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We introduce two powerful methods to solve the Davey-Stewartson equations: one is the homotopy perturbation method (HPM)
and the other is the homotopy analysis method (HAM). HAM is a strong and easy to use analytic tool for nonlinear problems.
Comparison of the HPM results with the HAM results, and compute the absolute errors between the exact solutions of the DS
equations with the HPM solutions and HAM solutions are obtained.

1. Introduction

Nonlinear partial differential equations are useful in describ-
ing the various phenomena in disciplines. Apart from a
limited number of these problems, most of them do not have
a precise analytical solution, so these nonlinear equations
should be solved using approximate methods.

The application of the homotopy perturbation method
(HPM) [1, 2] in nonlinear problems has been devoted by
scientists and engineers, because this method continuously
deforms a simple problem which is easy to solve into the
under study problem which is difficult to solve. The homo-
topy perturbation method was first proposed by He [3–6].

The HPM yields a very rapid convergence of the solution
series in most cases. The method does not depend on a
small parameter in the equation. Using homotopy technique
in topology, a homotopy is constructed with an embedding
parameter 𝑝 ∈ [0; 1] which is considered as a “small
parameter.”

No need to linearization or discretization, large computa-
tional work and round-off errors are avoided. It has been used
to solve effectively, easily, and accurately a large class of non-
linear problems with approximations. These approximations

converge rapidly to accurate solutions [7–10].The goal of He’s
homotopy perturbation method was to find a technique to
unify linear and nonlinear, ordinary or partial differential
equations for solving initial and boundary value problems.
The HPM was successfully applied to nonlinear oscillators
with discontinuities [4] and bifurcation of nonlinear problem
[11]. In [6], a comparison of HPM and homotopy analysis
method was made on a simple problem.

In 1992, Liao employed the basic ideas of the homotopy in
topology to propose a general analytic method for nonlinear
problems, namely, homotopy analysis method (HAM) [12–
15]. This method has been successfully applied to solve many
types of nonlinear problems by others [16–20].

In this paper, we consider the Davey-Stewartson (DS)
equations for the function 𝑞 = 𝑞(𝑥, 𝑦, 𝑡) which are given by
(see [21])
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The case 𝜎 = 1 is called the DSI equation, while 𝜎 =

𝑖 is the DSII equation. The parameter 𝜆 characterizes the
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focusing or defocusing case. The Davey-Stewartson I and
II are two well-known examples of integrable equations in
two space dimensions, which arise as higher dimensional
generalizations of the nonlinear shrödinger (NLS) equation,
as well as from physical considerations [22]. Indeed, they
appear in many applications, for example, in the description
of gravity-capillarity surface wave packets in the limit of the
shallow water.

Davey and Stewartson first derived their model in the
context of water waves, from purely physical considerations.
In the context, 𝑞(𝑥, 𝑦, 𝑡) is the amplitude of a surface wave
packet, while 𝜙(𝑥, 𝑦) is the velocity potential of themean flow
interacting with the surface wave [22].

In [23], solution of DS equations by (HPM) where the
amplitude of a surface wave packet 𝑞 separated into real
and imaginary parts, that is, 𝑞 = 𝑢(𝑥, 𝑦, 𝑡) + 𝑖V(𝑥, 𝑦, 𝑡).
Consequently, the system (1) rewritten in the following form:
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(2)

with the initial condition

𝑢 (𝑥, 0, 𝑡) = 𝑟 sech [𝑠 (𝑥 − 𝑐𝑡)] cos [𝑘
1
𝑥 + 𝑘
3
𝑡] ,

V (𝑥, 0, 𝑡) = 𝑟 sech [𝑠 (𝑥 − 𝑐𝑡)] sin [𝑘
1
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3
𝑡] ,

𝜙 (𝑥, 0, 𝑡) = 𝑓 tanh [𝑠 (𝑥 − 𝑐𝑡)] ,
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are arbitrary constants.
In this paper, we apply homotopy analysis method

(HAM) for the above system. We rewrite system (1) in the
following form

𝜌
𝑡
= 𝜎
2
𝑚(𝜃
𝑥
𝜌
𝑥
+
1

2
𝜌𝜃
𝑥𝑥
) + 𝑚(𝜃

𝑦
𝜌
𝑦
+
1

2
𝜌𝜃
𝑦𝑦
) ,

𝜃
𝑡
=

−1

2𝑚𝜌
(𝜎
2
𝜌
𝑥𝑥

+ 𝜌
𝑦𝑦
) +

𝑚

2
(𝜎
2
𝜃
2

𝑥
+ 𝜃
2

𝑦
) −

1

𝑚
(𝜆𝜌
2
+ 𝜙
𝑥
) ,

𝜙
𝑥𝑥

− 𝜎
2
𝜙
𝑦𝑦

− 4𝜆𝜌𝜌
𝑥
= 0,

(4)

where we take 𝑞 = 𝜌(𝑥, 𝑦, 𝑡) ⋅ 𝑒
−𝑚𝑖𝜃(𝑥,𝑦,𝑡) with the initial

condition

𝜌 (𝑥, 0, 𝑡) = 𝑟 sech [𝑠 (𝑥 − 𝑐𝑡)] cos [𝑘
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are arbitrary constants. After that we will apply homotopy
perturbation method and homotopy analysis method. When
implementing the homotopy perturbation method (HPM)
and the homotopy analysis method (HAM), we get the
explicit solutions of the DS equations without using any
transformation method. Furthermore, we will show that
considerably better approximations related to the accuracy
level would be obtained.The homotopy perturbationmethod
can be found in [1–11, 23].The homotopy analysismethod can
be found in details in [12–22, 24–26] and only the main steps
will be summarized here.

2. Application of the Homotopy
Perturbation Method

To investigate the traveling wave solution of (4), we first
construct a homotopy as follows:
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And the initial approximations are as follows:

V
1,0

(𝑥, 𝑦, 𝑡) = 𝜌
0
(𝑥, 𝑦, 𝑡) = 𝜌 (𝑥, 0, 𝑡) ,

V
2,0

(𝑥, 𝑦, 𝑡) = 𝜃
0
(𝑥, 𝑦, 𝑡) = 𝜃 (𝑥, 0, 𝑡) ,

V
3,0

(𝑥, 𝑦, 𝑡) = 𝜙
0
(𝑥, 𝑦, 𝑡) = 𝜙 (𝑥, 0, 𝑡) ,

(7)

𝑉
1
= V
1,0

+ 𝑝V
1,1

+ 𝑝
2
V
1,2

+ 𝑝
3
V
1,3

+ ⋅ ⋅ ⋅ ,

𝑉
2
= V
2,0

+ 𝑝V
2,1

+ 𝑝
2
V
2,2

+ 𝑝
3
V
2,3

+ ⋅ ⋅ ⋅ ,

𝑉
3
= V
3,0

+ 𝑝V
3,1

+ 𝑝
2
V
3,2

+ 𝑝
3
V
3,3

+ ⋅ ⋅ ⋅ ,

(8)



Journal of Applied Mathematics 3

0.7
0.6
0.5
0.4
0.3
0.2

0.2
0.4

0.1

−10
−0.4

−0.2

00
𝑡𝑥

The exact solution of ∣𝑞(𝑥, 𝑦, 𝑡)∣

(a)

0.7
0.6
0.5
0.4
0.3
0.2

2 

0.1

−10 −4

−2

00
𝑡𝑥

HAM solution for ∣𝑞∣ = ∣𝑢 + 𝑖𝑣∣

(b)

0.7
0.6
0.5
0.4
0.3
0.2

0.2
0.4

0.1

−10
−0.4

−0.2

00
𝑡𝑥

HPM solution for ∣𝑞∣ = ∣𝜌𝑒−0.1𝑖𝜃∣

(c)

0.7
0.6
0.5
0.4
0.3
0.2

0.2
0.4

0.1

−10
−0.4

−0.2

00
𝑡𝑥 0.2

0 4

−0
−0.2

00
𝑡𝑥

HAM solution for ∣𝑞∣ = ∣𝜌𝑒−0.1𝑖𝜃∣

(d)

Figure 1: Comparison between the exact solution, the HPM solution, and the HAM solution for 𝑞(𝑥, 𝑦, 𝑡).
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, 𝑖 = 1, 2, 3, 𝑗 = 0, 1, 2, 3, . . . are functions yet to
be determined. Substituting (8) into (6) and arranging the
coefficients of 𝑝 powers, we have
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Figure 2: Comparison between the exact solution, the HPM solution, and the HAM solution for 𝜙(𝑥, 𝑦, 𝑡).
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Figure 3: The results obtained by HPM and HAM for 𝑞(𝑥, 𝑦, 𝑡), at 𝑡 = 0.2 in comparison with the exact solutions.
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(𝑥, 𝑦, 𝑡), 𝑖, 𝑗 = 1, 2, 3, we must

construct and solve the following system which includes

nine equations with nine unknowns, considering the initial
conditions of V

𝑖,𝑗
(𝑥, 0, 𝑡) = 0, 𝑖, 𝑗 = 1, 2, 3:

− 2V
1,0𝑡

+ 𝑚V
1,0
V
2,1𝑦𝑦

+ 2𝜎
2
𝑚V
2,0𝑥

V
1,0𝑥

+ 𝜎
2
𝑚V
2,0𝑥𝑥

V
1,0

+ 𝑚V
2,0𝑦𝑦

V
1,0

+ 2𝑚V
2,0𝑦

V
1,0𝑦

= 0,

(10)

𝜎
2
𝑚V
2,0𝑥𝑥

V
1,1

+ 2𝜎
2
𝑚V
2,1𝑥

V
1,0𝑥

+ 𝜎
2
𝑚V
2,1𝑥𝑥

V
1,0

+ 𝑚V
2,1𝑦𝑦

V
1,1

− 2V
1,1𝑡

+ 𝑚V
2,0𝑦𝑦

V
1,1

+ 2𝜎
2
𝑚V
2,0𝑥

V
1,1𝑥

+ 𝑚V
2,2𝑦𝑦

V
1,0

+ 2𝑚V
2,0𝑦

V
1,1𝑦

+ 2𝑚V
2,1𝑦

V
1,0𝑦

= 0,

(11)
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Figure 4: The results obtained by HPM and HAM for 𝜙(𝑥, 𝑦, 𝑡), at 𝑡 = 0.2 in comparison with the exact solutions.

2𝑚V
2,2𝑦

V
1,0𝑦

+ 2𝜎
2
𝑚V
2,0𝑥

V
1,2𝑥

+ 2𝜎
2
𝑚V
2,1𝑥

V
1,1𝑥

+ 𝑚V
2,1𝑦𝑦

V
1,2

− 2V
1,2𝑡

+ 𝑚V
2,0𝑦𝑦

V
1,2

+ 𝜎
2
𝑚V
2,0𝑥𝑥

V
1,2

+ 𝜎
2
𝑚V
2,1𝑥𝑥

V
1,1

+ 𝑚V
2,3𝑦𝑦

V
1,0

+ V
2,2𝑦𝑦

𝑚V
1,1

+ 2𝑚V
2,0𝑦

V
1,2𝑦

+ 2𝜎
2
𝑚V
2,2𝑥

V
1,0𝑥

+ 2𝑚V
2,1𝑦

V
1,1𝑦

+ 𝜎
2
𝑚V
2,2𝑥𝑥

V
1,0

= 0,

(12)

2𝑚V
1,0
V
2,0𝑡

+ 2V
1,0
V
3,0𝑥

+ 𝜎
2
V
1,0𝑥𝑥

+ 2𝜆V
3

1,0

− 𝑚
2
𝜎
2
V
1,0
V
2

2,0𝑥
− 𝑚
2
V
1,0
V
2

2,0𝑦
+ V
1,0𝑦𝑦

+ V
1,1𝑦𝑦

= 0,

(13)

2V
1,1
V
3,0𝑥

+ V
1,2𝑦𝑦

+ 2𝑚V
1,0
V
2,1𝑡

+ 𝜎
2
V
1,1𝑥𝑥

+ 6𝜆V
2

1,0
V
1,1

− 2𝑚
2
V
1,0
V
2,0𝑦

V
2,1𝑦

− 2𝑚
2
𝜎
2
V
1,0
V
2,0𝑥

V
2,1𝑥

+ 2V
1,0
V
3,1𝑥

+ 2𝑚V
1,1
V
2,0𝑡

− 𝑚
2
𝜎
2
V
1,1
V
2

2,0𝑥
− 𝑚
2
V
1,1
V
2

2,0𝑦
= 0,

(14)

6𝜆V
2

1,0
V
1,2

+ V
1,3𝑦𝑦

− 2𝑚
2
𝜎
2
V
1,1
V
2,0𝑥

V
2,1𝑥

+ 2𝑚V
1,0
V
2,2𝑡

+ 2V
1,1
V
3,1𝑥

+ 2𝑚V
1,2
V
2,0𝑡

− 𝑚
2
V
1,0
V
2

2,1𝑦
+ 2V
1,2
V
3,0𝑥

+ 𝜎
2
V
1,2𝑥𝑥
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− 𝑚
2
𝜎
2
V
1,0
V
2

2,1𝑥
+ 2𝑚V

1,1
V
2,1𝑡

− 𝑚
2
𝜎
2
V
1,2
V
2

2,0𝑥

− 2𝑚
2
V
1,1
V
2,0𝑦

V
2,1𝑦

+ 6𝜆V
1,0
V
2

1,1
+ 2V
1,0
V
3,2𝑥

− 2𝑚
2
V
1,0
V
2,0𝑦

V
2,2𝑦

− 2𝑚
2
𝜎
2
V
1,0
V
2,0𝑥

V
2,2𝑥

− 𝑚
2
V
1,2
V
2

2,0𝑦
= 0,

(15)
𝜎
2
V
3,1𝑦𝑦

+ 𝜎
2
V
3,0𝑦𝑦

− V
3,0𝑥𝑥

+ 4𝜆V
1,0
V
1,0𝑥

= 0, (16)

𝜎
2
V
3,2𝑦𝑦

− V
3,1𝑥𝑥

+ 4𝜆V
1,0
V
1,1𝑥

+ 4𝜆V
1,1
V
1,0𝑥

= 0, (17)

𝜎
2
V
3,3𝑦𝑦

− V
3,2𝑥𝑥

+ 4𝜆V
1,0
V
1,2𝑥

+ 4𝜆V
1,1
V
1,1𝑥

+ 4𝜆V
1,2
V
1,0𝑥

= 0,

(18)

From (8), if the three approximations are sufficient, we
will obtain

𝜌 (𝑥, 𝑦, 𝑡) = lim
𝑝→1

𝑉
1
(𝑥, 𝑦, 𝑡) =

3

∑

𝑘=0

V
1,𝑘

(𝑥, 𝑦, 𝑡) ,

𝜃 (𝑥, 𝑦, 𝑡) = lim
𝑝→1

𝑉
2
(𝑥, 𝑦, 𝑡) =

3

∑

𝑘=0

V
2,𝑘

(𝑥, 𝑦, 𝑡) ,

𝜙 (𝑥, 𝑦, 𝑡) = lim
𝑝→1

𝑉
3
(𝑥, 𝑦, 𝑡) =

3

∑

𝑘=0

V
3,𝑘

(𝑥, 𝑦, 𝑡) .

(19)

To calculate the terms of the homotopy series (19) for
𝜌(𝑥, 𝑦, 𝑡), 𝜃(𝑥, 𝑦, 𝑡), and 𝜙(𝑥, 𝑦, 𝑡), we substitute the initial
conditions (5) into the system (9), and using Mathematica
software, from (13), we obtain

V
1,1

=
1

2
𝑟𝑦
2sech [𝑠 (−𝑐𝑡 + 𝑥)]

× (cos [𝑘
3
𝑡 + 𝑘
1
𝑥]

× (𝑘
2

1
𝜎
2
− 2𝑘
3
𝑚𝑟 cos [𝑘

3
𝑡 + 𝑘
1
𝑥]

× sech [𝑠 (−𝑐𝑡 + 𝑥)]

+ (𝑠 (−2𝑓 + 𝑠𝜎
2
)

+ 𝑟
2
(−2𝜆 + 𝑘

2

1
𝑚
2
𝜎
2
)

× cos2 [𝑘
3
𝑡 + 𝑘
1
𝑥])

× (sech2 [𝑠 (−𝑐𝑡 + 𝑥)]))

− 𝑠 (2𝑘
1
𝜎
2 sin [𝑘

3
𝑡 + 𝑘
1
𝑥] + 𝑚𝑟 sech [𝑠 (−𝑐𝑡 + 𝑥)]

× (𝑐 + 𝑘
1
𝑚𝑟𝜎
2 cos [𝑘

3
𝑡 + 𝑘
1
𝑥] sech [𝑠 (−𝑐𝑡 + 𝑥)])

× sin [2 (𝑘
3
𝑡 + 𝑘
1
𝑥)]) tanh [𝑠 (−𝑐𝑡 + 𝑥)]

+ 𝑠
2
𝜎
2 cos [𝑘

3
𝑡 + 𝑘
1
𝑥]

× (−1 + 𝑚
2
𝑟
2sech2 [𝑠 (−𝑐𝑡 + 𝑥)] (sin2 [𝑘

3
𝑡 + 𝑘
1
𝑥]))

×tanh2 [𝑠 (−𝑐𝑡 + 𝑥)]) .

(20)

From (10), we obtain
V
2,1

=
1

2𝑚
𝑦
2
(𝑚𝑟𝑠
2
𝜎
2sech3 [𝑠 (−𝑐𝑡 + 𝑥)] sin [𝑘

3
𝑡 + 𝑘
1
𝑥]

− 2𝑘
3
tan [𝑘

3
𝑡 + 𝑘
1
𝑥] + 2𝑐𝑠 tanh [𝑠 (−𝑐𝑡 + 𝑥)]

+ 𝑚𝑟𝜎
2sech [𝑠 (−𝑐𝑡 + 𝑥)]

× (2𝑘
2

1
sin [𝑘
3
𝑡 + 𝑘
1
𝑥] + 𝑠 tanh [𝑠 (−𝑐𝑡 + 𝑥)]

× (𝑘
1
(1 + 3 cos [2 (𝑘

3
𝑡 + 𝑘
1
𝑥)])

× sec [𝑘
3
𝑡 + 𝑘
1
𝑥] − 3𝑠 sin [𝑘

3
𝑡 + 𝑘
1
𝑥]

× tanh [𝑠 (−𝑐𝑡 + 𝑥)]))) .

(21)

From (16), we obtain
V
3,1

=
1

𝜎2
(𝑦
2sech2 [𝑠 (−𝑐𝑡 + 𝑥)] (𝑘

1
𝑟
2
𝜆 sin [2 (𝑘

3
𝑡 + 𝑘
1
𝑥)]

+ 𝑠 (−𝑓𝑠 + 2𝑟
2
𝜆 cos2 [𝑘

3
𝑡 + 𝑘
1
𝑥]) tanh [𝑠 (−𝑐𝑡 + 𝑥)]) .

(22)

In this manner, the other components V
1,2
(𝑥, 𝑦, 𝑡),

V
2,2
(𝑥, 𝑦, 𝑡), V

3,2
(𝑥, 𝑦, 𝑡), V

1,3
(𝑥, 𝑦, 𝑡), V

2,3
(𝑥, 𝑦, 𝑡), and

V
3,3
(𝑥, 𝑦, 𝑡) can be obtained from (14), (11), (17), (15), (12),

and (18), respectively, and substituting these components
into (19) to obtain 𝜌(𝑥, 𝑦, 𝑡), 𝜃(𝑥, 𝑦, 𝑡), and 𝜙(𝑥, 𝑦, 𝑡).

3. Application of the Homotopy
Analysis Method

In order to apply the homotopy analysis method for (2), we
choose the linear operator 𝐿[𝜑

𝑖
(𝑥, 𝑦, 𝑡; 𝑝)] = 𝜕

2
𝜑
𝑖
/𝜕𝑦
2 with

the property 𝐿[𝑐
1,𝑖

+ 𝑐
2,𝑖
𝑦] = 0, 𝑖 = 1, 2, 3, where 𝑐

1,𝑖
, 𝑐
2,𝑖

are
integral constants to be determined by initial conditions.

Furthermore, (2) suggests to define the nonlinear opera-
tors

𝑁
1
= 𝜎
4 𝜕
2
𝜑
2

𝜕𝑦2
+ 𝜎
2 𝜕
2
𝜑
2

𝜕𝑥2
+ 2

𝜕𝜑
1

𝜕𝑡
− 2𝜑
2

𝜕𝜑
3

𝜕𝑥
+ 2𝜆 (𝜑

2

1
+ 𝜑
2

2
) 𝜑
2
,

𝑁
2
= 𝜎
4 𝜕
2
𝜑
1

𝜕𝑦2
+ 𝜎
2 𝜕
2
𝜑
1

𝜕𝑥2
− 2

𝜕𝜑
2

𝜕𝑡
− 2𝜑
1

𝜕𝜑
3

𝜕𝑥
+ 2𝜆 (𝜑

2

1
+ 𝜑
2

2
) 𝜑
1
,

𝑁
3
=
𝜕
2
𝜑
3

𝜕𝑦2
−

1

𝜎2

𝜕
2
𝜑
3

𝜕𝑥2
+
2𝜆

𝜎2

𝜕 (𝜑
2

1
+ 𝜑
2

2
)

𝜕𝑥

(23)
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we construct the zero-order deformation equations

(1 − 𝑝) 𝐿 [𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝) − 𝑧

𝑖,0
(𝑥, 𝑦, 𝑡)]

= 𝑝ℏ
𝑖
𝑁
𝑖
[𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝)] , 𝑖 = 1, 2, 3.

(24)

When 𝑝 = 0

𝜑
1
(𝑥, 𝑦, 𝑡; 0) = 𝑧

1,0
(𝑥, 𝑦, 𝑡) = 𝑢

0
(𝑥, 𝑦, 𝑡)

= 𝑟 sech [𝑠 (𝑥 − 𝑐𝑡)] cos [𝑘
1
𝑥 + 𝑘
3
𝑡] ,

𝜑
2
(𝑥, 𝑦, 𝑡; 0) = 𝑧

2,0
(𝑥, 𝑦, 𝑡) = V

0
(𝑥, 𝑦, 𝑡)

= 𝑟 sech [𝑠 (𝑥 − 𝑐𝑡)] sin [𝑘
1
𝑥 + 𝑘
3
𝑡] ,

𝜑
3
(𝑥, 𝑦, 𝑡; 0) = 𝑧

3,0
(𝑥, 𝑦, 𝑡) = 𝜙

0
(𝑥, 𝑦, 𝑡)

= 𝑓 tanh [𝑠 (𝑥 − 𝑐𝑡)] .

(25)

When 𝑝 = 1

𝜑
1
(𝑥, 𝑦, 𝑡; 1) = 𝑢 (𝑥, 𝑦, 𝑡) ,

𝜑
2
(𝑥, 𝑦, 𝑡; 1) = V (𝑥, 𝑦, 𝑡) ,

𝜑
3
(𝑥, 𝑦, 𝑡; 1) = 𝜙 (𝑥, 𝑦, 𝑡) .

(26)

Therefore, as the embedding parameter 𝑝 increases from
0 to 1, 𝜑

𝑖
(𝑥, 𝑦, 𝑡; 𝑝) varies from initial guesses 𝑧

𝑖,0
(𝑥, 𝑦, 𝑡) to

the solutions 𝑢(𝑥, 𝑦, 𝑡), V(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡), for 𝑖 = 1, 2, 3,
respectively.

Expanding 𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝) in Taylor series with respect to 𝑝

for 𝑖 = 1, 2, 3, one has

𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝) = 𝑧

𝑖,0
(𝑥, 𝑦, 𝑡) +

+∞

∑

𝑚=1

𝑧
𝑖,𝑚

(𝑥, 𝑦, 𝑡) 𝑝
𝑚
, (27)

where

𝑧
𝑖,𝑚

(𝑥, 𝑦, 𝑡) =
1

𝑚!

𝜕
𝑚
𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝)

𝜕𝑝𝑚

𝑝=0

. (28)

If the auxiliary linear operator, the initial guesses, and
the auxiliary parameters ℏ

𝑖
are so properly chosen, the above

series converge at 𝑝 = 1, and

𝑢 (𝑥, 𝑦, 𝑡) = 𝑧
1,0

(𝑥, 𝑦, 𝑡) +

+∞

∑

𝑚=1

𝑧
1,𝑚

(𝑥, 𝑦, 𝑡) ,

V (𝑥, 𝑦, 𝑡) = 𝑧
2,0

(𝑥, 𝑦, 𝑡) +

+∞

∑

𝑚=1

𝑧
2,𝑚

(𝑥, 𝑦, 𝑡) ,

𝜙 (𝑥, 𝑦, 𝑡) = 𝑧
3,0

(𝑥, 𝑦, 𝑡) +

+∞

∑

𝑚=1

𝑧
3,𝑚

(𝑥, 𝑦, 𝑡) ,

(29)

which must be one of solutions of the original nonlinear
equations as proved by Liao [13]. Define the vectors

�⃗�
𝑖,𝑛

= {𝑧
𝑖,0
(𝑥, 𝑦, 𝑡) , 𝑧

𝑖,1
(𝑥, 𝑦, 𝑡) , . . . , 𝑧

𝑖,𝑛
(𝑥, 𝑦, 𝑡)} ;

𝑖 = 1, 2, 3.
(30)

We have the𝑚th-order deformation equations

𝐿 [𝑧
𝑖,𝑚

(𝑥, 𝑦, 𝑡) − 𝜒
𝑚
𝑧
𝑖,𝑚−1

(𝑥, 𝑦, 𝑡)]

= ℏ
𝑖
𝑅
𝑖,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

) , 𝑖 = 1, 2, 3,

(31)

where

𝑅
1,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

)

= 𝜎
4
𝜕
2
𝑧
2,𝑚−1

𝜕𝑦2
+ 𝜎
2
𝜕
2
𝑧
2,𝑚−1

𝜕𝑥2
+ 2

𝜕𝑧
1,𝑚−1

𝜕𝑡

− 2

𝑚−1

∑

𝑛=0

𝑧
2,𝑛

𝜕𝑧
3,𝑚−1−𝑛

𝜕𝑥

+ 2𝜆

𝑚−1

∑

𝑛=0

𝑛

∑

𝑘=0

(𝑧
1,𝑘
𝑧
1,𝑛−𝑘

+ 𝑧
2,𝑘
𝑧
2,𝑛−𝑘

) 𝑧
2,𝑚−1−𝑛

,

𝑅
2,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

)

= 𝜎
4
𝜕
2
𝑧
1,𝑚−1

𝜕𝑦2
+ 𝜎
2
𝜕
2
𝑧
1,𝑚−1

𝜕𝑥2
− 2

𝜕𝑧
2,𝑚−1

𝜕𝑡

− 2

𝑚−1

∑

𝑛=0

𝑧
1,𝑛

𝜕𝑧
3,𝑚−1−𝑛

𝜕𝑥

+ 2𝜆

𝑚−1

∑

𝑛=0

𝑛

∑

𝑘=0

(𝑧
1,𝑘
𝑧
1,𝑛−𝑘

+ 𝑧
2,𝑘
𝑧
2,𝑛−𝑘

) 𝑧
1,𝑚−1−𝑛

,

𝑅
3,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

)

=
𝜕
2
𝑧
3,𝑚−1

𝜕𝑦2
−

1

𝜎2

𝜕
2
𝑧
3,𝑚−1

𝜕𝑥2

+
2𝜆

𝜎2

𝜕

𝜕𝑥

𝑚−1

∑

𝑛=0

(𝑧
1,𝑛
𝑧
1,𝑚−1−𝑛

+ 𝑧
2,𝑛
𝑧
2,𝑚−1−𝑛

) ,

(32)

where 𝑧
1
, 𝑧
2
, and 𝑧

3
are functions of 𝑥, 𝑦, and 𝑡, and

𝜒
𝑚
= {

0, 𝑚 ≤ 1

1, 𝑚 > 1.
(33)

Now, the solutions of the𝑚th-order deformation (31) for𝑚 ≥

1 become

𝑧
𝑖,𝑚

(𝑥, 𝑦, 𝑡) = 𝜒
𝑚
𝑧
𝑖,𝑚−1

(𝑥, 𝑦, 𝑡)

+ ℏ
𝑖

𝑦

∬

0

[𝑅
𝑖,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

)] 𝑑𝑦 𝑑𝑦

+ 𝑐
1,𝑖
+ 𝑐
2,𝑖
𝑦.

(34)

For simplicity, we suppose ℏ
1
= ℏ
2
= ℏ
3
= ℏ.
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We consider the solutions of (2) with the initial condi-
tions (25). We now obtain at𝑚 = 1

𝑧
1,1

(𝑥, 𝑦, 𝑡) =
1

2
ℏ𝑟𝑦
2sech [𝑠 (𝑥 − 𝑐𝑡)]

× {− [2𝑘
3
+ 𝑘
2

1
𝜎
2
+ (2𝑓𝑠 − 2𝑟

2
𝜆 + 𝑠
2
𝜎
2
)

× sech2 [𝑠 (𝑥 − 𝑐𝑡)]] cos [𝑘
1
𝑥 + 𝑘
3
𝑡]

− 2𝑠 (𝑐 − 𝑘
1
𝜎
2
) sin [𝑘

1
𝑥 + 𝑘
3
𝑡]

× tanh [𝑠 (𝑥 − 𝑐𝑡)] + 𝑠
2
𝜎
2

× cos [𝑘
1
𝑥 + 𝑘
3
𝑡] tanh2 [𝑠 (𝑥 − 𝑐𝑡)]} ,

𝑧
2,1

(𝑥, 𝑦, 𝑡) =
1

2
ℏ𝑟𝑦
2sech [𝑠 (𝑥 − 𝑐𝑡)]

× {− [2𝑘
3
+ 𝑘
2

1
𝜎
2
+ (2𝑓𝑠 − 2𝑟

2
𝜆 + 𝑠
2
𝜎
2
)

× sech2 [𝑠 (𝑥 − 𝑐𝑡)]] sin [𝑘
1
𝑥 + 𝑘
3
𝑡]

+ 2𝑠 (𝑐 − 𝑘
1
𝜎
2
) cos [𝑘

1
𝑥 + 𝑘
3
𝑡]

× tanh [𝑠 (𝑥 − 𝑐𝑡)]

+ 𝑠
2
𝜎
2 sin [𝑘

1
𝑥 + 𝑘
3
𝑡]

× tanh2 [𝑠 (𝑥 − 𝑐𝑡)]} ,

𝑧
3,1

(𝑥, 𝑦, 𝑡) =
1

𝜎2
(ℏ𝑠𝑦
2
(𝑓𝑠 − 2𝑟

2
𝜆) sech2

× [𝑠 (𝑥 − 𝑐𝑡)] tanh [𝑠 (𝑥 − 𝑐𝑡)]) .

(35)

Obviously, for ℏ = −1, the obtained solutions are the
same homotopy perturbation method in [2]; we continue to
evaluate two terms of HAM.

Now for (4), we choose the linear operator
𝐿[𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝)] = 𝜕

2
𝜑
𝑖
/𝜕𝑦
2 with the property [𝑐

1,𝑖
+𝑐
2,𝑖
𝑦] = 0,

𝑖 = 1, 2, 3, where 𝑐
1,𝑖
, 𝑐
2,𝑖

are integral constant to be
determined by initial conditions.

Furthermore, (4) suggests to define the nonlinear opera-
tors

𝑁
1
= 𝜑
1

𝜕
2
𝜑
2

𝜕𝑦2
+ 2

𝜕𝜑
2

𝜕𝑦

𝜕𝜑
1

𝜕𝑦
+ 2𝜎
2 𝜕𝜑2

𝜕𝑥

𝜕𝜑
1

𝜕𝑥

+ 𝜎
2
𝜑
1

𝜕
2
𝜑
2

𝜕𝑥2
−

2

𝑚

𝜕𝜑
1

𝜕𝑡
,

𝑁
2
=
𝜕
2
𝜑
1

𝜕𝑦2
− 𝑚
2
𝜑
1
((

𝜕𝜑
2

𝜕𝑦
)

2

+ 𝜎
2
(
𝜕𝜑
2

𝜕𝑥
)

2

)

+ 𝜎
2 𝜕
2
𝜑
1

𝜕𝑥2
+ 2𝑚𝜑

1

𝜕𝜑
2

𝜕𝑡
+ 2𝜆𝜑

3

1
+ 2𝜑
1

𝜕𝜑
3

𝜕𝑥
,

𝑁
3
=
𝜕
2
𝜑
3

𝜕𝑦2
−

1

𝜎2

𝜕
2
𝜑
3

𝜕𝑥2
+
4𝜆

𝜎2
𝜑
1

𝜕𝜑
1

𝜕𝑥
.

(36)

We construct the zero-order deformation equations

(1 − 𝑝) 𝐿 [𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝) − 𝑧

𝑖,0
(𝑥, 𝑦, 𝑡)]

= 𝑝ℏ
𝑖
𝑁
𝑖
[𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝)] , 𝑖 = 1, 2, 3.

(37)

When 𝑝 = 0,

𝜑
1
(𝑥, 𝑦, 𝑡; 0) = 𝑧

1,0
(𝑥, 𝑦, 𝑡) = 𝜌

0
(𝑥, 𝑦, 𝑡)

= 𝑟 sech [𝑠 (𝑥 − 𝑐𝑡)] cos [𝑘
1
𝑥 + 𝑘
3
𝑡] ,

𝜑
2
(𝑥, 𝑦, 𝑡; 0) = 𝑧

2,0
(𝑥, 𝑦, 𝑡) = 𝜃

0
(𝑥, 𝑦, 𝑡)

= 𝑟 sech [𝑠 (𝑥 − 𝑐𝑡)] sin [𝑘
1
𝑥 + 𝑘
3
𝑡] ,

𝜑
3
(𝑥, 𝑦, 𝑡; 0) = 𝑧

3,0
(𝑥, 𝑦, 𝑡) = 𝜙

0
(𝑥, 𝑦, 𝑡)

= 𝑓 tanh [𝑠 (𝑥 − 𝑐𝑡)] .

(38)

When 𝑝 = 1,

𝜑
1
(𝑥, 𝑦, 𝑡; 1) = 𝜌 (𝑥, 𝑦, 𝑡) ,

𝜑
2
(𝑥, 𝑦, 𝑡; 1) = 𝜃 (𝑥, 𝑦, 𝑡) ,

𝜑
3
(𝑥, 𝑦, 𝑡; 1) = 𝜙 (𝑥, 𝑦, 𝑡) .

(39)

Therefore, as the embedding parameter 𝑝 increases from 0

to 1, 𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝) varies from initial guesses 𝑧

𝑖,0
(𝑥, 𝑦, 𝑡) to the

solutions 𝜌(𝑥, 𝑦, 𝑡), 𝜃(𝑥, 𝑦, 𝑡), and 𝜙(𝑥, 𝑦, 𝑡), for 𝑖 = 1, 2, 3,
respectively.

Expanding 𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝) in Taylor series with respect to 𝑝

for 𝑖 = 1, 2, 3, one has

𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝) = 𝑧

𝑖,0
(𝑥, 𝑦, 𝑡) +

+∞

∑

𝑚=1

𝑧
𝑖,𝑚

(𝑥, 𝑦, 𝑡) 𝑝
𝑚
, (40)

where

𝑧
𝑖,𝑚

(𝑥, 𝑦, 𝑡) =
1

𝑚!

𝜕
𝑚
𝜑
𝑖
(𝑥, 𝑦, 𝑡; 𝑝)

𝜕𝑝𝑚

𝑝=0

. (41)

If the auxiliary linear operator, the initial guesses, and the
auxiliary parameters ℏ

𝑖
are so properly chosen, the series (40)

converge at 𝑝 = 1, has

𝜌 (𝑥, 𝑦, 𝑡) = 𝑧
1,0

(𝑥, 𝑦, 𝑡) +

+∞

∑

𝑚=1

𝑧
1,𝑚

(𝑥, 𝑦, 𝑡) ,

𝜃 (𝑥, 𝑦, 𝑡) = 𝑧
2,0

(𝑥, 𝑦, 𝑡) +

+∞

∑

𝑚=1

𝑧
2,𝑚

(𝑥, 𝑦, 𝑡) ,

𝜙 (𝑥, 𝑦, 𝑡) = 𝑧
3,0

(𝑥, 𝑦, 𝑡) +

+∞

∑

𝑚=1

𝑧
3,𝑚

(𝑥, 𝑦, 𝑡) ,

(42)

which must be one of solutions of the original nonlinear
equation as proved by Liao [13]. Define the vectors

�⃗�
𝑖,𝑛

= {𝑧
𝑖,0
(𝑥, 𝑦, 𝑡) , 𝑧

𝑖,1
(𝑥, 𝑦, 𝑡) , . . . , 𝑧

𝑖,𝑛
(𝑥, 𝑦, 𝑡)} ;

𝑖 = 1, 2, 3.
(43)
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We have the𝑚th-order deformation equations

𝐿 [𝑧
𝑖,𝑚

(𝑥, 𝑦, 𝑡) − 𝜒
𝑚
𝑧
𝑖,𝑚−1

(𝑥, 𝑦, 𝑡)]

= ℏ
𝑖
𝑅
𝑖,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

) , 𝑖 = 1, 2, 3,

(44)

where

𝑅
1,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

)

=

𝑚−1

∑

𝑛=0

𝑧
1,𝑛

𝜕
2
𝑧
2,𝑚−1−𝑛

𝜕𝑦2
+ 2

𝑚−1

∑

𝑛=0

𝜕𝑧
2,𝑛

𝜕𝑦

𝜕𝑧
1,𝑚−1−𝑛

𝜕𝑦

+ 2𝜎
2

𝑚−1

∑

𝑛=0

𝜕𝑧
2,𝑛

𝜕𝑥

𝜕𝑧
1,𝑚−1−𝑛

𝜕𝑥
−

2

𝑚

𝜕𝑧
1,𝑚−1

𝜕𝑡

+ 𝜎
2

𝑚−1

∑

𝑛=0

𝑧
1,𝑛

𝜕
2
𝑧
2,𝑚−1−𝑛

𝜕𝑥2
,

𝑅
2,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

)

=
𝜕
2
𝑧
1,𝑚−1

𝜕𝑦2
− 𝑚
2

𝑚−1

∑

𝑛=0

𝑛

∑

𝑘=0

𝑧
1,𝑘

𝜕𝑧
2,𝑛−𝑘

𝜕𝑦

𝜕𝑧
2,𝑚−1−𝑛

𝜕𝑦

− 𝑚
2
𝜎
2

𝑚−1

∑

𝑛=0

𝑛

∑

𝑘=0

𝑧
1,𝑘

𝜕𝑧
2,𝑛−𝑘

𝜕𝑥

𝜕𝑧
2,𝑚−1−𝑛

𝜕𝑥

+ 𝜎
2
𝜕
2
𝑧
1,𝑚−1

𝜕𝑥2
+ 2𝜆

𝑚−1

∑

𝑛=0

𝑛

∑

𝑘=0

𝑧
1,𝑘
𝑧
1,𝑛−𝑘

𝑧
1,𝑚−1−𝑛

+ 2

𝑚−1

∑

𝑛=0

𝑧
1,𝑛

𝜕𝑧
3,𝑚−1−𝑛

𝜕𝑥
+ 2𝑚

𝑚−1

∑

𝑛=0

𝑧
1,𝑛

𝜕𝑧
2,𝑚−1−𝑛

𝜕𝑡
,

𝑅
3,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

)

=
𝜕
2
𝑧
3,𝑚−1

𝜕𝑦2
−

1

𝜎2

𝜕
2
𝑧
3,𝑚−1

𝜕𝑥2
+
4𝜆

𝜎2

𝑚−1

∑

𝑛=0

𝑧
1,𝑛

𝜕𝑧
1,𝑚−1−𝑛

𝜕𝑥
,

(45)

where 𝑧
1
, 𝑧
2
, and 𝑧

3
are functions of 𝑥, 𝑦, and 𝑡, and

𝜒
𝑚
= {

0, 𝑚 ≤ 1

1, 𝑚 > 1.
(46)

Now, the solutions of the 𝑚th-order deformation (44) for
𝑚 ≥ 1 become

𝑧
𝑖,𝑚

(𝑥, 𝑦, 𝑡) = 𝜒
𝑚
𝑧
𝑖,𝑚−1

(𝑥, 𝑦, 𝑡)

+ ℏ
𝑖

𝑦

∬

0

[𝑅
𝑖,𝑚

(�⃗�
1,𝑚−1

, �⃗�
2,𝑚−1

, �⃗�
3,𝑚−1

)] 𝑑𝑦 𝑑𝑦

+ 𝑐
1,𝑖
+ 𝑐
2,𝑖
𝑦.

(47)

For simplicity, we suppose ℏ
1
= ℏ
2
= ℏ
3
= ℏ.

Table 1: The HPM results for 𝑞 (𝑥, 𝑦, 𝑡) in comparison with the
analytical solution with initial conditions (5).

𝑡 |𝑞𝑒 − 𝑞|

−0.6 9.861869456 × 10
−18

−0.4 1.073360934 × 10
−17

−0.2 1.161066111 × 10
−17

0 1.248899278 × 10
−17

0.2 1.336466228 × 10
−17

0.4 1.423383001 × 10
−17

0.6 1.509277063 × 10
−17

Table 2: The HPM results for 𝜙 (𝑥, 𝑦, 𝑡) in comparison with the
analytical solution with initial conditions (5).

𝑡 |𝜙𝑒 − 𝜙|

−0.6 3.3574 × 10
−15

−0.4 1.9466 × 10
−15

−0.2 1.52954 × 10
−15

0 1.81125 × 10
−15

0.2 2.77765 × 10
−15

0.4 5.04003 × 10
−15

0.6 1.07655 × 10
−15

Table 3: The HAM results for 𝑞 (𝑥, 𝑦, 𝑡) in comparison with the
analytical solution with initial conditions (3).

𝑡 |𝑞𝑒 − 𝑞|

−0.6 1.415900000 × 10
−19

−0.4 1.400513800 × 10
−19

−0.2 1.385294700 × 10
−19

0 1.370240800 × 10
−19

0.2 1.355350700 × 10
−19

0.4 1.340622400 × 10
−19

0.6 1.326054200 × 10
−19

We consider the solutions of (4) with the initial condi-
tions (38) and obtain for𝑚 = 1

𝑧
1,1

(𝑥, 𝑦, 𝑡)

=
1

2
ℏ𝑟𝑦
2sech [𝑠 (−𝑐𝑡 + 𝑥)]

× (cos [𝑘
3
𝑡 + 𝑘
1
𝑥]

× (−𝑘
2

1
𝜎
2
+ 2𝑘
3
𝑚𝑟 cos [𝑘

3
𝑡 + 𝑘
1
𝑥] sech [𝑠 (−𝑐𝑡 + 𝑥)]

+ (𝑠 (2𝑓 − 𝑠𝜎
2
) + 𝑟
2
(2𝜆 − 𝑘

2

1
𝑚
2
𝜎
2
)

× cos2 [𝑘
3
𝑡 + 𝑘
1
𝑥]) sech2 [𝑠 (−𝑐𝑡 + 𝑥)])
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+ 𝑠 (2𝑘
1
𝜎
2 sin [𝑘

3
𝑡 + 𝑘
1
𝑥] + 𝑚𝑟 sech [𝑠 (−𝑐𝑡 + 𝑥)]

× (𝑐 + 𝑘
1
𝑚𝑟𝜎
2 cos [𝑘

3
𝑡 + 𝑘
1
𝑥] sech [𝑠 (−𝑐𝑡 + 𝑥)])

× sin [2 (𝑘
3
𝑡 + 𝑘
1
𝑥)]) tanh [𝑠 (−𝑐𝑡 + 𝑥)]

+ 𝑠
2
𝜎
2 cos [𝑘3𝑡 + 𝑘

1
𝑥]

× (1 − 𝑚
2
𝑟
2sech2 [𝑠 (−𝑐𝑡 + 𝑥)] sin2 [𝑘

3
𝑡 + 𝑘
1
𝑥])

×tanh2 [𝑠 (−𝑐𝑡 + 𝑥)]) ,

(48)

𝑧
2,1

(𝑥, 𝑦, 𝑡)

=
1

2𝑚
ℏ𝑦
2
(2𝑘
3
tan [𝑘

3
𝑡 + 𝑘
1
𝑥] + 𝑚𝑟𝜎

2 sech [𝑠 (−𝑐𝑡 + 𝑥)]

× ((−3𝑘
2

1
+ 3𝑠
2
− 4𝑠
2 sech2 [𝑠 (−𝑐𝑡 + 𝑥)])

× sin [𝑘
3
𝑡 + 𝑘
1
𝑥]

+ 𝑘
1
𝑠 (1 + 3 cos [2 (𝑘

3
𝑡 + 𝑘
1
𝑥)])

× sec [𝑘
3
𝑡 + 𝑘
1
𝑥] tanh [𝑠 (𝑐𝑡 − 𝑥)])

−2𝑐𝑠 tanh [𝑠 (−𝑐𝑡 + 𝑥)]) ,

(49)

𝑧
3,1

(𝑥, 𝑦, 𝑡)

=
−1

𝜎2
(ℏ𝑦
2 sech2 [𝑠 (−𝑐𝑡 + 𝑥)]

× (𝑘
1
𝑟
2
𝜆 sin [2 (𝑘

3
𝑡 + 𝑘
1
𝑥)]

+𝑠 (−𝑓𝑠 + 2𝑟
2
𝜆 cos2 [𝑘

3
𝑡 + 𝑘
1
𝑥]) tanh [𝑠 (−𝑐𝑡 + 𝑥)]) .

(50)

Obviously, for ℏ = −1, we obtained the same solutions as the
one by the homotopy perturbation method in (20)–(22); we
continue to evaluate six terms of (47) when𝑚 = 2, 3.

Using a Taylor series, then the closed form solutions yield
as follows [23]:

𝑞 (𝑥, 𝑦, 𝑡) = 𝑟 sech [𝑠 (𝑥 + 𝑦 − 𝑐𝑡)] exp [𝑖 (𝑘
1
𝑥 + 𝑘
2
𝑦 + 𝑘
3
𝑡)] ,

(51)

𝜙 (𝑥, 𝑦, 𝑡) = 𝑓 tanh [𝑠 (𝑥 + 𝑦 − 𝑐𝑡)] , (52)

where

𝑐 = 𝑘
2
+ 𝜎
2
𝑘
1
, 𝑟 = √−

2𝑘
3
+ 𝜎
2
𝑘
2

1
+ 𝑘
2

2

𝜆
,

𝑠 = √
2𝑘
3
+ 𝜎
2
𝑘
2

1
+ 𝑘
2

2

𝜆
, 𝑓 =

2𝜎√−𝜆

1 − 𝜎2
,

(53)

𝑘
1
, 𝑘
2
, and 𝑘

3
are arbitrary constants.

Table 4: The HAM results for 𝜙 (𝑥, 𝑦, 𝑡) in comparison with the
analytical solution with initial conditions (3).

𝑡 |𝜙𝑒 − 𝜙|

−0.6 0

−0.4 0

−0.2 4 ×10−10

0 0

0.2 0

0.4 2 ×10−10

0.6 0

Table 5: The HAM results for 𝑞 (𝑥, 𝑦, 𝑡) in comparison with the
analytical solution with initial conditions (5).

𝑡 |𝑞𝑒 − 𝑞|

−0.6 9.861809932 × 10
−18

−0.4 1.073356691 × 10
−17

−0.2 1.161063556 × 10
−17

0 1.248898384 × 10
−17

0.2 1.336466963 × 10
−17

0.4 1.423385326 × 10
−17

0.6 1.509280934 × 10
−17

Table 6: The HAM results for 𝜙 (𝑥, 𝑦, 𝑡) in comparison with the
analytical solution with initial conditions (5).

𝑡 |𝜙𝑒 − 𝜙|

−0.6 0

−0.4 0

−0.2 0

0 0

0.2 0

0.4 0

0.6 5 × 10
−10

4. Comparing the HPM Results and the HAM
Results with the Exact Solutions

To demonstrate the convergence of the HPM, the results of
the numerical example are presented and only few terms are
required to obtain accurate solutions. Tables 1 and 2 show the
absolute errors between the analytical solutions and theHPM
solutions of the DS for the first three approximations with
initial conditions (5) for 𝑞(𝑥, 𝑦, 𝑡), 𝜙(𝑥, 𝑦, 𝑡) are very small
with the present choice of 𝑡 at 𝑥 = 50 and 𝑦 = 0.01, when
𝑘
1

= 0.1, 𝑘
2

= 0.03, 𝑘
3

= −0.3, 𝜎 = 𝐼, 𝜆 = 1, and
𝑚 = 0.1. Tables 3, 4, 5 and 6 help us to compare the HAM
results for the first three approximations when ℏ = −1 with
the analytical solution through the absolute errors. Both the
analytical solutions, the HPM result, and the HAM result for
𝑞(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡) are plotted in Figures 1, 2, 3, and 4.
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generalized zakharov equations,”Pacific Journal ofMathematics,
vol. 247, no. 2, pp. 497–510, 2010.

[22] A. Davey and K. Stewartson, “On three-dimensional packets of
surface waves,” Proceedings of the Royal Society London A, vol.
338, pp. 101–110, 1974.

[23] H. A. Zedan and S. S. Tantawy, “Solution of Davey-stewartson
equations by homotopy perturbation method,” Computational
Mathematics and Mathematical Physics, vol. 49, no. 8, pp. 1382–
1388, 2009.

[24] S. J. Liao, “An approximate solution technique not depending
on small parameters: a special example,” International Journal
of Non-Linear Mechanics, vol. 30, no. 3, pp. 371–380, 1995.

[25] S. J. Liao, “A kind of approximate solution technique which does
not depend upon small parameters—II: an application in fluid
mechanics,” International Journal of Non-Linear Mechanics, vol.
32, no. 5, pp. 815–822, 1997.

[26] S. J. Liao, “An explicit, totally analytic approximate solution for
Blasius’ viscous flow problems,” International Journal of Non-
Linear Mechanics, vol. 34, no. 4, pp. 759–778, 1999.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


