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Some results on fixed points related to the contractive compositions of bounded operators in a class of completemetric spaces which
can be also considered as Banach’s spaces are discussed through the paper.The class of composite operators under study can include,
in particular, sequences of projection operators under, in general, oblique projective operators. In this paper we are concerned with
composite operators which include sequences of pairs of contractive operators involving, in general, oblique projection operators.
The results are generalized to sequences of, in general, nonconstant bounded closed operators which can have bounded, closed,
and compact limit operators, such that the relevant composite sequences are also compact operators. It is proven that in both cases,
Banach contraction principle guarantees the existence of unique fixed points under contractive conditions.

1. Introduction

Some results on fixed points related to the contractive
compositions of bounded operators in a class of complete
metric spaces (𝑋, 𝑑), which are Banach spaces if 𝑋 is a
vector space on a certain field 𝐹 (usually R or C) and
the metric is homogeneous and translation-invariant, are
discussed through the paper. In this case, the metric 𝑑 is also
a norm and, since the space 𝑋 is a vector space the complete
metric space (𝑋, 𝑑) is also a Banach space (𝑋, ‖ ‖). The class
of composite operators under study can include, in particular,
sequences of projection operators under, in general, oblique
projective operators. Section 2 is concerned of composite
operators which include sequences of pairs of contractive
operators including, in general, oblique projection operators
in the operator composite strip.The results are generalized in
Section 3 to sequences of, in general, nonconstant bounded
closed operators which can have bounded, closed, and com-
pact limits, such that the relevant composite sequences are
also compact operators. It is proven in this paper that Banach
contraction principle [1–4] guarantees the existence of unique
fixed points under contractive conditions fulfilled by some
relevant strips of composite operators within in the whole
composite sequence of operators.

2. Some Results on Contractive Mappings and
Fixed Points under Projection Operators

Let {𝑇𝑘} be a sequence 𝑇𝑘 : 𝑋 → 𝑋 of self-mappings on 𝑋,
where (𝑋, 𝑑) is a metric space and consider a sequence {𝑃𝑘}

of (non-necessarily orthogonal) projection operators on𝑋 of
respective ranges 𝑀𝑘 which are then closed subspaces of 𝑋,
[3]. We can then consider a sequence of projection operators
{𝑃𝑀𝑘} with 𝑃𝑀𝑘 : 𝑋 → 𝑀𝑘 such that 𝑃𝑘 = 𝑃𝑀𝑘 so that 𝑋 =

Im𝑃𝑘 ⊕ Ker𝑃𝑘 and 𝑧 = 𝑃𝑘𝑥 ∈ Im𝑃𝑘 is in 𝑀𝑘 for any 𝑥 ∈

𝑋 and 𝑧 = 𝑥 − 𝑧 = (𝐼 − 𝑃𝑘)𝑥 ∈ Ker𝑃𝑘 for 𝑘 ∈ N0 = N ∪ {0}.
Now, consider sequences {𝑥𝑘} in𝑋 and {𝑧𝑘} in𝑀𝑘 with 𝑧𝑘 =

𝑃𝑘𝑥𝑘 such that the identities

𝑥𝑘+1 = 𝑇𝑘𝑥𝑘 = 𝑃𝑘+1𝑥𝑘+1 + (𝐼 − 𝑃𝑘+1) 𝑥𝑘+1

= 𝑧𝑘+1 + (𝐼 − 𝑃𝑘+1) 𝑥𝑘+1

= 𝑇𝑘𝑃𝑘𝑥𝑘 + 𝑇𝑘 (𝐼 − 𝑃𝑘) 𝑥𝑘

(1)

hold by construction for 𝑘 ∈ N0.The subsequent result holds.

Theorem 1. Assume that (𝑋, 𝑑) is a complete metric space
with the metric 𝑑 : 𝑋 × 𝑋 → R0+ being homogeneous
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and translation-invariant and 0 ∈ 𝑋; 𝑘 ∈ N0. The following
properties hold.

(i) If all the self-mappings on 𝑋 in the sequence {𝑇𝑘} are
nonexpansive and the sequence of projection operators
{𝑃𝑘} from 𝑋 to the sequence of subspaces {𝑀𝑘} is
uniformly bounded then 𝑑(𝑧𝑘+2, 𝑧𝑘+1) < ∞; 𝑘 ∈ N0.

(ii) Assume that the self-mappings on𝑋 in the subsequence
{𝑇𝑘}𝑘≥𝑛0

are contractive for some 𝑛0 ∈ N0, that the
sequence of operators {𝑇𝑘} converges to 𝑇 : 𝑋 → 𝑋,
and that the projection operator 𝑃 : 𝑋 → 𝑀 ⊂

𝑋 is constant and bounded (i.e., if it is not orthog-
onal, i.e., it is oblique, then its norm exceeds one
and it is finite) then Property (i) holds. Furthermore,
∃lim𝑘→∞𝑑(𝑧𝑘+2, 𝑧𝑘+1) = 0 and {𝑧𝑘+1 = 𝑃𝑇𝑘𝑥𝑘} is a
Cauchy sequence which converges to some unique limit
point 𝑧(= 𝑃𝑇𝑥) ∈ 𝑀 for any initial iterate 𝑥0 ∈ 𝑋,
where 𝑥(= 𝑇𝑥) ∈ 𝑋 is the unique fixed point of 𝑇 :

𝑋 → 𝑋.
(iii) Assume that there is a strictly sequence of nonnegative

integers {𝑗𝑘} such that the difference sequence {𝑗𝑘+1−𝑗𝑘}
is uniformly bounded and has a limit 𝐽 ∈ N as 𝑘 →

∞. Assume also that the associate sequence of compos-
ite self-mappings �̂�(𝑗𝑘+1 + 1, 𝑗𝑘) = {𝑇𝑗𝑘+1 ⋅ ⋅ ⋅ 𝑇𝑗𝑘+1𝑇𝑗𝑘} is
contractive and that the sequence projection operators
{𝑃𝑘} from 𝑋 to the sequence of subspaces {𝑀𝑘} is
uniformly bounded and has a set of subsequences each
converging to a set {𝑃𝑗𝑖} → �̂�𝑖 of projectors from 𝑋

to {𝑀𝑗𝑖}. Then, ∃lim𝑘→∞𝑑(𝑧𝑗𝑘+1+1, 𝑧𝑗𝑘+1) = 0, and
there is at most a finite number 𝐽 of distinct Cauchy
subsequences {𝑧𝑗𝑘}with distinct limit points {�̂�1, . . . , �̂�𝐽}
in𝑋.

Proof. Since the metric is homogeneous and translation-
invariant then the complete metric space (𝑋, 𝑑) can also
be considered as a Banach space (𝑋, ‖‖) under the metric-
induced norm defined as ‖𝑥 − 𝑦‖ = 𝑑(𝑥, 𝑦); for all 𝑥, 𝑦 ∈

𝑋. The norm of any projection operator in the considered
sequence is defined as ‖𝑃𝑘‖ = sup

‖𝑥(∈𝑋) ̸= 0‖≤1
(‖𝑃𝑘𝑥‖/‖𝑥‖) =

sup
‖𝑥(∈𝑋)‖=1

(‖𝑃𝑘𝑥‖/‖𝑥‖) = sup
‖𝑥(∈𝑋)‖=1

‖𝑃𝑘𝑥‖; 𝑘 ∈ N0. Then,
if �̂�(𝑘 + 1, 𝑗) : 𝑋 → 𝑋 is the left-composite self-mapping
�̂�(𝑘 + 1, 𝑗) = 𝑇𝑘 ⋅ ⋅ ⋅ 𝑇𝑗+1𝑇𝑗 for any 𝑘(≥ 𝑗), 𝑗 ∈ N0, one gets
fromdirect calculations, by using the property that themetric
is homogeneous and translation-invariant, the following
relations for any iterated sequences {𝑥𝑘} in 𝑋 and {𝑧𝑘} in
𝑀𝑘 constructed as 𝑥𝑘+1 = 𝑇𝑘𝑥𝑘, 𝑧𝑘 = 𝑃𝑘𝑥𝑘 with arbitrary
𝑥0 ∈ 𝑋; 𝑘 ∈ N:

𝑑 (𝑧𝑘+2, 𝑧𝑘+1)

= 𝑑 (𝑃𝑘+2𝑥𝑘+2, 𝑃𝑘+1𝑥𝑘+1)

= 𝑑 (𝑃𝑘+1𝑥𝑘+2, 𝑃𝑘+1𝑥𝑘+1 + 𝑃𝑘+1𝑥𝑘+2 − 𝑃𝑘+2𝑥𝑘+2)

≤ 𝑑 (𝑃𝑘+1𝑥𝑘+2, 𝑃𝑘+1𝑥𝑘+1)

+ 𝑑 (𝑃𝑘+1𝑥𝑘+1, 𝑃𝑘+1𝑥𝑘+1 + 𝑃𝑘+1𝑥𝑘+2 − 𝑃𝑘+2𝑥𝑘+2)

≤ 𝑑 (𝑃𝑘+1𝑥𝑘+2, 𝑃𝑘+1𝑥𝑘+1) + 𝑑 (𝑃𝑘+2𝑥𝑘+2, 𝑃𝑘+1𝑥𝑘+2)

=
𝑃𝑘+1𝑥𝑘+2 − 𝑃𝑘+1𝑥𝑘+1

 +
𝑃𝑘+2𝑥𝑘+2 − 𝑃𝑘+1𝑥𝑘+2



≤
𝑃𝑘+1


𝑥𝑘+2 − 𝑥𝑘+1

 +
𝑃𝑘+2 − 𝑃𝑘+1


𝑥𝑘+2



=
𝑃𝑘+1

 𝑑 (𝑥𝑘+1, 𝑥𝑘+2) +
𝑃𝑘+2 − 𝑃𝑘+1

 𝑑 (𝑥𝑘+2, 0)

=
𝑃𝑘+1

 𝑑 (𝑇𝑘𝑥𝑘, 𝑇𝑘+1𝑇𝑘𝑥𝑘)

+
𝑃𝑘+2 − 𝑃𝑘+1

 𝑑 (�̂� (𝑘 + 2, 0) 𝑥0, 0)

≤
𝑃𝑘+1

 𝑑 (𝑥1, 𝑥0)

+
𝑃𝑘+2 − 𝑃𝑘+1

 𝑑 (�̂� (𝑘 + 2, 0) 𝑥0, 0)

≤
𝑃𝑘+1

 𝑑 (𝑥1, 𝑥0) + (
𝑃𝑘+1

 +
𝑃𝑘+2

) 𝑑 (𝑥0, 0)

≤
𝑃𝑘+1

 (𝑑 (𝑇0𝑥0, 0) + 𝑑 (𝑥0, 0))

+ (
𝑃𝑘+1

 +
𝑃𝑘+2

)
𝑥0

 ; 𝑘 ∈ N0
(2)

since the metric is homogeneous and translation-invariant,
the norm is an induced-metric norm, then ‖𝑥𝑘‖ = 𝑑(𝑥𝑘, 0) =

𝑑(�̂�(𝑘, 0)𝑥0, 0), where 𝑧𝑘 ∈ 𝑀𝑘, and the self-mappings in the
sequence {𝑇𝑘} on 𝑋 are all non-expansive; 𝑘 ∈ N0, and the
sequence of projection operators {𝑃𝑘} from𝑋 to the sequence
of subspaces {𝑀𝑘} is uniformly bounded with sup

𝑘∈N0‖𝑃𝑘‖ ≤

𝜇 < ∞. Then, one has from (2)

𝑑 (𝑧𝑘+2, 𝑧𝑘+1) ≤ 4𝜇
𝑥0

 < ∞; 𝑘 ∈ N0, (3)

where 𝜇 = 1 if all the projections are orthogonal and 𝜇 > 1,
otherwise. Hence, Property (i). If 𝑃𝑘 = 𝑃𝑘+1 = 𝑃 for 𝑘 ∈ N0 is
a constant bounded projection from𝑋 to𝑀 with𝑀𝑘 = 𝑀 ⊂

𝑋 being constant for 𝑘 ∈ N0 and all the self-mappings on 𝑋

of the sequence {𝑇𝑘} are contractive then one gets from (2) for
the real constant𝐾 = sup

𝑘(≥𝑛0)∈N0𝐾𝑘 such that𝐾 ∈ [0, 1) that
Property (i) holds according to the relation

𝑑 (𝑧𝑘+2, 𝑧𝑘+1)

≤ ‖𝑃‖ 𝑑 (𝑇𝑘𝑥𝑘, 𝑇𝑘+1𝑥𝑘+1)

≤ ‖𝑃‖ 𝑑 (𝑇𝑘𝑥𝑘, 𝑇𝑘𝑥𝑘+1 + 𝑇𝑘+1𝑥𝑘+1 − 𝑇𝑘𝑥𝑘+1)

≤ ‖𝑃‖ 𝑑 (𝑇𝑘𝑥𝑘, 𝑇𝑘𝑥𝑘+1)

+ ‖𝑃‖ 𝑑 (𝑇𝑘𝑥𝑘+1, 𝑇𝑘𝑥𝑘+1 + 𝑇𝑘+1𝑥𝑘+1 − 𝑇𝑘𝑥𝑘+1)

= ‖𝑃‖ (𝑑 (𝑇𝑘𝑥𝑘, 𝑇𝑘𝑥𝑘+1) + ‖𝑃‖ 𝑑 (0, 𝑇𝑘+1𝑥𝑘+1 − 𝑇𝑘𝑥𝑘+1))

= ‖𝑃‖ (𝑑 (𝑇𝑘𝑥𝑘, 𝑇𝑘𝑥𝑘+1) + 𝑑 (𝑇𝑘𝑥𝑘+1, 𝑇𝑘+1𝑥𝑘+1))

= ‖𝑃‖ (
𝑇𝑘𝑥𝑘 − 𝑇𝑘𝑥𝑘+1

 +
𝑇𝑘𝑥𝑘+1 − 𝑇𝑘+1𝑥𝑘+1

)

≤ ‖𝑃‖
𝑇𝑘


𝑥𝑘 − 𝑥𝑘+1

 + ‖𝑃‖
𝑇𝑘 − 𝑇𝑘+1


𝑥𝑘+1
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≤ ‖𝑃‖ (
𝑇𝑘


𝑥𝑘 − 𝑥𝑘+1

 +
𝑇𝑘 − 𝑇𝑘+1



× 𝑑 (�̂� (𝑘 + 1, 0) 𝑥𝑛0 , �̂� (𝑘 + 1, 0) 0))

≤ ‖𝑃‖(𝐾
𝑘−𝑛0+1𝑑 (𝑥𝑛0+1, 𝑥𝑛0)

+
𝐾 (1 − 𝐾𝑘−𝑛0)

1 − 𝐾

𝑇𝑘 − 𝑇𝑘+1


𝑥𝑛0


) < ∞;

𝑘 (≥ 𝑛0) ∈ N0
(4)

so that ∃lim𝑘→∞𝑑(𝑧𝑘+2, 𝑧𝑘+1) = 0 from (4) for any initial
value 𝑥0 ∈ 𝑋 of the iteration since 𝐾𝑘−𝑛0−1 → 0 and ‖𝑇𝑘 −

𝑇𝑘+1‖ → 0 as 𝑘 → ∞ since {𝑇𝑘} → 𝑇. Then, {𝑧𝑘} is
Cauchy sequence which has a limit 𝑧 in𝑀, since𝑀 is closed,
[4]. It is now proven that 𝑧(∈ 𝑀) = 𝑃𝑥 is the unique limit
point in 𝑀 of any sequence of iterates, where 𝑥(= 𝑇𝑥) ∈ 𝑋

is a fixed point of the self-mapping 𝑇 : 𝑋 → 𝑋 which is
unique from Banach contraction principle. It is now proven
that 𝑇 : 𝑋 → 𝑋 is contractive. Assume not so that one has if
𝑇 : 𝑋 → 𝑋 is not contractive:
𝑑 (𝑥𝑘+1, 𝑥𝑘)

≤ 𝑑 (𝑇𝑥𝑘+1, 𝑇𝑥𝑘)

= 𝑑 (𝑇𝑘𝑥𝑘+1, 𝑇𝑘𝑥𝑘 + 𝑇𝑥𝑘 − 𝑇𝑘𝑥𝑘 + 𝑇𝑘𝑥𝑘+1 − 𝑇𝑥𝑘+1)

≤ 𝑑 (𝑇𝑘𝑥𝑘+1, 𝑇𝑘𝑥𝑘)

+ 𝑑 (𝑇𝑘𝑥𝑘, 𝑇𝑘𝑥𝑘 + 𝑇𝑥𝑘 − 𝑇𝑘𝑥𝑘 + 𝑇𝑘𝑥𝑘+1 − 𝑇𝑥𝑘+1)

= 𝑑 (𝑇𝑘𝑥𝑘+1, 𝑇𝑘𝑥𝑘) + 𝑑 (0, 𝑇𝑥𝑘 − 𝑇𝑘𝑥𝑘 + 𝑇𝑘𝑥𝑘+1 − 𝑇𝑥𝑘+1)

= 𝑑 (𝑇𝑘𝑥𝑘+1, 𝑇𝑘𝑥𝑘) + 𝑑 (𝑇𝑘𝑥𝑘 + 𝑇𝑥𝑘+1, 𝑇𝑥𝑘 + 𝑇𝑘𝑥𝑘+1)

≤ 𝑑 (𝑇𝑘𝑥𝑘+1, 𝑇𝑘𝑥𝑘) +
𝑇𝑘 − 𝑇

 (
𝑥𝑘

 +
𝑥𝑘+1

)

≤ 𝐾𝑘𝑑 (𝑥𝑘+1, 𝑥𝑘) +
𝑇𝑘 − 𝑇

 (
𝑥𝑘

 +
𝑥𝑘+1

) ;

𝑘 ≥ 𝑛0
(5)

for nonzero 𝑥𝑘 and 𝑥𝑘+1 since 𝑇𝑘 : 𝑋 → 𝑋 is contractive
for 𝑘 ≥ 𝑛0. Then, one gets, since ‖𝑇𝑘 − 𝑇‖ → 0 as 𝑘 → ∞,
that

lim sup
𝑘→∞

[(1 − 𝐾𝑘 −
𝑇𝑘 − 𝑇

) (
𝑥𝑘

 +
𝑥𝑘+1

)]

= lim sup
𝑘→∞

[(1 − 𝐾𝑘) (
𝑥𝑘

 +
𝑥𝑘+1

)] ≤ 0
(6)

which is a contradiction since 𝐾𝑘 < 1 for 𝑘 ≥ 𝑛0 unless {𝑥𝑘}
converges to zero. If {𝑥𝑘} converges to zero then there are 𝑛1(≥
𝑛0) ∈ N0 and 0 < 𝜆 = 𝜆(𝑛1) < 1 − sup

𝑘≥𝑛1
𝐾𝑘 such that

‖𝑇𝑘 − 𝑇‖ ≤ 𝜆 for all 𝑘 ≥ 𝑛1 since ‖𝑇𝑘 − 𝑇‖ → 0 as 𝑘 → ∞

and some 𝑘1 ≥ 𝑛1 such that ‖𝑥𝑘1‖+ ‖𝑥𝑘1+1‖ > 0 that yields the
contradiction

0 < (1 − 𝐾𝑘1 − 𝜆) (

𝑥𝑘1


+

𝑥𝑘1+1


) ≤ 0. (7)

Thus, if the subsequence {𝑇𝑘}𝑘≥𝑛0 is contractive in 𝑋 then its
limit 𝑇 : 𝑋 → 𝑋 is also contractive. Now, since 𝑇 : 𝑋 → 𝑋

is contractive then its fixed point is unique since (𝑋, 𝑑) is
complete. It is clear that 𝑧 = 𝑃𝑇𝑥 is a limit point in 𝑀 of
any iterated sequence. Assume that it is not unique so that
there are two limit points 𝑧 = 𝑃𝑇𝑥, �̂� = 𝑃𝑇𝑥( ̸= 𝑧) ∈ 𝑀

for some 𝑥( ̸= 𝑥) ∈ 𝑋 which is not trivially a fixed point of
𝑇 : 𝑋 → 𝑋 (since the fixed point 𝑥 ∈ 𝑋 of the contractive
self-mapping 𝑇 : 𝑋 → 𝑋 is unique if (𝑋, 𝑑) is complete).
Thus, from Banach contraction principle and since (𝑋, 𝑑) is
complete, one has

0 ← 𝑑 (𝑃𝑇𝑘𝑥, 𝑃𝑇𝑘𝑥) =
𝑃𝑇𝑘𝑥 − 𝑃𝑇𝑘𝑥



≤ ‖𝑃‖
𝑇𝑘𝑥 − 𝑇𝑘𝑥



≤ ‖𝑃‖𝐾
𝑘
𝑑 (𝑥, 𝑥) < ∞;

𝑘 ∈ N0

(8)

as 𝑘 → ∞ since {𝑇𝑘} converges, there is a limit self-mapping
𝑇 on𝑋:

�̂� ← 𝑃𝑇𝑘𝑥 → 𝑃𝑇𝑘𝑥 → 𝑃𝑇𝑥 = 𝑃𝑥 = 𝑧. (9)

Thus, 𝑃𝑇𝑘𝑥 → �̂� = 𝑧 as 𝑘 → ∞. Hence a contradiction to
�̂� ̸= 𝑧 and then 𝑧 in𝑀 is the unique limit point of 𝑃𝑇 : 𝑋 →

𝑀 even in the event that there is 𝑥( ̸= 𝑥 = 𝑇𝑥) ∈ 𝑋 such that
𝑃𝑇𝑥 = 𝑃𝑇𝑥 = 𝑃𝑥 = 𝑧. Property (ii) has been proven.

On the other hand, if the sequence of operators is
uniformly bounded then sup

𝑘∈N0‖𝑃𝑘‖ ≤ 𝜇 < ∞ and, if fur-
thermore, the sequence of compositie mappings {�̂�(𝑗𝑘+1, 𝑗𝑘)}
is contractive with some constant �̂� ∈ [0, 1) given by �̂� =

sup
𝑘∈N0(∏

𝑗𝑘+1−1

𝑗=𝑗𝑘
[𝐾𝑗]), 𝑘 ∈ N0, where {𝑗𝑘} is a strictly increas-

ing sequence of natural numbers such that the sequence
{𝑗𝑘+1−𝑗𝑘} is uniformly bounded, one has directly from (1)-(2):

𝑑 (𝑧𝑗𝑘+1 , 𝑧𝑗𝑘) ≤ 𝜇𝑑 (𝑥𝑗𝑘 , �̂� (𝑗𝑘+1, 𝑗𝑘) 𝑥𝑗𝑘)

≤ 𝜇 (�̂�
𝑗𝑘 [𝑑 (𝑥1, 𝑥0) + 2

𝑥0
]) < ∞;

𝑘 ∈ N0,

𝑑 (𝑧𝑗𝑘+𝑖𝑘 , 𝑧𝑗𝑘) ≤ 𝜇𝑑 (𝑥𝑗𝑘 , �̂� (𝑗𝑘+1, 𝑗𝑘) 𝑥𝑗𝑘)

≤ 𝜇(

𝑗𝑘+𝑖𝑘−1

∏
𝑗=𝑗𝑘

𝐾𝑗)(�̂�
𝑗𝑘 [𝑑 (𝑥1, 𝑥0) + 2

𝑥0
])

< ∞

(10)

for 𝑘 ∈ N0, where {{𝑖𝑘}} is a sequence of finite sets of natural
numbers satisfying 𝑗 ∈ {𝑖𝑘} ⇔ 1 ≤ 𝑗 < (𝑗𝑘+1 − 𝑗𝑘) + 1 for 𝑘 ∈

N0. Thus, one gets from (10):

∃ lim
𝑗𝑘→∞

𝑑 (𝑧𝑗𝑘+1 , 𝑧𝑗𝑘) = lim
𝑗𝑘→∞

𝑑 (𝑧𝑗𝑘+1+𝑗, 𝑧𝑗𝑘) = 0 (11)

for any 𝑗 ∈ {𝑖𝑘} since 𝑗𝑘 → ∞ as 𝑘 → ∞ and. Since
{𝑗𝑘+1 − 𝑗𝑘} is uniformly bounded with existing limit 𝐽 ∈ N as
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𝑘 → ∞, �̂�(𝑗𝑘+1 + 1, 𝑗𝑘) = {𝑇𝑗𝑘+1 ⋅ ⋅ ⋅ 𝑇𝑗𝑘+1𝑇𝑗𝑘} is contractive
and the projection sequence {𝑃𝑘} from 𝑋 to the sequence of
subspaces {𝑀𝑘} is uniformly bounded while having a finite
set of subsequences {𝑃𝑗𝑖} converging to a set 𝑃𝑗𝑖 → �̂�𝑖 of
projectors from𝑋 to {𝑀𝑘} for 𝑖 ∈ 𝐽 then

∃ lim
𝑘→∞

𝑑 (𝑧𝑗𝑘+1+1, 𝑧𝑗𝑘+1)

= lim
𝑘→∞

𝑑 (𝑃𝑗𝑘+1+1�̂� (𝑗𝑘+1 + 1, 0) 𝑥0, 𝑃𝑗𝑘 �̂� (𝑗𝑘 + 1, 0) 𝑥0 = 0)

(12)

so that {𝑧𝑗𝑘+1+1 = 𝑃𝑗𝑘+1 �̂�(𝑗𝑘+1 + 1, 0)𝑥0} is a Cauchy sequence
satisfying:

𝑧𝑗𝑘+𝑖 → �̂�𝑖 = �̂�𝑖 ( lim
𝑘→∞

(𝑇𝑗𝑘+𝑖 ⋅ ⋅ ⋅ 𝑇𝑗𝑘+𝑖−1𝑇𝑗𝑘) �̂�𝑖−1)

as 𝑗𝑖 → ∞, 𝑖 ∈ 𝑀; �̂�𝑖 ∈ (𝑋 ∩

∞

⋂
𝑘=0

𝑀𝑗𝑘+𝑖−1)

(13)

for at most 𝐽 distinct points {�̂�1, . . . , �̂�𝐽} since, by hypothesis,
there is a natural number 𝐽 satisfying∞ > 𝐽 = lim𝑘∈N0{𝑗𝑘+1−
𝑗𝑘} ≥ 1 and since {𝑃𝑗𝑖} → �̂�𝑖; 𝑖 ∈ 𝐽. Hence, Property (iii)
holds.

Remark 2. The existence of some 𝑥( ̸= 𝑥 = 𝑇𝑥) ∈ 𝑋 in the
proof of Theorem 1(ii) often happens. For instance if 𝑃𝑇 :

𝑋 → 𝑀 is linear then 𝑥 = 𝑥 + 𝑥𝑎 fulfils the relations
𝑃𝑇𝑥 = 𝑃𝑥 = 𝑃𝑇𝑥 = 𝑧 for any 𝑥𝑎 ∈ Ker𝑃𝑇.

The following auxiliary result to be then used holds.

Lemma 3. Assume that the sequences of linear self-mappings
{𝑇𝑛} and {𝑃𝑛} converge to respective limits 𝑃 and 𝑇 being
mappings from 𝑋 to 𝑀 ⊂ 𝑋 and from 𝑋 to 𝑋, respectively,
in the sense that 𝑃𝑛𝑇𝑛𝑥 → 𝑃𝑇𝑥 𝑎𝑠 𝑛 → ∞ from any
𝑥 ∈ 𝑋. Let (𝑋, ‖ ‖) be a Banach space with the norm of any
𝑄 : 𝑋 → 𝑋 being defined by ‖𝑄‖ = sup

𝑥∈𝑋,‖𝑥‖=1
‖𝑄𝑥‖. For

any given 𝛿 ∈ R+, ∃𝑛0 = 𝑛0(𝛿) such that ‖𝑃𝑛𝑇𝑛‖ ≤ 𝑝𝑡 + 𝛿,
where 𝑝 = ‖𝑃‖ and 𝑡 = ‖𝑇‖. If 𝑃𝑇 : 𝑋 → 𝑋 is contractive
then the sequence {𝑃𝑛𝑇𝑛} of mappings from 𝑋 to 𝑋 is then
asymptotically contractive.

Proof. Direct calculations yield
𝑃𝑛𝑇𝑛

 = sup
‖𝑥‖=1

𝑃𝑇𝑥 + 𝑃 (𝑇𝑛 − 𝑇) 𝑥 + (𝑃𝑛 − 𝑃)𝑇𝑛𝑥


≤ ‖𝑃𝑇‖ + ‖𝑃‖
𝑇𝑛 − 𝑇

 +
𝑃𝑛 − 𝑃


𝑇𝑛



≤ ‖𝑃𝑇‖ + ‖𝑃‖
𝑇𝑛 − 𝑇



+
𝑃𝑛 − 𝑃

 ‖𝑇‖ +
𝑃𝑛 − 𝑃


𝑇𝑛 − 𝑇



(14)

and for any given 𝜀 ∈ R+, there are 𝑛𝑖 = 𝑛𝑖(𝜀) ∈ N0 for 𝑖 = 1, 2

such that ‖𝑇𝑛 − 𝑇‖ < 𝜀 for all integer 𝑛 > 𝑛1 and ‖𝑃𝑛 − 𝑃‖ < 𝜀

for all integer 𝑛 > 𝑛2. Thus, if 𝑛3 = max(𝑛1, 𝑛2) then one has
for any 𝑛 > 𝑛3:

𝑃𝑛𝑇𝑛
 ≤ ‖𝑃𝑇‖ + (‖𝑃‖ + ‖𝑇‖ + 𝜀) 𝜀

= 𝑝𝑡 + (𝑝 + 𝑡 + 𝜀) 𝜀 ≤ 𝑝𝑡 + 𝛿.
(15)

The last inequality holds if and only if 𝜀2 + (𝑝 + 𝑡)𝜀 − 𝛿 ≤ 0

for any given positive real constant 𝛿 and any positive real
constant 𝜀 = 𝜀(𝛿) being sufficiently small to satisfy 𝜀 ≤

(1/2)(√(𝑝 + 𝑡)
2
+ 4𝛿 − 𝑝 − 𝑡) ≤ √𝛿/2. Since ‖𝑃𝑛‖ → 𝑝

and ‖𝑇𝑛‖ → 𝑡, there are finite natural numbers 𝑛1 =

𝑛1(𝛿, 𝜀) = 𝑛1(𝜀), 𝑛2 = 𝑛2(𝛿, 𝜀) = 𝑛2(𝜀) such that 𝜀 satisfies
that constraint ‖𝑃𝑛𝑇𝑛‖ ≤ 𝑝𝑡 + 𝛿 for any integer 𝑛 > 𝑛3 =

𝑛3(𝛿, 𝜀) = 𝑛3(𝜀) > max(𝑛1, 𝑛2). If 𝑃𝑇 : 𝑋 → 𝑋 is contractive
then 𝑝𝑡 ≤ 𝐾 < 1 for some real constant 𝐾. Thus, there is
𝑛3 = 𝑛3(𝜀) such that 𝑝𝑡 ≤ 𝐾 ≤ ‖𝑃𝑛𝑇𝑛‖ < 𝐾1 < 1 for any
given real 𝛿 < 𝐾1 − 𝐾 and 𝜀 ≤ (1/2)(√(𝑝 + 𝑡)

2
+ 4𝛿 − 𝑝 −

𝑡) ≤ (1/2)(√(𝑝 + 𝑡)
2
+ 4(𝐾1 − 𝐾) − 𝑝 − 𝑡) ≤ √𝐾1 − 𝐾/2 and

then the sequence {𝑃𝑛𝑇𝑛} is asymptotically contractive.

Note that Lemma 3 holds irrespective of the fact that one
of the operators be a projection.

3. Results on Contractive Mappings of
Sequences of Composite Bounded Operators

The results of Theorem 1 are now extended to the study of
contractive compositions of linear operators belonging to two
sequences of bounded operators {𝑇𝑘𝑖} with 𝑇𝑖𝑘 : Dom(𝑇𝑖𝑘) ⊂

𝑋 → Im(𝑇𝑖𝑘) ⊂ 𝑋 to 𝑋; 𝑖 = 1, 2 so that none of them
is necessarily a projection on some subspace of 𝑋. Some
preparatory results are first established. In the following, a
Banach space(𝑋, ‖ ‖), being equivalent to a complete metric
space (𝑋, 𝑑) with a homogeneous and translation-invariant
metric induced-norm 𝑑 : 𝑋 × 𝑋 → R0+ is considered such
that ‖𝑥‖ = 𝑑(𝑥, 0) = 𝑑(𝑥+𝛼𝑦, 𝛼𝑦) for any real𝛼 and any𝑥, 𝑦 ∈

𝑋. The subsequent result refers to the asymptotic distances
in sequences involving a convergent composite sequence of
bounded linear operators.

Lemma 4. Consider a Banach space (𝑋, ‖ ‖), with 0 ∈ 𝑋,
being equivalent to a complete metric space (𝑋, 𝑑) with a
homogeneous and translation-invariant metric induced-norm
𝑑 : 𝑋 × 𝑋 → R0+. Consider also a composite sequence
of two sequences of bounded linear operators {𝑇𝑘 = 𝑇2𝑘𝑇1𝑘}

defined by 𝑇𝑘 : Dom(𝑇𝑘) ⊂ 𝑋 → Im(𝑇𝑘) ⊂ 𝑋 defined
by 𝑇𝑘𝑥 = 𝑇2𝑘(𝑇1𝑘𝑥) = 𝑇2𝑘𝑇1𝑘𝑥 for any 𝑥 ∈ Dom(𝑇𝑘),
where 𝑇𝑖𝑘 : Dom(𝑇𝑖𝑘) ⊂ 𝑋 → Im(𝑇𝑖𝑘) ⊂ 𝑋; 𝑖 = 1, 2,
provided that Im(𝑇1𝑘)( ̸= 0) ⊂ Dom(𝑇2𝑘) and Im(𝑇2𝑘) ∩

Dom(𝑇1𝑘+1) ̸= 0; for all 𝑘 ∈ N0. The following properties hold.

(i) Assume that {𝑇𝑖𝑘} → 𝑇𝑖 (𝑖 = 1, 2). Then, lim𝑘→∞ 𝑑

( 𝑇𝑘𝑥, 𝑇2𝑇1𝑥) = 0; for all 𝑥 ∈ Dom(𝑇𝑘); for all 𝑘 ∈

N0.
(ii) Assume that {𝑇1𝑘} → 𝑇1 (𝑖 = 1, 2). Then, lim𝑘→∞ 𝑑

( 𝑇𝑘𝑥, 𝑇2𝑘𝑇1𝑥) = 0; for all 𝑥 ∈ Dom(𝑇𝑘); for all 𝑘 ∈

N0.
(iii) Assume that {𝑇2𝑘} → 𝑇2 (𝑖 = 1, 2). Then, lim𝑘→∞ 𝑑

(𝑇𝑘𝑥, 𝑇2𝑇1𝑘𝑥) = 0; for all 𝑥 ∈ Dom(𝑇𝑘); for all 𝑘 ∈

N0.

(iv) Define the operator composite sequence {�̂�(𝑘 + 𝑖 +

1, 𝑘)} of operators as �̂�(𝑘 + 𝑖 + 1, 𝑘) = 𝑇𝑘+𝑖 ⋅ ⋅ ⋅ 𝑇𝑘+1𝑇𝑘
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with 𝑇𝑘 = 𝑇𝑗𝑘𝑘𝑇𝑗𝑘−1,𝑘 ⋅ ⋅ ⋅ 𝑇2𝑘𝑇1𝑘; for all 𝑖, 𝑘 ∈ N0
subject to Im(𝑇𝑗𝑘)( ̸= 0) ⊂ Dom(𝑇𝑗+1,𝑘) for 𝑗 ∈

𝑗𝑘, Im𝑇𝑗𝑘𝑘( ̸= 0) ⊂ Dom𝑇1,𝑘+1 and 1 ≤ 𝑗𝑘 ≤ 𝐽(∈

N0) < ∞; for all 𝑘 ∈ N0. Define also the operator
composite sequence of operators {�̂�0(𝑘 + 𝑖 + 1, 𝑘)} as

�̂�
0
(𝑘 + 𝑖 + 1, 𝑘) = 𝑇

0

𝑘+𝑖
⋅ ⋅ ⋅ 𝑇
0

𝑘+1
𝑇
0

𝑘

= (𝑇
0

𝑗𝑘+𝑖𝑘+𝑖
⋅ ⋅ ⋅ 𝑇
0

𝑗𝑘+𝑖−1,𝑘+𝑖
𝑇
0

1,𝑘+𝑖
) ⋅ ⋅ ⋅ (𝑇

0

𝑗𝑘𝑘
⋅ ⋅ ⋅ 𝑇
0

2𝑘
𝑇
0

1𝑘
)

(16)

for 𝑖, 𝑘 ∈ N0, where 𝑇0𝑗𝑘 = 𝑇𝑗𝑘 if 𝑇𝑗𝑘 has not a limit as
𝑘 → ∞ and 𝑇0

𝑗𝑘
= 𝑇𝑗∞ if 𝑇𝑗∞ = lim𝑘→∞𝑇𝑗𝑘. Then

lim
𝑘→∞

𝑑 (�̂� (𝑘 + 𝑖 + 1, 𝑖) 𝑥, �̂�
0
(𝑘 + 𝑖 + 1, 𝑖) 𝑥) = 0;

∀𝑥 ∈ Dom (𝑇10) , ∀𝑖 ∈ N0.
(17)

Properties (i)–(iii) hold for any 𝑥 ∈ Dom(𝑇10).

Proof. Assume that {𝑇𝑖𝑘} → 𝑇𝑖 with 𝑇𝑖 : 𝑋 → 𝑋 (𝑖 =

1, 2) since (𝑋, 𝑑), equivalently (𝑋, ‖ ‖), is complete so that
𝑇𝑖𝑘𝑥 → 𝑇𝑖𝑥 (∈ 𝑋) strongly for 𝑖 = 1, 2 as 𝑘 →

∞ for any 𝑥 ∈ Dom(𝑇10) since Im(𝑇1𝑘)( ̸= 0) ⊂ Dom
(𝑇2𝑘) and Im(𝑇2𝑘) ∩ Dom(𝑇1𝑘+1) ̸= 0; for all 𝑘 ∈ N0. Then,
lim𝑘→∞ 𝑑(𝑇𝑘𝑥, 𝑇2𝑇1𝑘𝑥) = 0; for all 𝑥 ∈ Dom(𝑇10), and

𝑇𝑘𝑥 = 𝑇2𝑘𝑇1𝑘𝑥 = 𝑇2𝑘𝑇1𝑥 + 𝑇2𝑘 (𝑇1𝑘 − 𝑇1) 𝑥

= 𝑇2𝑇1𝑥 + (𝑇2𝑘 − 𝑇2) 𝑇1𝑥 + 𝑇2𝑘 (𝑇1𝑘 − 𝑇1) 𝑥
(18)

that leads to
(𝑇𝑘 − 𝑇2𝑇1) 𝑥

 ≤
(𝑇2𝑘 − 𝑇2) 𝑇1𝑥

 +
 𝑇2𝑘 (𝑇1𝑘 − 𝑇1) 𝑥



⇒ ∃ lim
𝑘→∞

(𝑇𝑘 − 𝑇2𝑇1) 𝑥

= lim
𝑘→∞

𝑑 ((𝑇𝑘 − 𝑇2𝑇1) 𝑥, 0)

= lim
𝑘→∞

𝑑 ( 𝑇𝑘𝑥, 𝑇2𝑇1𝑥) = 0;

∀𝑥 ∈ Dom (𝑇10) .

(19)

Hence, Property (i). Now, assume that only {𝑇1𝑘} has a limit.
Then,

𝑇𝑘𝑥 = 𝑇2𝑘𝑇1𝑘𝑥

= 𝑇2𝑘𝑇1𝑥 + 𝑇2𝑘 (𝑇1𝑘 − 𝑇1) 𝑥

⇒
(𝑇𝑘 − 𝑇2𝑘𝑇1) 𝑥



≤
𝑇2𝑘 (𝑇1𝑘 − 𝑇1) 𝑥

 ; ∀𝑥 ∈ Dom (𝑇𝑘) ,

∃ lim
𝑘→∞

(𝑇𝑘 − 𝑇2𝑘𝑇1) 𝑥

= lim
𝑘→∞

𝑑 ((𝑇𝑘 − 𝑇2𝑘𝑇1) 𝑥, 0)

= lim
𝑘→∞

𝑑 (𝑇𝑘𝑥, 𝑇2𝑘𝑇1𝑥) = 0; ∀𝑥 ∈ Dom (𝑇𝑘) .

(20)

Hence, Property (ii). Finally, assume that only {𝑇2𝑘} has a
limit. Then,

𝑇𝑘𝑥 = 𝑇2𝑘𝑇1𝑘𝑥

= 𝑇2𝑇1𝑘𝑥 + (𝑇2𝑘 − 𝑇2) 𝑇1𝑘𝑥

⇒
(𝑇𝑘 − 𝑇2𝑇1𝑘) 𝑥



≤
(𝑇2𝑘 − 𝑇2) 𝑇1𝑘𝑥

 ;

∀𝑥 ∈ Dom (𝑇𝑘) ,

∃ lim
𝑘→∞

(𝑇𝑘 − 𝑇2𝑇1𝑘) 𝑥

= lim
𝑘→∞

𝑑 ((𝑇𝑘 − 𝑇2𝑇1𝑘) 𝑥, 0)

= lim
𝑘→∞

𝑑 (𝑇𝑘𝑥, 𝑇2𝑇1𝑘𝑥) = 0;

∀𝑥 ∈ Dom (𝑇𝑘) .

(21)

Hence, Property (iii).
Property (iv) is direct from Properties (i)–(iii) and the

associative property of composition of operators since for
any 𝑘 ∈ N0+, 𝑇𝑘𝑥 exists in Im(𝑇𝑘) if Im(𝑇1𝑘) ⊂ Dom
(𝑇2𝑘) and Dom(𝑇1𝑘+1) ⊃ Im(𝑇2𝑘) for 𝑥 ∈ Dom(𝑇10), and
then,Dom(𝑇𝑘)⊂Dom(𝑇1𝑘) and Im(𝑇𝑘) ⊃ Im(𝑇2𝑘); for all 𝑘 ∈

N0 since

�̂� (𝑘 + 𝑖 + 1, 𝑘) = 𝑇𝑘+𝑖 ⋅ ⋅ ⋅ 𝑇𝑘+1𝑇𝑘

= (𝑇𝑗𝑘+𝑖𝑘+𝑖 ⋅ ⋅ ⋅ 𝑇𝑗𝑘+𝑖−1,𝑘+𝑖𝑇1,𝑘+𝑖) ⋅ ⋅ ⋅ (𝑇𝑗𝑘𝑘 ⋅ ⋅ ⋅ 𝑇2𝑘𝑇1𝑘) ;

∀𝑘 ∈ N0.

(22)

Then, for any finite 𝑖 ∈ N, one gets

�̂� (𝑘 + 𝑖 + 1, 𝑘) − �̂�

0
(𝑘 + 𝑖 + 1, 𝑘)



≤

𝑘+𝑖

∑
𝑗=𝑘

𝑐𝑗 [𝑜 (

𝑇
0

𝑗
− 𝑇𝑗


)] ≤

𝑘+𝑖

∑
𝑗=𝑘

𝑗𝑘

∑
ℓ𝑗=1

𝑐𝑗ℓ𝑗 [𝑜 (

𝑇
0

ℓ𝑗𝑗
− 𝑇ℓ𝑗𝑗


)]

→ 0 as 𝑘 → ∞

(23)

for some positive finite constants 𝑐𝑗 and 𝑐𝑗ℓ𝑗 since any linear
operator𝑇0

ℓ𝑗𝑗
with a limit𝑇ℓ∞𝑗 admits a unique decomposition

𝑇0
ℓ𝑗𝑗

= 𝑇ℓ∞𝑗 + �̃�𝑙𝑗𝑗, with �̃�𝑙𝑗𝑗 → 0 as 𝑘 → ∞, for all ℓ𝑗 ∈
𝑗
𝑘
, 𝑗 = 1, 2, . . . , 𝑘 + 𝑖.

Thenext result is concernedwith the closeness of the limit
operator if the sequence of operators is closed.

Lemma 5. Consider a sequence of closed linear operators {𝑇𝑛}
defined by 𝑇𝑛 : Dom(𝑇𝑛) ⊂ 𝑋 → Im(𝑇𝑛) ⊂ 𝑋 in a
Banach space (𝑋, ‖ ‖), such that Im(𝑇𝑛) ⊂ Dom(𝑇𝑛+1) with
Im(𝑇𝑛) ∩ Dom(𝑇𝑛+1) ̸= 0, which converge to a limit operator
𝑇 : Dom(𝑇) ⊂ 𝑋 → Im(𝑇) ⊂ 𝑋.Then, such a limit is a closed
operator which is bounded if all the operators of the sequence
are bounded.
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Proof. Note the following:

(1) {𝑇𝑛𝑥
(𝑛)

𝑚
} → 𝑇𝑥(𝑛)

𝑚
as 𝑛,𝑚 → ∞ for any bounded

sequence {𝑥(𝑛)
𝑚

} ⊂ Dom(𝑇𝑛) since ∃lim𝑛,𝑚→∞‖(𝑇𝑛 −
𝑇)𝑥(𝑛)
𝑚

‖ ≤ lim𝑛,𝑚→∞‖𝑇𝑛−𝑇‖‖𝑥
(𝑛)

𝑚
‖ = 0 since {𝑇𝑛} →

𝑇. Furthermore,

‖𝑇𝑥‖ ≤
𝑇𝑛𝑥

 +
(𝑇𝑛 − 𝑇) 𝑥

 ≤

𝐾𝑛 + �̃�𝑛

 ‖
𝑥‖

≤
𝐾𝑛

 ‖𝑥‖ +

�̃�𝑛

 ‖
𝑥‖ ; ∀𝑥 ∈ 𝑋

(24)

for any 𝑛 ∈ N0, 𝐾𝑛 ≥ ‖𝑇𝑛‖ is a finite real sequence
of constants {𝐾𝑛} with 𝐾𝑛 ≤ 𝐾 for any 𝑛 ∈ N0, since
{‖𝑇𝑛‖} is convergent, and �̃�𝑛 ≥ ‖𝑇𝑛 − 𝑇‖; for all 𝑛 ∈

N0. Again, since {‖𝑇𝑛‖} is convergent, there is 𝑛0 ∈ N
such that �̃� ≥ ‖�̃�𝑛‖ for any 𝑛(≥ 𝑛0) ∈ N0, ‖𝑇𝑥‖ ≤

‖𝐾𝑛‖‖𝑥‖+‖�̃�𝑛‖‖𝑥‖ ≤ (𝐾+�̃�)‖𝑥‖ so that𝑇 : 𝑋 → 𝑋

is bounded.
(2) If the bounded sequence {𝑥(𝑛)

𝑚
} ⊂ Dom(𝑇𝑛) converges

to 𝑥(𝑛) ⊂ Dom(𝑇𝑛) for any 𝑛 ∈ N0 then {𝑇𝑛𝑥
(𝑛)

𝑚
} →

𝑇𝑛𝑥
(𝑛) for any 𝑛 ∈ N0 as 𝑚 → ∞ since {𝑇𝑛} is a

closed operator for any 𝑛 ∈ N0 so that

∃ lim
𝑚→∞


𝑇𝑛𝑥
(𝑛)

𝑚
− 𝑇𝑛𝑥

(𝑛)
≤ lim
𝑚→∞


𝑇𝑛 (𝑥
(𝑛)

𝑚
− 𝑥
(𝑛)

)


≤
𝑇𝑛

 lim
𝑚→∞


𝑥
(𝑛)

𝑚
− 𝑥
(𝑛)

= 0.

(25)

(3) One gets combining the above points (1)-(2) that:
{𝑇𝑛𝑥
(𝑛)

𝑚
} → 𝑇𝑛𝑥

(𝑛) → 𝑇𝑥(𝑛)
𝑚

→ 𝑇𝑥 as 𝑛,𝑚 →

∞ if {𝑥(𝑛)
𝑚

} → 𝑥(𝑛) → 𝑥 for any 𝑛 ∈ N0 where
{𝑥(𝑛)
𝑚

} → {𝑥(𝑛)} ⊂ Dom(𝑇𝑛) as 𝑚 → ∞, and then
{𝑥(𝑛)
𝑚

} → {𝑥(𝑛)} ∈ Dom(𝑇𝑛) as 𝑚 → ∞ for any 𝑛 ∈

N0 and {𝑥(𝑛)
𝑚

} → {𝑥(𝑛)} → 𝑥 ∈ Dom(𝑇) as 𝑛,𝑚 →

∞ since { 𝑇𝑛} is a sequence of closed operators which
converges. Thus, the limit of bounded converging
sequences belongs to the domain of the limit operator.
Furthermore, one has for any bounded sequence {𝑥𝑛}
converging to 𝑥 ∈ Dom(𝑇):

𝑇𝑛𝑥𝑛 − 𝑇𝑥
 =

𝑇𝑥𝑛 + (𝑇𝑛 − 𝑇 ) 𝑥𝑛 − 𝑇𝑥


≤ ‖𝑇‖
𝑥𝑛 − 𝑥

 +
𝑇𝑛 − 𝑇


𝑥𝑛

 → 0
(26)

as 𝑘 → ∞ then 𝑇𝑛𝑥𝑛 → 𝑇𝑥 strongly so that 𝑇 : Dom(𝑇) ⊂

𝑋 → Im(𝑇) ⊂ 𝑋 is a closed operator as a result.

The above result can be extended to sequences of opera-
tors not all of them being bounded provided that each of such
sequences of operators can be decomposed as a composition
of subsequences of composite operators such that each of
such a composite subsequence is bounded. The above result
can be applied to sequences of operators not all of them being
bounded. It is well-known that a sequence of linear operators
on a Hilbert space [5, 6] is bounded if and only if they are
closed and their domain is the whole vector space 𝑋, [1, 4].
Thus, we have the following result using Lemma 5.

Lemma 6. Consider a sequence of linear bounded operators
{𝑇𝑛} defined by 𝑇𝑛 : 𝑋 → 𝑋 in a Banach space (𝑋, ‖ ‖) which
converge to a limit operator 𝑇 : 𝑋 → 𝑋. Then, such a limit is
a bounded linear closed operator.

Proof. Since the operators are all bounded then their domain
is 𝑋, their range is in 𝑋 and are all closed. The conditions of
Lemma 5 hold with

𝑋 ≡ Im (𝑇𝑛) ⊂ 𝑋 ≡ Dom (𝑇𝑛+1)

with Im (𝑇𝑛) ∩ Dom (𝑇𝑛+1) = 𝑋 ̸= 0.
(27)

Then, the limit𝑇 : 𝑋 → 𝑋 of {𝑇𝑛} is also bounded and closed
from Lemma 5.

The subsequent result is concerned with the limit oper-
ator of a sequence of linear operators being compact if all
the operators in the sequence are bounded and at least one
of them is compact.

Lemma 7. The following properties hold.

(i) Consider a sequence of bounded compact linear oper-
ators {𝑇𝑛} defined by 𝑇𝑛 : Dom(𝑇𝑘) ⊂ 𝑋 →

Im(𝑇𝑛) ⊂ 𝑋 in a Banach space (𝑋, ‖ ‖), such that
Im(𝑇𝑛) ⊂ Dom(𝑇𝑛+1) with Im(𝑇𝑛) ∩ Dom(𝑇𝑛+1) ̸= 0,
which converge to a limit operator𝑇 : Dom(𝑇) ⊂ 𝑋 →

Im(𝑇) ⊂ 𝑋. Then, such a limit is a compact operator.

(ii) Assume that the sequence {𝑇𝑛} of bounded operators
satisfies that there is at least one compact operator
within all subsequences {𝑇𝑗𝑛 , 𝑇𝑗𝑛+1, . . . , 𝑇𝑗𝑛+1−1} being
subject to max𝑛∈N0(𝑗𝑛+1 − 𝑗𝑛) ≤ 𝑐𝑗 < ∞ for some
subsequence {𝑗𝑛} ⊂ N0 for any 𝑛 ∈ N0. Then, the
composed operator �̂�(𝑛, 𝑚) is compact as it is its limit
provided that it exists.

Proof. We have to prove that if {𝑥𝑛} is bounded then {𝑇𝑥𝑛} is
convergent. Note that for given bounded sequences {𝑥(𝑖)

𝑛
} and

{𝑥
(𝑗)

𝑛
}; 𝑖, 𝑗, 𝑛 ∈ N0 that


𝑇𝑥
(𝑖)

𝑛
− 𝑇𝑥
(𝑗)

𝑛



=

(𝑇 − 𝑇𝑛) 𝑥

(𝑖)

𝑛
+ 𝑇𝑛𝑥

(𝑖)

𝑛
− 𝑇𝑛𝑥

(𝑗)

𝑛
− (𝑇 − 𝑇𝑛) 𝑥

(𝑗)

𝑛



≤

(𝑇 − 𝑇𝑛) 𝑥

(𝑖)

𝑛


+

(𝑇 − 𝑇𝑛) 𝑥

(𝑗)

𝑛


+
𝑇𝑛



𝑥
(𝑖)

𝑛
− 𝑥
(𝑗)

𝑛


(28)

and, one gets by taking subsequences {𝑧𝑖} ⊂ {𝑥(𝑖)
𝑛
}, {𝑧𝑗} ⊂

{𝑥(𝑗)
𝑛
}


𝑇𝑧𝑖 − 𝑇𝑧𝑗


≤
𝑇 − 𝑇𝑛

 (
𝑧𝑖

 +

𝑧𝑗

) +


𝑇𝑛𝑧𝑖 − 𝑇𝑛𝑧𝑗


.

(29)
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Since {𝑇𝑛} → 𝑇, we can find 𝑛0, 𝑖0 ∈ N0 such that for 𝑛(≥
𝑛0) ∈ N0, min(𝑖, 𝑗) > 𝑖0, we have

𝑇 − 𝑇𝑛
 <

𝜀

4𝑐
,

max (𝑧𝑖
 ,


𝑧𝑗

) ≤ 𝐾𝑧 ≤ 2𝑐 < ∞,


𝑇𝑛𝑧𝑖 − 𝑇𝑛𝑧𝑗


<

𝜀

2

(30)

for any given 𝑐 and 𝜀 = 𝜀(𝑐) ∈ R+, since {𝑧𝑖} and {𝑧𝑗} are
bounded subsequences, and {𝑇𝑛𝑧𝑖} converges, so that it is a
Cauchy sequence, since {𝑇𝑛} contains at least one compact
operator. As a result, ‖𝑇𝑧𝑖 − 𝑇𝑧𝑗‖ ≤ 𝜀/2 + 𝜀/2 = 𝜀 is
arbitrarily small for 𝜀 being sufficiently small. Thus, {𝑇𝑧𝑖}
is convergent. Property (i) has been proven. Property (ii)
follows from Property (i) and the fact that any operator
composite sequence of bounded operators is a compact
operator if there is at least one which is compact.

Now, define the composite operator �̂�(𝑘 + 𝑖 + 1, 𝑘) : 𝑋 →

𝑋; for all 𝑖, 𝑘(≥ 𝑖) ∈ N0 by

�̂� (𝑘 + 𝑖 + 1, 𝑘) = 𝑇𝑘+𝑖 ⋅ ⋅ ⋅ 𝑇𝑘+1𝑇𝑘

= (𝑇𝑗𝑘+𝑖𝑘+𝑖 ⋅ ⋅ ⋅ 𝑇𝑗𝑘+𝑖−1,𝑘+𝑖𝑇1,𝑘+𝑖) ⋅ ⋅ ⋅ (𝑇𝑗𝑘𝑘 ⋅ ⋅ ⋅ 𝑇2𝑘𝑇1𝑘) ;

∀𝑥 ∈ Dom (𝑇10) ; ∀𝑘 ∈ N0.

(31)

Define also the sequence {�̂�0(𝑘 + 𝑖 + 1, 𝑘)} of composite
operators as �̂�0(𝑘 + 𝑖 + 1, 𝑘) = 𝑇0

𝑘+𝑖
⋅ ⋅ ⋅ 𝑇0
𝑘+1

𝑇0
𝑘
; for all 𝑘 ∈ N0

where 𝑇0
𝑘+𝑖

replaces each operator in the composite operator
𝑇𝑘+𝑖 by its limit when such a limit exists. A result is now given
based on the existence of the following limit:

lim
𝑘→∞

𝑑 (�̂� (𝑘 + 𝑖 + 1, 𝑖) 𝑥, �̂�
0
(𝑘 + 𝑖 + 1, 𝑖) 𝑥) = 0;

∀𝑥 ∈ Dom (𝑇10) .

(32)

The following result is obtained from Lemmas 4–7.

Theorem 8. Consider the operator composite sequence {�̂�(𝑘 +

𝑖 + 1, 𝑘)}; for all 𝑘, 𝑖 ∈ N0 of composed linear bounded
operators in (31) on a Banach space ( 𝑋, ‖ ‖), subject to
Im(𝑇𝑗𝑘)( ̸= 0) ⊂ Dom(𝑇𝑗+1,𝑘) for 𝑗 ∈ 𝑗𝑘, Im𝑇𝑗𝑘𝑘( ̸= 0) ⊂

Dom𝑇1,𝑘+1 and 1 ≤ 𝑗𝑘 ≤ 𝐽(∈ N0) < ∞; for all 𝑘 ∈ N0,
and the sequence of composed linear operators {�̂�0(𝑘+ 𝑖+1, 𝑘)}

of defined in the same way as {�̂�(𝑘 + 𝑖 + 1, 𝑘)} as 𝑘 → ∞ by
replacing each operator possessing a limit by such a limit. The
following properties hold.

(i) Either the sequences {�̂�(𝑘+𝑖+1, 𝑘)} and {�̂�0(𝑘+𝑖+1, 𝑘)}
have limits and both limits coincide or none of them
has a limit and, furthermore, and �̂�(𝑘 + 𝑖 + 1, 𝑘) →

�̂�
0
(𝑘 + 𝑖 + 1, 𝑘) as 𝑘 → ∞.

(ii) If the limits of Property (i) exist and are finite then
the limits of the sequences of operators {�̂�(𝑘 + 𝑖 +

1, 𝑘)} and {�̂�0(𝑘+ 𝑖+1, 𝑘)} as 𝑘 → ∞; for all 𝑖 ∈ N0
have the same set of fixed points.

(iii) Assume, in addition, that for some 𝑘 ∈ N0, there
is at least one compact operator in the composition
operator �̂�(𝑘 + 𝑖 + 1, 𝑘), and that Im(𝑇𝑗𝑘)( ̸= 0) ⊂

Im(Tjk) ⊂ Dom(Tj+1,k) for 𝑗 ∈ 𝑗𝑘, Im𝑇𝑗𝑘+ℓ𝑘( ̸= 0) ⊂

ImTjk+ℓk( ̸= 0) ⊂ Dom T1,k+1 for 0 ≤ ℓ ≤ 𝑖 and some
𝑖 ∈ N0 and that all the operators are closed. If Property
(i) holds with �̂�(𝑘 + 𝑖 + 1, 𝑘) → �̂�0(𝑘 + 𝑖 + 1, 𝑘) →

�̂�∗ as 𝑘 → ∞; for some 𝑖 ∈ N0 and ‖�̂�∗‖ ≤ 𝐾 < 1,
then �̂�∗ is contractive and

lim
𝑘,𝑛→∞


�̂� (𝑘 + 𝑛 (𝑖 + 1) , 𝑘) 𝑥 − �̂� ((𝑘 + 𝑛 (𝑖 + 1) , 𝑘) , 𝑘) 𝑦



= lim
𝑘→∞


�̂�
0
(𝑘 + 𝑛 (𝑖 + 1) , 𝑘) 𝑥 − �̂�

0
(𝑘 + 𝑛 (𝑖 + 1) , 𝑘) 𝑦



= lim
𝑘,𝑛→∞


�̂�
∗
(𝑖+1)𝑛

𝑥 − �̂�
∗
(𝑖+1)𝑛

𝑦

= 0; ∀𝑥, 𝑦 ∈ Dom (𝑇10) ,

(33)

the sequences of composite operators {�̂�(𝑘 + 𝑗, 𝑗)} and
{�̂�0(𝑘 + 𝑗, 𝑗)} converge to zero as 𝑘 → ∞, and �̂�∗ :

Dom(�̂�∗) ⊂ 𝑋 → Im(�̂�∗) ⊂ 𝑋 is bounded,
closed and compact and has a unique fixed point in
Dom(�̂�∗) ∩ Im(“T∗) to which all sequences with initial
conditions in Im(“T∗) converge.

(iv) Assume that there is a (in general, nonunique) strictly
increasing sequence of nonnegative integers {𝑗𝑘} with
𝑗0 = 0 and 0 < 𝑗𝑘+1 − 𝑗𝑘 ≤ 𝑚 < ∞ such that


�̂� (𝑗𝑘+2, 𝑗𝑘)


≤ �̂� (𝑗𝑘+2, 𝑗𝑘+1)


�̂� (𝑗𝑘+1, 𝑗𝑘)



≤ 𝐾

�̂� (𝑗𝑘+1, 𝑗𝑘)


; ∀𝑘 ∈ N0

(34)

for some nonnegative real sequence {𝐾𝑘(𝑗𝑘+1, 𝑗𝑘)}; 𝑘 ∈

N0, and some real constant 𝐾 ∈ [0, 1). Assume,
in addition, that for some 𝑘 ∈ N0, there is at
least one compact operator in any composite operator
�̂�(𝑗𝑘+1, 𝑗𝑘) and that all the operators are closed. Then,
the sequences of composite operators {�̂�(𝑘 + 𝑗, 𝑗)} and
{�̂�0(𝑘 + 𝑗, 𝑗)} converge to zero as 𝑘 → ∞ for any
finite 𝑗 ∈ N0. Finally, assume that �̂�(𝑗𝑘+1, 𝑗𝑘) →

�̂�∗
𝑔
as 𝑘 → ∞. Then, �̂�∗

𝑔
is contractive, continuous,

bounded, closed, and compact and has a unique fixed
point inDom(�̂�∗)∩Im(“T∗) to which all sequences with
initial conditions in Im(“T∗) converge.

Proof. Note from the definition of the sequences {�̂�(𝑘 + 𝑖 +

1, 𝑘)} and {�̂�0(𝑘 + 𝑖 + 1, 𝑘)} that for any, since


�̂�
0
(𝑘 + 𝑖 + 1, 𝑘)



≤

�̂� (𝑘 + 𝑖 + 1, 𝑘)



+

�̂�
0
(𝑘 + 𝑖 + 1, 𝑘) − 𝑇 (𝑘 + 𝑖 + 1, 𝑘)


,
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�̂� (𝑘 + 𝑖 + 1, 𝑘)



≤

�̂�
0
(𝑘 + 𝑖 + 1, 𝑘)



+

�̂�
0
(𝑘 + 𝑖 + 1, 𝑘) − 𝑇 (𝑘 + 𝑖 + 1, 𝑘)



(35)

so that lim sup
𝑘→∞

|‖�̂�(𝑘 + 𝑖 + 1, 𝑘)‖ − ‖�̂�0(𝑘 + 𝑖 + 1, 𝑘)‖| ≤ 0.
Then, either both sequences of operators {�̂�(𝑘 + 𝑖 + 1, 𝑘)} and
{�̂�0(𝑘+𝑖+1, 𝑘)} have the same (finite or infinity) limit or none
of them has a limit and �̂�(𝑘 + 𝑖 + 1, 𝑘) → �̂�0(𝑘 + 𝑖 + 1, 𝑘) as
𝑘 → ∞. Hence, Property (i). Property (ii) follows trivially
from Property (i) for the case lim𝑘→∞ �̂�0(𝑘 + 𝑖 + 1, 𝑘) =

lim𝑘→∞ �̂�(𝑘 + 𝑖 + 1, 𝑘) = �̂�∗; for all 𝑖 ∈ N0.
To prove Property (iii), note that


�̂� (𝑘 + 2𝑖 + 1, 𝑘) 𝑥 − �̂� (𝑘 + 2𝑖 + 1, 𝑘) 𝑦



≤ 𝐾
𝑥 − 𝑦

 = 𝐾𝑑 (𝑥, 𝑦) ,


�̂� (𝑘 + 2𝑖 + 1, 𝑘 + 2𝑖 + 1) �̂� (𝑘 + 2𝑖 + 1 , 𝑘) 𝑥

−�̂� (𝑘 + 2𝑖 + 1 , 𝑘 + 2𝑖 + 1) �̂� (𝑘 + 2𝑖 + 1 , 𝑘) 𝑦


≤ 𝐾
2 𝑥 − 𝑦

 ,

...

lim
𝑛→∞


�̂� (𝑘 + 𝑛𝑖 + 1, 𝑘 + 𝑛𝑖 + 1) �̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑥

−�̂� (𝑘 + 𝑛𝑖 + 1, 𝑘 + 𝑛𝑖 + 1) �̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑦


≤ 𝐾
𝑛 𝑥 − 𝑦

 ,

𝑑 (�̂�
∗
𝑛

𝑥 − �̂�
∗
𝑛

𝑦)

= 𝑑 ( lim
𝑘→∞

�̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑥 − lim
𝑘→∞

�̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑦)

= lim
𝑘→∞

𝑑 (�̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑥 − �̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑦)

= lim
𝑘→∞

𝑑 (�̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑥, �̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑦)

= lim
𝑘→∞

𝑑 (�̂�
0
(𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑥, �̂�

0
(𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑦)

= lim
𝑘→∞

𝑑 (�̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑥, �̂�
0
(𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑦)

= lim
𝑘→∞


�̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑥 − �̂� (𝑘 + 𝑛𝑖 + 1, 𝑘) 𝑦



≤ 𝐾
𝑛
𝑑 (𝑥, 𝑦)

(36)

so that, since 𝐾 ∈ [0, 1) then the limit operator �̂�∗ on 𝑋 is
continuous, then bounded with

lim
𝑛→∞

𝑑 (�̂�
∗
𝑛

𝑥 − �̂�
∗
𝑛

𝑦) = 𝑑 ( lim
𝑛→∞

�̂�
∗
𝑛

𝑥 − lim
𝑛→∞

�̂�
∗
𝑛

𝑦) = 0

(37)

for any 𝑥, 𝑦 ∈ Dom(𝑇10). Furthermore, for any 𝑘 ∈ N0
and the associative property of composition of operators,
∃𝑛 = 𝑛(𝑗, 𝑘) = max(𝑖 ∈ Z0+ : �̂�(𝑘 + 𝑗, 𝑗) = �̂�(𝑘 + 𝑗, 𝑘1)

�̂�∗
𝑛

(𝑘2, 𝑗); for all 𝑗 ∈ N0, for all 𝑘(> 𝑗) ∈ N)with 𝑛 = 𝑛(𝑗, 𝑘)

being unique for each given 𝑗 ∈ N0, 𝑘(> 𝑗) ∈ N and the given
operator decomposition being also trivially unique. Note that
‖�̂�(𝑘 + 𝑗, 𝑗)‖ → 0 as 𝑘 → ∞ for any 𝑗 ∈ N0 since 𝑛 =

𝑛(𝑗, 𝑘) → ∞ if (𝑘 − 𝑗) → ∞ since ‖�̂�∗
𝑛

‖ ≤ 𝐾𝑛 →

0 as 𝑛 → ∞ since 𝐾 ∈ [0, 1). Similarly, it is proven that
‖�̂�0(𝑘 + 𝑗, 𝑗)‖ → 0 as 𝑘 → ∞.

On the other hand, note the following.

(1) Any convergent sequence {𝑥𝑘} for 𝑘 ∈ N0 construct-
ed from the composed operators

�̂� (𝑘 + 𝑖 + 1, 𝑘) = 𝑇𝑘+𝑖 ⋅ ⋅ ⋅ 𝑇𝑘+1𝑇𝑘

= (𝑇𝑗𝑘+𝑖𝑘+𝑖 ⋅ ⋅ ⋅ 𝑇𝑗𝑘+𝑖−1,𝑘+𝑖𝑇1,𝑘+𝑖) ⋅ ⋅ ⋅ (𝑇𝑗𝑘𝑘 ⋅ ⋅ ⋅ 𝑇2𝑘𝑇1𝑘)
(38)

for any 𝑘 ∈ N0 as follows 𝑥1𝑘 ∈ Dom(𝑇1𝑘), 𝑥2𝑘 =

𝑇2𝑘𝑥1𝑘, . . . , 𝑥𝑗𝑘𝑘 = 𝑇𝑗𝑘𝑘𝑥𝑗𝑘−1,𝑘, 𝑥1,𝑘+1 = 𝑇1,𝑘+1

𝑥𝑗𝑘𝑘, . . . converges to a point 𝑥 in Dom(�̂�∗), since
all the operators in the above composite sequence of
operators are closed and then the limit operator �̂�∗ :
Dom(�̂�∗) ⊂ 𝑋 → Im(T̂∗) ⊂ Im(�̂�∗) ⊂ Dom(�̂�∗) ⊂

𝑋 is also bounded and closed (from Lemma 6 and the
associative property of operator compositions), and
�̂�∗𝑥 in Im(�̂�∗) ⊂ Im(�̂�∗) with Im(�̂�∗) being closed
(i.e., Im(�̂�∗) is relatively compact) since all composite
sequences of operators �̂�(𝑘+𝑗, 𝑗) are compact for any
given 𝑗 ∈ N0, 𝑘(> 𝑗) ∈ N since at least one of the
operators within any of such sequences is compact
and all of them are bounded, [1, 3, 4].

(2) Any convergent sequence {�̂�∗𝑛𝑥} of elements in
Dom(�̂�∗) with 𝑥 ∈ Dom(𝑇10) converges to some
point 𝑥∗ in Dom(�̂�∗), which maps to �̂�∗𝑥∗ in
Im(�̂�∗) ⊂ Im(�̂�∗) ⊂ Dom(�̂�∗) which is also the limit
of the same convergent sequence. Such a limit {�̂�∗

𝑛

𝑥}

has a limit in Dom(�̂�∗) ∩ Im(�̂�∗) which is also the
unique fixed point of �̂�∗. Otherwise, if there were
two distinct fixed points 𝑥∗ and 𝑦∗ then it would
are 𝑥, 𝑦 ∈ Dom(𝑇10) such that lim𝑛→∞ 𝑑(�̂�∗

𝑛

𝑥 −

�̂�∗
𝑛

𝑦) = 𝑑(𝑥∗, 𝑦∗) > 0, then a contradiction and
hence Property (iii).

To prove Property (iv), note that strictly increasing se-
quence of nonnegative integers {𝑗𝑘} with 𝑗0 = 0 and 0 <

𝑗𝑘+1 − 𝑗𝑘 ≤ 𝑚 < ∞ such that

�̂� (𝑗𝑘+1, 0)


≤ 𝐾
𝑗𝑘

�̂� (𝑗1, 0)


→ 0 as 𝑘 → ∞;


�̂� (𝑗𝑘+1 + 𝑚𝑘, 0)


≤ 𝑀𝐾

𝑗𝑘

�̂� (𝑗1, 0)


→ 0

(39)

for any sequence of nonnegative integers {𝑚𝑘} subject to
0 ≤ 𝑚𝑘 < 𝑗𝑘+2 − 𝑗𝑘+1 ≤ 𝑚 < ∞; for all 𝑘 ∈ N0 for
some nonnegative real sequence {𝐾𝑘(𝑗𝑘+1, 𝑗𝑘)}; 𝑘 ∈ N0 and
some real constant 𝐾 ∈ [0, 1). As a result the sequences of
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composite operators {�̂�(𝑘, 0)}, {�̂�0(𝑘, 0)}, {�̂�(𝑘 + 𝑗, 𝑗)}, and
{�̂�0(𝑘 + 𝑗, 𝑗)} converge to zero as 𝑘 → ∞ for any finite
𝑗 ∈ N0. On the other hand, if �̂�(𝑗𝑘+1, 𝑗𝑘) → �̂�∗

𝑔
as, 𝑘 →

∞ then �̂�∗
𝑔
is contractive. Otherwise, it would hold trivially

that lim inf𝑘→∞‖�̂�(𝑘, 0)‖ > 0, a contradiction. Thus, the
limit operator �̂�∗

𝑔
is contractive and bounded and then it is

also continuous as a result. �̂�∗
𝑔
: Dom(�̂�∗

𝑔
) ⊂ 𝑋 → Im(�̂�∗

𝑔
) ⊂

Im(𝑇∗
𝑔
) ⊂ Dom(�̂�∗

𝑔
) ⊂ 𝑋 is closed (from Lemma 6) and

compact, since all the operators in the composite sequence
of operators 𝑇(𝑗𝑘+1, 𝑗𝑗) are bounded and at least one of
them is compact. Thus, �̂�∗

𝑔
has a unique fixed point in

Dom(�̂�∗) ∩ Im(�̂�∗) to which all sequences to which all the
sequences {𝑥𝑘}; 𝑘 ∈ N0 of the form 𝑥1𝑘 ∈ Dom(𝑇1𝑘), 𝑥2𝑘 =
𝑇2𝑘𝑥1𝑘, . . ., 𝑥𝑗𝑘𝑘 = 𝑇𝑗𝑘𝑘𝑥𝑗𝑘−1,𝑘, 𝑥1,𝑘+1 = 𝑇1,𝑘+1𝑥𝑗𝑘𝑘, . . . with
initial point in Dom 𝑇10 converge. Hence, Theorem 8 is fully
proven.

Remark 9. Note that the existence of the operator limits in
Theorem 8[(iii)-(iv)] is not required for each operator within
the composite sequence of operators but only for certain
composite strips of such operators.

The subsequent result, whose proof is omitted, extends
in a natural way Theorem 8 through the associative property
of composite operators to the case that there are subsets of
composite operators having limits although each individual
operator is not requested to have a limit.

Theorem 10. Consider the composite operator below:

�̂� (𝑘 + 𝑖𝑘 + 1, 𝑘) = 𝑇𝑘+𝑖𝑘 ⋅ ⋅ ⋅ 𝑇𝑘+1𝑇𝑘

= (𝑇𝑗𝑘+𝑖𝑘𝑘+𝑖
⋅ ⋅ ⋅ 𝑇𝑗𝑘+𝑖𝑘−1,𝑘+𝑖

𝑇1,𝑘+𝑖𝑘) ⋅ ⋅ ⋅ (𝑇𝑗𝑘𝑘 ⋅ ⋅ ⋅ 𝑇2𝑘𝑇1𝑘) ,

(40)

on a Banach space (𝑋, ‖ ‖), subject to the following conditions.

(1) The elements of the sequences of sets {𝑖𝑘} are finite and
each of those sets has a finite cardinal for all 𝑘 ∈ N0,
and 𝑖𝑘 → 𝑖∗(< ∞) as 𝑘 → ∞.

(2) Im(𝑇𝑗𝑘)( ̸= 0) ⊂ Im(Tjk) ⊂ Dom(Tj+1,k) for 𝑗 ∈

𝑗𝑘, Im 𝑇𝑗𝑘+ℓ𝑘( ̸= 0) ⊂ ImTjk+ℓk( ̸= 0) ⊂ DomT1,k+1
for 0 ≤ ℓ ≤ 𝑖𝑘.

(3) The elements of the sequences of nonnegative integers
{𝑗𝑘+𝑖𝑘} are finite for all 𝑘 ∈ N0, and 𝑗𝑘+ℓ𝑘 →

𝑗𝑘+ℓ for 0 ≤ ℓ𝑘 ≤ 𝑖𝑘, 0 ≤ ℓ ≤ 𝑖∗ as 𝑘 → ∞.
(4) All the operators in each of the sets {𝑇𝑖𝑘𝑘 : 1 ≤ 𝑖𝑘 ≤

𝑗𝑘}; for all 𝑘 ∈ N0 are linear, bounded, and closed (so
that all the operators are linear, bounded, and closed)
and at least one of them in each set is compact.

(5) The sequences of composite operators {𝑇𝑘+ℓ𝑘} for 0 ≤

ℓ𝑘 ≤ 𝑖𝑘; for all 𝑘 ∈ N0 tend to respective limit operators
𝑇∗
𝑗
for 0 ≤ 𝑗 ≤ 𝑖∗ as 𝑘 → ∞.

Then, �̂�(𝑘 + 𝑖𝑘 + 1, 𝑘) → �̂�(𝑘 + 𝑖∗ + 1, 𝑘) → 𝑇∗ =

𝑇∗
𝑖
⋅ ⋅ ⋅ 𝑇∗
2
𝑇∗
1
which is linear, continuous, bounded, closed, and

compact. Furthermore, if ‖𝑇∗
𝑗
‖ ≤ 𝐾𝑗 and 𝐾 = ∏

𝑖
∗

𝑗=0
𝐾𝑗 < 1,

then 𝑇∗ has a unique fixed point inDom 𝑇∗ ∩ ImT∗ to which
all sequences {𝑥𝑘}; 𝑘 ∈ N0 of the form 𝑥1𝑘 ∈ Dom(𝑇1𝑘), 𝑥2𝑘 =

𝑇2𝑘𝑥1𝑘, . . . , 𝑥𝑗𝑘𝑘 = 𝑇𝑗𝑘𝑘𝑥𝑗𝑘−1,𝑘, 𝑥1,𝑘+1 = 𝑇1,𝑘+1𝑥𝑗𝑘𝑘, . . . with
initial point in Dom𝑇10 converge.

Example 11. This example discusses a way to use oblique
projections to build composite operators with sequences of
operators to take into account the approximation of the
images in finite-dimensional spaces and also to take account
of computing or measurement errors as well as connections
with fixed point issues. Consider the complex pre-Hilbert
space 𝐿2

𝑝
(𝑎) of square-integrable 𝑝-vector functions on [0, 𝑎]

endowed with an inner product defined by the complex
number ⟨𝑥, 𝑦⟩; for all 𝑥, 𝑦 ∈ 𝐿2

𝑝
(𝑎) with associate inner

product induced norm ‖𝑥‖ = ⟨𝑥, 𝑥⟩
1/2

; for all 𝑥 ∈ 𝐿
2

𝑝
(𝑎).

Consider a bounded linear operator 𝑇 : 𝐿2
𝑝
(𝑎) → 𝐿2

𝑝
(𝑎), of

norm ‖𝑇‖ = sup
‖𝑥‖=1

‖𝑇𝑥‖, represented by 𝑦(𝑡) = (𝑇𝑥)(𝑡) =

∑
∞

𝑖=1
⟨𝑦, 𝜃𝑖⟩𝜑𝑖( 𝑡); for all 𝑡 ∈ [0, 𝑎], where 𝜑𝑖, 𝜃𝑖 : [0, 𝑎] →

𝐿2
𝑝
(𝑎); 𝑖 ∈ N are sets of linearly independent functions

which define mutually reciprocal basis {𝜑𝑖 : 𝑖 ∈ 𝑛} and
{𝜃𝑖 : 𝑖 ∈ 𝑛}, that is, ⟨𝜃𝑖, 𝜑𝑖⟩ = 𝛿𝑖𝑗. If such basis are
orthogonal then they are identical leading to 𝑦(𝑡) = (𝑇𝑥)(𝑡) =

∑
∞

𝑖=1
⟨𝑦, 𝜑𝑖⟩𝜑𝑖(𝑡); for all 𝑡 ∈ [0, 𝑎]. We can decompose 𝐿2

𝑝
(𝑎)

uniquely as a direct sum of orthogonal subspaces as follows
as 𝐿2
𝑝
(𝑎) = 𝑀𝑛 ⊕ (𝐿2

𝑝
(𝑎) ∩ 𝑀𝑛) for each 𝑛 ∈ N where

the orthogonal projection of 𝑇 : 𝐿2
𝑝
(𝑎) → 𝐿2

𝑝
(𝑎) on

𝑀𝑛 ⊂ 𝐿2
𝑝
(𝑎) is given by the composite operator 𝑃𝑛𝑇𝑛 :

𝐿2(𝑎) → 𝑀𝑛 of the orthogonal projection 𝑃𝑛 : 𝐿
2(𝑎) → 𝑀𝑛

represented by 𝑦𝑛(𝑡) = (𝑃𝑛𝑦𝑛)(𝑡), where 𝑦
𝑛
(𝑡) = (𝑇𝑛𝑥)(𝑡) =

∑
𝑛

𝑖=1
⟨𝑦, 𝜃𝑖⟩𝜑𝑖(𝑡), for all 𝑡 ∈ [0, 𝑎] is defined through the

truncated operator 𝑇𝑛 : 𝐿
2

𝑝
(𝑎) → 𝐿2

𝑝
(𝑎) so that

𝑦𝑛 (𝑡) = (𝑃𝑛𝑇𝑛𝑥) (𝑡) = (

𝑛

∑
𝑖=1

⟨𝑃𝑛𝑇𝑥, 𝜃𝑖⟩ 𝜑𝑖) (𝑡)

= (

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

⟨𝑃𝑛𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗𝜑𝑖)(𝑡)

=

𝑛

∑
𝑖=1

𝛽𝑖𝜑𝑖 (𝑡) ,

(41)

where

𝛼𝑖 = ⟨𝑥, 𝜃𝑗⟩ ,

𝛽𝑖 =

𝑛

∑
𝑗=1

⟨𝑃𝑛𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗

=

𝑛

∑
𝑗=1

⟨𝑃𝑛𝑇𝜑𝑗, 𝜃𝑖⟩ ⟨𝑥, 𝜃𝑗⟩ ; 𝑖 ∈ 𝑛 = {1, 2, . . . , 𝑛} .

(42)

Note that {𝑇𝑛} → 𝑇 and 𝑑(𝑦, 𝑦𝑛)(𝑡) → 0 as 𝑛 →

∞; for all 𝑡 ∈ [ 0, 𝑎]. Now assume that𝑦(𝑡) is subject to some
structured uncertainty 𝑦(𝑡) = (�̃�𝑇𝑥)(𝑡) = ∑

∞

𝑖=1
⟨𝑦, 𝜑𝑖⟩𝜑𝑖(𝑡) =
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(∑
∞

𝑖=1
⟨𝑇�̃�𝑥, 𝜑𝑖⟩)𝜑𝑖(𝑡); for all 𝑡 ∈ [ 0, 𝑎] (due, for instance, to

computational or measurement errors) and defined by some
relative uncertainty operator �̃� in T̃ on 𝐿2

𝑝
(𝑎) belonging to a

family T̃ = {�̃� ∈ 𝐿2
𝑝
(𝑎) : ‖�̃�‖ ≤ �̃�, some �̃� ∈ R0+} so that

𝑦mes(𝑡) = 𝑦(𝑡) + 𝑦(𝑡) and its projected value on𝑀𝑛, through
the orthogonal projection𝑀𝑛, is

𝑦mes𝑛 (𝑡)

= (𝑃𝑛 (𝑇𝑛 + �̃�𝑛𝑇𝑛) 𝑥) (𝑡)

= (𝑃𝑛𝑇𝑛𝑥) (𝑡) + (𝑃𝑛�̃�𝑛𝑇𝑛) 𝑥 (𝑡)

= 𝑦𝑛 (𝑡) + 𝑦𝑛 (𝑡)

= (

𝑛

∑
𝑖=1

⟨𝑃𝑛 (𝑇 + �̃�𝑇) 𝑥, 𝜃𝑖⟩𝜑𝑖) (𝑡)

= (

𝑛

∑
𝑖=1

𝑛

∑
𝑖=1

⟨𝑃𝑛𝑇𝜑𝑗 + 𝑃𝑛�̃�𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗𝜑𝑖) (𝑡)

= (

𝑛

∑
𝑖=1

𝑛

∑
𝑖=1

⟨𝑃𝑛 (𝐼 + �̃�) 𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗𝜑𝑖) (𝑡)

=

𝑛

∑
𝑖=1

(𝛽𝑖 + 𝛽𝑖) 𝜑𝑖 (𝑡) ; ∀𝑡 ∈ [0, 𝑎] ,

(43)

𝑦mes𝑛 (𝑡) − 𝑦𝑛 (𝑡)

= (

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

⟨𝑃on (�̃�) 𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗𝜑𝑖)(𝑡)

=

𝑛

∑
𝑖=1

(𝛽𝑖 + 𝛽𝑖) 𝜑𝑖 (𝑡) ; ∀𝑡 ∈ [0, 𝑎] ,

(44)

where {�̃�𝑛} → �̃�,

𝛽𝑖 (𝑡) =

𝑛

∑
𝑗=1

⟨𝑃𝑛�̃�𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗 (𝑡)

=

𝑛

∑
𝑗=1

⟨𝑃𝑛�̃�𝑇𝜑𝑗, 𝜃𝑖⟩⟨𝑥, 𝜃𝑗⟩(𝑡) ;

𝑖 ∈ 𝑛 = {1, 2, . . . , 𝑛}

(45)

with 𝑃on(�̃�𝑛) = 𝑃𝑛(𝐼 + �̃�𝑛) is an oblique operator which
depends on the particular uncertainty operator �̃�𝑛 in the class
T̃ which has necessarily a norm exceeding unity while the
orthogonal operator 𝑃𝑛 has unit norm. The (non-necessarily
unique) worst case in a norm deviation sense of themeasured
projection of 𝑦 on the subspace𝑀𝑛 is given by

𝑦
𝑤

mes𝑛 (𝑡) = sup
�̃�∈T̃

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

⟨𝑃
𝑤

on (�̃�) 𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗𝜑𝑖 (𝑡) (46)

so that the maximum deviation amount of the projected
vector is


𝑦
𝑤

mes𝑛 − 𝑦𝑛

=



𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

⟨𝑃
𝑤

on (�̃�) 𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗𝜑𝑖



= sup
�̃�∈T̃



𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

⟨𝑃on (�̃�) 𝑇𝜑𝑗, 𝜃𝑖⟩𝛼𝑗𝜑𝑖



.

(47)

If the basis {𝜑𝑖 : 𝑖 ∈ 𝑛} is orthonormal then it is autoreciprocal,
then all its vector functions have unit norm and

𝑦
𝑤

mes𝑛 (𝑡) = sup
�̃�∈T̃

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

⟨𝑃
𝑤

on (�̃�) 𝑇𝜑𝑗, 𝜑𝑖⟩𝛼𝑗𝜑𝑖 (𝑡), (48)


𝑦
𝑤

mes𝑛 − 𝑦𝑛

=



𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

⟨𝑃
𝑤

on (�̃�) 𝑇𝜑𝑗, 𝜑𝑖⟩𝛼𝑗𝜑𝑖



= sup
�̃�∈T̃



𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

⟨𝑃on (�̃�) 𝑇𝜑𝑗, 𝜑𝑖⟩𝛼𝑗𝜑𝑖



.

(49)

The problem can be reformulated for the case 𝑎 =

∞ for 𝑇 : 𝐿2
𝑝

→ 𝐿2
𝑝
being a bounded linear operator on

the Hilbert (then complete) space 𝐿2
𝑝
. Thus, 𝑇 : 𝐿2

𝑝
→ 𝐿2
𝑝

is closed, since bounded, and its domain is 𝐿2
𝑝
and it is also

guaranteed to be compact from of its representation. It is
clear that the operators in the sequence {𝑇𝑛} are bounded,
closed, compact, of closed range so that their ranges have
n-finite dimension and their domain is 𝐿2

𝑝
. The orthogonal

and oblique operators involved in the above discussion are all
bounded and of closed ranges.Then, all the composite opera-
tors of the forms {𝑃𝑛𝑇}, {𝑃on𝑇}, {𝑃on�̃�𝑇} and the operators in
the converging sequences {𝑃𝑛𝑇𝑛}, {𝑃on𝑇𝑛}, {𝑃on�̃�𝑛 𝑇𝑛} are all
bounded, closed, and compact of domain 𝐿2

𝑝
. If ‖𝑇‖ ≤ 𝐾 < 1

then for any given real 𝜀 ∈ (0, 1 − 𝐾) there is 𝑛0 ∈ N0 such
that ‖𝑇𝑛‖ ≤ 𝐾 + 𝜀 < 1 since {𝑇𝑛} → 𝑇. Assume that the
class of uncertainty operators �̃�𝑛 in the class T̃ on 𝐿2

𝑝
has the

property ‖𝑃on(�̃�𝑛)‖ = ‖𝐼 + �̃�𝑛‖ ≤ ‖𝑃𝑤on‖ ≤ 1/(𝐾 + 𝜀) <

1; for all 𝑛 > 𝑛0. Thus, the composite operators 𝑃on(�̃�𝑛)𝑇𝑛
are contractive if ‖𝐼 + �̃�𝑛‖ ≤ 1/𝐾 + 𝜀 < 1; for all 𝑛 > 𝑛0 and
each of such composite operators has a unique fixed point,
which depends on n; for all 𝑛 > 𝑛0 and which converges
to the unique fixed point of the contractive operator (𝐼 +

�̃�)𝑇 as 𝑛 → ∞ from Theorem 8 since (𝐼 + �̃�𝑛)𝑇𝑛 → (𝐼 +

�̃�)𝑇 as 𝑛 → ∞ so that 𝑑((𝐼 + �̃�𝑛)
𝑛

𝑇𝑛
𝑛
𝑧, (𝐼 + �̃�)

𝑛

𝑇𝑛𝑧) →

0 and 𝑑((𝐼 + �̃�)
𝑛

𝑇𝑛𝑦, (𝐼 + �̃�)
𝑛

𝑇𝑛𝑧) → 0 as 𝑛 → ∞ for
any 𝑦, 𝑧 ∈ 𝐿2

𝑝
.

Remark 12. Some ideas in Example 11 combining uncertain-
ties with projections both being described through “ad hoc”
operators are useful in problems of SignalTheory andControl
SystemsTheory, [4]. Some related problems can be combined
with stability and stabilization issues of dynamic systems
subject to unmodeled dynamics and/or parametrical-type
uncertainties by using Lyapunov stability theory and fixed
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point analysis. See, for instance, [7–10]. Fixed point analysis
can also be a useful technical tool when using iterative
methods in numerical approaches. See, for instance, [11, 12]
and references therein. It can be direct the extension of the
results to a formalism concerning the replacement of fixed
points by best proximity points of cyclic p-self-mappings
[13–17] on unions of sets which do not intersect since best
proximity points are also fixed points of certain strips of
fixed length 𝑝 of companion composite self-mappings 𝑇𝑝 :

⋃
𝑖∈𝑝

𝐴 𝑖 → ⋃
𝑖∈𝑝

𝐴 𝑖 with themselves, the sizes 𝑝 of such
composite self-mappings being the number of disjoint sets
𝐴 i ⊂ 𝑋, 𝑖 ∈ 𝑝 := {1, 2, . . . , 𝑝} in the cyclic disposal.
The location of fixed points has also been approximated in
some background bibliography on the field. See [18, 19] and
references there in. In particular, approximated fixed points
have been characterized for nonself mappings which do not
possess fixed points. See, for instance, [19] and references
therein.
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