries

Throughout this paper, by R+, we denote the set of all
nonnegative real numbers, while N is the set of all natural
numbers. Let (𝑋, 𝑑) be a metric space, 𝐷 a subset of 𝑋, and
𝑓 : 𝐷 → 𝑋 a map. We say 𝑓 is contractive if there exists
𝛼 ∈ [0, 1) such that, for all 𝑥, 𝑦 ∈ 𝐷,

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝛼 ⋅ 𝑑 (𝑥, 𝑦) . (1)

The well-known Banach’s fixed point theorem asserts that
if 𝐷 = 𝑋, 𝑓 is contractive and (𝑋, 𝑑) is complete, then
𝑓 has a unique fixed point in 𝑋. In nonlinear analysis, the
study of fixed points of given mappings satisfying certain
contractive conditions in various abstract spaces has been
investigated deeply. The Banach contraction principle [1] is
one of the initial and crucial results in this direction. Also,
this principle has many generalizations. For instance, Alber
and Guerre-Delabriere in [2] suggested a generalization of
the Banach contractionmapping principle by introducing the
concept of weak contraction in Hilbert spaces. In [2], the
authors also proved that the result of Eslamian and Abkar [3]
is equivalent to the result of Dutta and Choudhury [4]. Later,
weakly contractive mappings and mappings satisfying other
weak contractive inequalities have been discussed in several
works, some of which are noted in [4–16].

In 2008, Dutta and Choudhury proved the following
theorem.

Theorem 1 (see [4]). Let (𝑋, 𝑑) be a complete metric space,
and let 𝑓 : 𝑋 → 𝑋 be such that

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) − 𝜙 (𝑑 (𝑥, 𝑦)) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥, 𝑦 ∈ 𝑋,
(2)

where 𝜓, 𝜙 : R+ → R+ are continuous and nondecreasing,
and 𝜓(𝑡) = 𝜙(𝑡) = 0 if and only if 𝑡 = 0. Then 𝑓 has a fixed
point in𝑋.

Recently, Eslamian and Abkar [3] proved the following
theorem.

Theorem 2 (see [3]). Let (𝑋, 𝑑) be a complete metric space,
and let 𝑓 : 𝑋 → 𝑋 be such that

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) − 𝛽 (𝑑 (𝑥, 𝑦)) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥, 𝑦 ∈ 𝑋,
(3)

where 𝜓, 𝛼, 𝛽 : R+ → R+ are such that 𝜓 is continuous and
nondecreasing, 𝛼 is continuous, 𝛽 is lower semicontinuous, and

𝜓 (𝑡) − 𝛼 (𝑡) + 𝛽 (𝑡) > 0 ∀𝑡 > 0,

𝜓 (𝑡) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑡 = 0, 𝛼 (0) = 𝛽 (0) = 0.
(4)

Then 𝑓 has a fixed point in𝑋.
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In the recent, fixed point theory has developed rapidly in
partially ordered metric spaces (e.g., [17–22]).

In 2012, Choudhury andKundu [23] proved the following
fixed point theorem as a generalization of Theorem 2.

Theorem 3 (see [23]). Let (𝑋, ⊑) be a partially ordered set and
suppose that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a
complete metric space and let 𝑓 : 𝑋 → 𝑋 be a nondecreasing
mapping such that

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) − 𝛽 (𝑑 (𝑥, 𝑦)) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥, 𝑦 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ⊑ 𝑦,
(5)

where 𝜓, 𝛼, 𝛽 : R+ → R+ are such that 𝜓 is continuous and
nondecreasing, 𝛼 is continuous, 𝛽 is lower semicontinuous, and

𝜓 (𝑡) − 𝛼 (𝑡) + 𝛽 (𝑡) > 0 ∀𝑡 > 0,

𝜓 (𝑡) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑡 = 0, 𝛼 (0) = 𝛽 (0) = 0.
(6)

Also, if any nondecreasing sequence {𝑥
𝑛
} in 𝑋 converges to ],

then one assumes that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (7)

If there exists 𝑥
0
∈ 𝑋 with 𝑥

0
⊑ 𝑓𝑥
0
, then 𝑓 and 𝑔 have a

coincidence point in𝑋.

In this paper, we prove two new fixed point theorems in
the framework of partially orderedmetric spaces. Our results
generalize and improve many recent fixed point theorems in
the literature.

2. Fixed Point Results (I)

We start with the following definition.

Definition 4. Let (𝑋, ⊑) be a partially ordered set and 𝑓 :

𝑋 → 𝑋. Then 𝑓 is said to be monotone nondecreasing if,
for 𝑥, 𝑦 ∈ 𝑋,

𝑥 ⊑ 𝑦 󳨐⇒ 𝑓𝑥 ⊑ 𝑓𝑦. (8)

Let (𝑋, ⊑) be a partially ordered set. 𝑥, 𝑦 ∈ 𝑋 are said to
be comparable if either 𝑥 ⊑ 𝑦 or 𝑦 ⊑ 𝑥 holds.

In the section, we denote by Ψ the class of functions 𝜓 :

R+
3

→ R+ satisfying the following conditions:

(𝜓
1
) 𝜓 is an increasing, continuous function in each
coordinate;

(𝜓
2
) for all 𝑡 ∈ R+, 𝜓(𝑡, 𝑡, 𝑡) ≤ 𝑡, 𝜓(0, 0, 𝑡) ≤ 𝑡 and
𝜓(𝑡, 0, 0) ≤ 𝑡.

Next, we denote byΦ the class of functions 𝜙 : R+ → R+

satisfying the following conditions:

(𝜙
1
) 𝜙 is a continuous, nondecreasing function;

(𝜙
2
) 𝜙(𝑡) > 0 for 𝑡 > 0 and 𝜙(0) = 0;

(𝜙
3
) 𝜙 is subadditive; that is, 𝜙(𝑡

1
+ 𝑡
2
) ≤ 𝜙(𝑡

1
) + 𝜙(𝑡

2
) for

all 𝑡
1
, 𝑡
2
> 0.

And we denote the following sets of functions:

Θ = {𝜑 : R
+

→ R
+ such that 𝜑 is continuous} ,

Ξ = {𝜉 : R
+

→ R
+ such that 𝜉 is lower continuous} .

(9)

Let 𝑋 be a nonempty set, and let (𝑋, ⊑) be a partially
ordered set endowedwith ametric𝑑.Then, the triple (𝑋, ⊑, 𝑑)
is called a partially ordered complete metric space.

We now state the main fixed point theorem for
(𝜑, 𝜓, 𝜙, 𝜉)-contractions in partially ordered metric spaces,
as follows.

Theorem 5. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space. Let 𝑓 : 𝑋 → 𝑋 be monotone nondecreasing,
and

𝜑 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝜓 (𝜙 (𝑑 (𝑥, 𝑦)) , 𝜙 (𝑑 (𝑥, 𝑓𝑥)) , 𝜙 (𝑑 (𝑦, 𝑓𝑦)))

− 𝜉 (max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦)}) ,
(10)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where 𝜑 ∈ Θ, 𝜓 ∈ Ψ, 𝜙 ∈ Φ, and
𝜉 ∈ Ξ, and

𝜑 (𝑡) − 𝜙 (𝑡) + 𝜉 (𝑡) > 0 ∀𝑡 > 0,

𝜑 (𝑡) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑡 = 0, 𝜙 (0) = 𝜉 (0) = 0.
(11)

Suppose that either

(a) 𝑓 is continuous or

(b) if any nondecreasing sequence {𝑥
𝑛
} in𝑋 converges to ],

then one assumes that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (12)

If there exists 𝑥
0
∈ 𝑋 with 𝑥

0
⊑ 𝑓𝑥
0
, then 𝑓 has a fixed point

in 𝑋.

Proof. Since 𝑓 is nondecreasing, by induction, we construct
the sequence {𝑥

𝑛
} recursively as

𝑥
𝑛
= 𝑓
𝑛

𝑥
0
= 𝑓𝑥
𝑛−1

∀𝑛 ∈ N. (13)

Thus, we also conclude that

𝑥
0
⊏ 𝑥
1
= 𝑓𝑥
0
⊑ 𝑥
2
= 𝑓𝑥
1
⊑ ⋅ ⋅ ⋅ ⊑ 𝑥

𝑛
= 𝑓𝑥
𝑛−1

⊑ ⋅ ⋅ ⋅ . (14)

If any two consecutive terms in (14) are equal, then the 𝑓 has
a fixed point, and hence the proof is completed. So we may
assume that

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ̸= 0, ∀𝑛 ∈ N. (15)

Now, we claim that 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑑(𝑥
𝑛−1

, 𝑥
𝑛
) for all 𝑛 ∈ N. If

not, we assume that 𝑑(𝑥
𝑛−1

, 𝑥
𝑛
) < 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

) for some 𝑛 ∈ N;
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substituting 𝑥 = 𝑥
𝑛
and 𝑦 = 𝑥

𝑛+1
in (10) and using the

definition of the function 𝜓, we have

𝜓 (𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) , 𝜙 (𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛
)) , 𝜙 (𝑑 (𝑥

𝑛+1
, 𝑓𝑥
𝑛+1

)))

= 𝜓 (𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) , 𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) , 𝜙 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)))

≤ 𝜙 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)) ,

𝜉 (max {𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (𝑥

𝑛+1
, 𝑓𝑥
𝑛+1

)})

= 𝜉 (max {𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)})

= 𝜉 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)) ,

(16)

and hence

𝜑 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

))

= 𝜑 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

))

≤ 𝜙 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)) − 𝜉 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)) .

(17)

Since 𝜑(𝑡) − 𝜙(𝑡) + 𝜉(𝑡) > 0 for all 𝑡 > 0, we have that
𝑑(𝑥
𝑛+1

, 𝑥
𝑛+2

) = 0, which contradicts (15). Therefore, we
conclude that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ∀𝑛 ∈ N. (18)

From the previous argument, we also have that for each 𝑛 ∈ N

𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜙 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜉 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) . (19)

It follows in (18) that the sequence {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is monotone
decreasing; it must converge to some 𝜂 ≥ 0. Taking limit as
𝑛 → ∞ in (19) and using the continuities of 𝜑 and 𝜙 and the
lower semicontinuous of 𝜉, we get

𝜑 (𝜂) ≤ 𝜙 (𝜂) − 𝜉 (𝜂) , (20)

which implies that 𝜂 = 0. So we conclude that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (21)

We next claim that {𝑥
𝑛
} is a Cauchy sequence; that is, for

every 𝜀 > 0, there exists 𝑛 ∈ N such that if 𝑝, 𝑞 ≥ 𝑛, then
𝑑(𝑥
𝑝
, 𝑥
𝑞
) < 𝜀.

Suppose, on the contrary, that there exists 𝜖 > 0 such that,
for any 𝑛 ∈ N, there are 𝑝

𝑛
, 𝑞
𝑛
∈ Nwith 𝑝

𝑛
> 𝑞
𝑛
≥ 𝑛 satisfying

𝑑 (𝑥
𝑞
𝑛

, 𝑥
𝑝
𝑛

) ≥ 𝜖. (22)

Further, corresponding to 𝑞
𝑛
≥ 𝑛, we can choose 𝑝

𝑛
in such

a way that it the smallest integer with 𝑝
𝑛
> 𝑞
𝑛
≥ 𝑛 and

𝑑(𝑥
𝑞
𝑛

, 𝑥
𝑝
𝑛

) ≥ 𝜖. Therefore 𝑑(𝑥
𝑞
𝑛

, 𝑥
𝑝
𝑛
−1
) < 𝜖. Now we have

that for all 𝑛 ∈ N

𝜖 ≤ 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

)

≤ 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑝
𝑛
−1
) + 𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑞
𝑛

)

< 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑝
𝑛
−1
) + 𝜖.

(23)

By letting 𝑛 → ∞. we get that

lim
𝑛→∞

𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

) = 𝜖. (24)

On the other hand, we have

𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

)

≤ 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑝
𝑛
−1
) + 𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) + 𝑑 (𝑥

𝑞
𝑛
−1
, 𝑥
𝑞
𝑛

) ,

𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)

≤ 𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑝
𝑛

) + 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

) + 𝑑 (𝑥
𝑞
𝑛

, 𝑥
𝑞
𝑛
−1
) .

(25)

Letting 𝑛 → ∞, then we get

lim
𝑛→∞

𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) = 𝜖. (26)

By (14), we have that the elements𝑥
𝑝
𝑛

and𝑥
𝑞
𝑛

are comparable.
Substituting 𝑥 = 𝑥

𝑝
𝑛
−1

and 𝑦 = 𝑥
𝑞
𝑛
−1

in (10), we have that, for
all 𝑛 ∈ N,

𝜓 (𝜙 (𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)) , 𝜙 (𝑑 (𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛
−1
)) ,

𝜙 (𝑑 (𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
)))

≤ 𝜓 (𝜙 (𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)) , 𝜙 (𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑝
𝑛

)) ,

𝜙 (𝑑 (𝑥
𝑞
𝑛
−1
, 𝑥
𝑞
𝑛

))) ,

𝑀 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)

= max {𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) , 𝑑 (𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛
−1
) ,

𝑑 (𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
)}

= max {𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) , 𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑝
𝑛

) ,

𝑑 (𝑥
𝑞
𝑛
−1
, 𝑥
𝑞
𝑛

)} .

(27)

By the previous argument and using inequality (10), we can
conclude that

𝜑 (𝜖) ≤ 𝜓 (𝜙 (𝜖) , 0, 0) − 𝜉 (𝜖)

≤ 𝜙 (𝜖) − 𝜉 (𝜖) ,
(28)

which implies that 𝜖 = 0, a contradiction. Therefore, the
sequence {𝑥

𝑛
} is a Cauchy sequence.

Since𝑋 is complete, there exists ] ∈ 𝑋 such that

lim
𝑛→∞

𝑥
𝑛
= ]. (29)

Suppose that (a) holds. Then

] = lim
𝑛→∞

𝑥
𝑛+1

= lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑓]. (30)

Thus, ] is a fixed point in𝑋.
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Suppose that (b) holds; that is, 𝑥
𝑛
⊑ ] for all 𝑛 ∈ N.

Substituting 𝑥 = 𝑥
𝑛
and 𝑦 = ] in (10), we have that

𝜑 (𝑑 (𝑥
𝑛+1

, 𝑓]))

= 𝜑 (𝑑 (𝑓𝑥
𝑛
, 𝑓]))

≤ 𝜓 (𝜙 (𝑑 (𝑥
𝑛
, ])) , 𝜙 (𝑑 (𝑥

𝑛
, 𝑓𝑥
𝑛
)) , 𝜙 (𝑑 (], 𝑓])))

− 𝜉 (max {𝑑 (𝑥
𝑛
, ]) , 𝑑 (𝑥

𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (], 𝑓])}) .

(31)

Taking limit as 𝑛 → ∞ in equality (31), we have

𝜑 (𝑑 (], 𝑓])) ≤ 𝜓 (𝜙 (0) , 𝜙 (𝑜) , 𝜙 (𝑑 (], 𝑓]))) − 𝜉 (𝑑 (], 𝑓]))

≤ 𝜙 (𝑑 (], 𝑓])) − 𝜉 (𝑑 (], 𝑓])) ,

(32)

which implies that 𝑑(], 𝑓]) = 0; that is ] = 𝑓]. So we
complete the proof.

If we let

𝜓 (𝜙 (𝑑 (𝑥, 𝑦)) , 𝜙 (𝑑 (𝑥, 𝑓𝑥)) , 𝜙 (𝑑 (𝑦, 𝑓𝑦)))

= max {𝜙 (𝑑 (𝑥, 𝑦)) , 𝜙 (𝑑 (𝑥, 𝑓𝑥)) , 𝜙 (𝑑 (𝑦, 𝑓𝑦))} ,
(33)

it is easy to get the following theorem.

Theorem 6. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space. Let 𝑓 : 𝑋 → 𝑋 be monotone nondecreasing,
and

𝜑 (𝑑 (𝑓𝑥, 𝑓𝑦))

≤ max {𝜙 (𝑑 (𝑥, 𝑦)) , 𝜙 (𝑑 (𝑥, 𝑓𝑥)) , 𝜙 (𝑑 (𝑦, 𝑓𝑦))}

− 𝜉 (max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦)}) ,

(34)

for all comparable 𝑥, 𝑦 ∈ 𝑋, where 𝜑 ∈ Θ, 𝜙 ∈ Φ, and 𝜉 ∈ Ξ,
and

𝜑 (𝑡) − 𝜙 (𝑡) + 𝜉 (𝑡) > 0 ∀𝑡 > 0,

𝜑 (𝑡) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑡 = 0, 𝜙 (0) = 𝜉 (0) = 0.
(35)

Suppose that either

(a) 𝑓 is continuous or
(b) if any nondecreasing sequence {𝑥

𝑛
} in𝑋 converges to ],

then one assumes that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (36)

If there exists 𝑥
0
∈ 𝑋 with 𝑥

0
⊑ 𝑓𝑥
0
, then 𝑓 has a fixed point

in𝑋.

3. Fixed Point Results (II)

In the section, we denote by Ψ the class of functions 𝜓 :

R+
3

→ R+ satisfying the following conditions:

(𝜓
1
) 𝜓 is an increasing and continuous function in each
coordinate;

(𝜓
2
) for 𝑡 ∈ R+, 𝜙(𝑡, 𝑡, 𝑡) ≤ 𝑡, 𝜙(𝑡, 0, 0) ≤ 𝑡, and 𝜙(0, 0, 𝑡) ≤
𝑡.

Next, we denote byΘ the class of functions𝜑 : R+ → R+

satisfying the following conditions:

(𝜑
1
) 𝜑 is continuous and nondecreasing;

(𝜑
2
) for 𝑡 > 0, 𝜑(𝑡) > 0 and 𝜑(0) = 0.

And we denote byΦ the class of functions 𝜙 : R+ → R+

satisfying the following conditions.

(𝜙
1
) 𝜙 is continuous;

(𝜙
2
) for 𝑡 > 0, 𝜙(𝑡) > 0 and 𝜙(0) = 0.

We now state the main fixed point theorem for the
(𝜓, 𝜑, 𝜙)-contractions in partially ordered metric spaces, as
follows.

Theorem 7. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, and let 𝑓 : 𝑋 → 𝑋 be monotone nondecreasing,
and

𝜑 (𝑑 (𝑓𝑥, 𝑓𝑦))

≤ 𝜓 (𝜑 (𝑑 (𝑥, 𝑦)) , 𝜑 (𝑑 (𝑥, 𝑓𝑥)) , 𝜑 (𝑑 (𝑦, 𝑓𝑦)))

− 𝜙 (𝑀 (𝑥, 𝑦)) + 𝐿 ⋅ 𝑚 (𝑥, 𝑦) ,

(37)

for all comparable 𝑥, 𝑦 ∈ 𝑋 and 𝜓 ∈ Ψ, 𝜑 ∈ Θ, 𝜙 ∈ Φ, where
𝐿 > 0 and

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦)} ,

𝑚 (𝑥, 𝑦)

= min {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦) , 𝑑 (𝑥, 𝑓𝑦) ,

𝑑 (𝑦, 𝑓𝑥)} .

(38)

Suppose that either

(a) 𝑓 is continuous or
(b) if any nondecreasing sequence {𝑥

𝑛
} in𝑋 converges to ],

then one assumes that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (39)

If there exists 𝑥
0
∈ 𝑋 with 𝑥

0
⊑ 𝑓𝑥
0
, then 𝑓 has a fixed point

in 𝑋.

Proof. If 𝑓𝑥
0

= 𝑥
0
, then the proof is finished. Suppose

that 𝑥
0
⊏ 𝑓𝑥
0
. Since 𝑓 is nondecreasing, by induction, we

construct the sequence {𝑥
𝑛
} recursively as

𝑥
𝑛
= 𝑓
𝑛

𝑥
0
= 𝑓𝑥
𝑛−1

∀𝑛 ∈ N. (40)

Thus, we also conclude that

𝑥
0
⊏ 𝑥
1
= 𝑓𝑥
0
⊑ 𝑥
2
= 𝑓𝑥
1
⊑ ⋅ ⋅ ⋅ ⊑ 𝑥

𝑛
= 𝑓𝑥
𝑛−1

⊑ ⋅ ⋅ ⋅ . (41)

We now claim that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (42)
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Put 𝑥 = 𝑥
𝑛−1

and 𝑦 = 𝑥
𝑛
in (37). Note that

𝑚(𝑥
𝑛−1

, 𝑥
𝑛
)

= min {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑓𝑥
𝑛−1

) ,

𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑓𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑓𝑥
𝑛−1

)}

= min {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛
)}

= 0.

(43)

So, we obtain that

𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))

= 𝜑 (𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
))

≤ 𝜓 (𝜑 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) , 𝜑 (𝑑 (𝑥

𝑛−1
, 𝑓𝑥
𝑛−1

)) ,

𝜑 (𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛
))) − 𝜙 (𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
))

≤ 𝜓 (𝜑 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) , 𝜑 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) , 𝜑 (𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)))

− 𝜙 (𝑀 (𝑥
𝑛−1

, 𝑥
𝑛
)) ,

(44)

where

𝑀(𝑥
𝑛−1

, 𝑥
𝑛
)

= max {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑓𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛
)}

= max {𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)} .

(45)

We now claim that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) < 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , ∀𝑛 ∈ N. (46)

If not, we assume that 𝑑(𝑥
𝑛−1

, 𝑥
𝑛
) ≤ 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

); then
𝜑(𝑑(𝑥

𝑛−1
, 𝑥
𝑛
)) ≤ 𝜑(𝑑(𝑥

𝑛
, 𝑥
𝑛+1

)), since 𝜑 is non-decreasing.
Using inequality (44) and the conditions of the function 𝜓,
we have that, for each 𝑛 ∈ N,

𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) − 𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) , (47)

which implies that𝜙(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

))= 0, and hence𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)=
0. This contradicts our initial assumption.

From the previous argument, we have that, for each 𝑛 ∈ N,

𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜑 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜙 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) ,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) < 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) .

(48)

And since the sequence {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is decreasing, it must
converge to some 𝜂 ≥ 0. Taking limit as 𝑛 → ∞ in (48) and
by the continuity of 𝜑 and 𝜙, we get

𝜑 (𝜂) ≤ 𝜑 (𝜂) − 𝜙 (𝜂) , (49)

and so we conclude that 𝜙(𝜂) = 0 and 𝜂 = 0.
We next claim that {𝑥

𝑛
} is Cauchy; that is, for every 𝜀 > 0,

there exists 𝑛 ∈ N such that if 𝑝, 𝑞 ≥ 𝑛, then 𝑑(𝑥
𝑝
, 𝑥
𝑞
) < 𝜀.

Suppose, on the contrary, that there exists 𝜖 > 0 such that,
for any 𝑛 ∈ N, there are 𝑝

𝑛
, 𝑞
𝑛
∈ Nwith 𝑝

𝑛
> 𝑞
𝑛
≥ 𝑛 satisfying

𝑑 (𝑥
𝑞
𝑛

, 𝑥
𝑝
𝑛

) ≥ 𝜖. (50)

Further, corresponding to 𝑞
𝑛
≥ 𝑛, we can choose 𝑝

𝑛
in such

a way that it the smallest integer with 𝑝
𝑛
> 𝑞
𝑛
≥ 𝑛 and

𝑑(𝑥
𝑞
𝑛

, 𝑥
𝑝
𝑛

) ≥ 𝜖. Therefore 𝑑(𝑥
𝑞
𝑛

, 𝑥
𝑝
𝑛
−1
) < 𝜖. By the rectan-

gular inequality, we have

𝜖 ≤ 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

)

≤ 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑝
𝑛
−1
) + 𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑞
𝑛

)

< 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑝
𝑛
−1
) + 𝜖.

(51)

Letting 𝑛 → ∞, then we get

lim
𝑛→∞

𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

) = 𝜖. (52)

On the other hand, we have

𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

)

≤ 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑝
𝑛
−1
) + 𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) + 𝑑 (𝑥

𝑞
𝑛
−1
, 𝑥
𝑞
𝑛

) ,

𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)

≤ 𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑝
𝑛

) + 𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

) + 𝑑 (𝑥
𝑞
𝑛

, 𝑥
𝑞
𝑛
−1
) .

(53)

By letting 𝑛 → ∞, we get that

lim
𝑛→∞

𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) = 𝜖. (54)

Using inequalities (37), (52), and (54) and putting 𝑥 = 𝑥
𝑝
𝑛
−1

and 𝑦 = 𝑥
𝑞
𝑛
−1
, we have that

𝜑 (𝑑 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

))

= 𝜑 (𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
))

≤ 𝜓 (𝜑 (𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)) , 𝜑 (𝑑 (𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛
−1
)) ,

𝜑 (𝑑 (𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
)))

− 𝜙 (𝑀(𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)) + 𝐿 ⋅ 𝑚 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)

= 𝜓 (𝜑 (𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)) , 𝜑 (𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑝
𝑛

)) ,

𝜑 (𝑑 (𝑥
𝑞
𝑛
−1
, 𝑥
𝑞
𝑛

)))

− 𝜙 (𝑀(𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)) + 𝐿 ⋅ 𝑚 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) ,

(55)
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where

𝑀(𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)

= max {𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) , 𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑝
𝑛

) , 𝑑 (𝑥
𝑞
𝑛
−1
, 𝑥
𝑞
𝑛

)} ,

𝑚 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
)

= min {𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) , 𝑑 (𝑥

𝑝
𝑛
−1
, 𝑥
𝑝
𝑛

) ,

𝑑 (𝑥
𝑞
𝑛
−1
, 𝑥
𝑞
𝑛

) , 𝑑 (𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛

) , 𝑑 (𝑥
𝑞
𝑛
−1
, 𝑥
𝑝
𝑛

)} .

(56)

Letting 𝑛 → ∞, then we obtain that

lim
𝑛→∞

𝑀(𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) = 𝜖,

lim
𝑛→∞

𝑚(𝑥
𝑝
𝑛
−1
, 𝑥
𝑞
𝑛
−1
) = 0,

𝜑 (𝜖) ≤ 𝜓 (𝜑 (𝜖) , 0, 0) − 𝜙 (𝜖) ≤ 𝜑 (𝜖) − 𝜙 (𝜖) .

(57)

This implies that 𝜙(𝜖) = 0, and hence 𝜖 = 0. So we get a
contraction. Therefore {𝑥

𝑛
} is a Cauchy sequence.

Since𝑋 is complete, there exists ] ∈ 𝑋 such that

lim
𝑛→∞

𝑥
𝑛
= ]. (58)

Suppose that (a) holds. Then

] = lim
𝑛→∞

𝑥
𝑛+1

= lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑓]. (59)

Thus, ] is a fixed point in𝑋
Suppose that (b) holds; that is, 𝑥

𝑛
⊑ ] for all 𝑛 ∈ N.

Substituting 𝑥 = 𝑥
𝑛
and 𝑦 = ] in (37), we have that

𝜑 (𝑑 (𝑥
𝑛+1

, 𝑓]))

= 𝜑 (𝑑 (𝑓𝑥
𝑛
, 𝑓]))

≤ 𝜓 (𝜑 (𝑑 (𝑥
𝑛
, ])) , 𝜑 (𝑑 (𝑥

𝑛
, 𝑓𝑥
𝑛
)) , 𝜑 (𝑑 (], 𝑓])))

− 𝜙 (𝑀 (𝑥
𝑛
, ])) + 𝐿 ⋅ 𝑚 (𝑥

𝑛
, ]) ,

(60)

where

𝑀(𝑥
𝑛
, ]) = max {𝑑 (𝑥

𝑛
, ]) , 𝑑 (𝑥

𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (], 𝑓])} ,

𝑚 (𝑥
𝑛
, ])

= min {𝑑 (𝑥
𝑛
, ]) , 𝑑 (𝑥

𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (], 𝑓]) , 𝑑 (𝑥

𝑛
, 𝑓])

𝑑 (], 𝑓𝑥
𝑛
)} .

(61)

Letting 𝑛 → ∞, then we obtain that

𝑀(𝑥
𝑛
, ]) 󳨀→ 𝑑 (], 𝑓]) , 𝑚 (𝑥

𝑛
, ]) 󳨀→ 0,

𝜑 (𝑑 (], 𝑓])) ≤ 𝜓 (𝜑 (0) , 𝜑 (0) , 𝜑 (𝑑 (], 𝑓]))) − 𝜙 (𝑑 (], 𝑓]))

≤ 𝜑 (𝑑 (], 𝑓])) − 𝜙 (𝑑 (], 𝑓])) ,

(62)

which implies that 𝑑(], 𝑓]) = 0; that is, ] = 𝑓]. So we
complete the proof.

If we let

𝜓 (𝜑 (𝑑 (𝑥, 𝑦)) , 𝜑 (𝑑 (𝑥, 𝑓𝑥)) , 𝜑 (𝑑 (𝑦, 𝑓𝑦)))

= max {𝜑 (𝑑 (𝑥, 𝑦)) , 𝜑 (𝑑 (𝑥, 𝑓𝑥)) , 𝜑 (𝑑 (𝑦, 𝑓𝑦))} ,
(63)

it is easy to get the following theorem.

Theorem 8. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, and let 𝑓 : 𝑋 → 𝑋 be monotone nondecreasing,
and

𝜑 (𝑑 (𝑓𝑥, 𝑓𝑦))

≤ max {𝜑 (𝑑 (𝑥, 𝑦)) , 𝜑 (𝑑 (𝑥, 𝑓𝑥)) , 𝜑 (𝑑 (𝑦, 𝑓𝑦))}

− 𝜙 (𝑀 (𝑥, 𝑦)) + 𝐿 ⋅ 𝑚 (𝑥, 𝑦) ,

(64)

for all comparable 𝑥, 𝑦 ∈ 𝑋 and 𝜑 ∈ Θ, 𝜙 ∈ Φ, where 𝐿 > 0

and

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦)} ,

𝑚 (𝑥, 𝑦) = min {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦) , 𝑑 (𝑥, 𝑓𝑦) ,

𝑑 (𝑦, 𝑓𝑥)} .

(65)

Suppose that either

(a) 𝑓 is continuous or
(b) if any nondecreasing sequence {𝑥

𝑛
} in𝑋 converges to ],

then one assumes that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (66)

If there exists 𝑥
0
∈ 𝑋 with 𝑥

0
⊑ 𝑓𝑥
0
, then 𝑓 has a fixed point

in 𝑋.
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