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A radial basis function (RBF) neural network adaptive sliding mode control system is developed for the current compensation
control of three-phase active power filter (APF). The advantages of the adaptive control, neural network control, and sliding mode
control are combined together to achieve the control task; that is, the harmonic current of nonlinear load can be eliminated and
the quality of power system can be well improved. Sliding surface coordinate function and sliding mode controller are used as
input and output of the RBF neural network, respectively. The neural network control parameters are online adjusted through
gradient method and Lyapunov theory. Simulation results demonstrate that the adaptive RBF slidingmode control can compensate
harmonic current effectively and has strong robustness to disturbance signals.

1. Introduction

Active power filters are commonly used to deal with the
increasing harmonic current in electrical system nowadays,
which can degrade the quality of power system. Since APF
is a complicated nonlinear system, advanced controller can
be utilized to control the APF. In order to improve the per-
formance of APF, adaptive control, neural network control,
fuzzy control, and sliding mode control have been proposed
to control the APF. Kömürcügil and Kükrer [1] derived a new
control strategy for single-phase shunt APF using a Lyapunov
function. Rahmani et al. [2] presented an experimental
design of a nonlinear control technique for three-phase shunt
APF. Shyu et al. [3] proposed a model reference adaptive
control analysis for a shunt APF system. Chang and Shee [4]
investigated novel reference compensation current strategy
for shunt APF control. Matas et al. [5] developed a feedback
linearization way of a single-phase APF via sliding mode
control. Valdez et al. [6] designed an adaptive controller for
shunt active filter in the presence of a dynamic load and the
line impedance.Marconi et al. [7] developed robust nonlinear
controller to compensate harmonic current for shunt APF.

Since neural network has the capability to approximate
any nonlinear function, the tracking control using neu-
ral network for nonlinear dynamic system has become a
promising research topic. Man et al. [8] derived an adaptive
back propagation (BP) neural network controller. Phooi and
Ang [9] proposed adaptive RBF neural network training
algorithm for nonlinear signal. Lewis et al. [10] designed
neural network approaches for robot manipulator. Horng
[11] proposed a neural adaptive tracking control of a direct
current motor with unknown system nonlinearities where
neural network approximation errors are compensated by
using the sliding mode scheme. Huang et al. [12] developed
a novel RBF sliding mode controller for a dynamic absorber
by combining the advantages of the adaptive control, neural
network and sliding mode control strategies; this method
is well implemented on dynamic absorber, but it has not
been implemented on three-phase active power filter before.
Neural slidingmode control approaches have been developed
for robot manipulators [13, 14]. In [13], self-recurrent wavelet
neural networks are used instead of RBF neural networks.
And in [14], sliding mode control method is not combined
withRBFneural network. Bhattacharya andChakraborty [15]
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Figure 1: Schematic structure of shunt APF.

proposed an ANN-based predictive and adaptive controller
for shunt active power filter. Abdeslam et al. [16] designed a
unified artificial neural network architecture for active power
filters. Kandil et al. [17] developed a novel three-phase active
filter based on neural networks and sliding mode control, but
RBF neural network and Lyapunov stability analysis are not
used in the paper. In our paper, we will design an adaptive
controller for shunt active power filter by combining the
advantages of adaptive control, RBF neural network, and
sliding mode control strategies.

Neural network does not depend on mathematical mod-
els; sliding mode control has strong robustness. The motiva-
tion of this paper is to investigate the combination of adaptive
control, neural network control and sliding mode control
applied to APF based on Lyapunov analytical method. So it
is necessary to combine the advantages of adaptive control,
neural network control, and sliding mode control to improve
the control performance of APF. In this paper, a Lyapunov
adaptive sliding mode control method based on RBF neural
network is presented to overcome the shortcomings of tra-
ditional methods. The key property of this method is that
the weights of neural network can be online adjusted, and
the asymptotical stability of the system can be guaranteed by
Lyapunov stability theory. The contribution of this paper can
be emphasized as follows.

(1) The sliding mode technique has been combined with
the adaptive control and neural network control to
achieve the desired elimination of harmonic current
in APF system. The performance of current track-
ing and total harmonic distortion (THD) can be
improved effectively.

(2) The adaptive RBF sliding mode controller does not
rely on accurate mathematical model since it has
the ability to approximate the nonlinear function of
APF. The adaptive neural controller is used to model
the relationship between the sliding surface and the
control law.

(3) The adaptive neural network sliding mode control is
proposed to deal with nonlinear load in APF system
and to improve the performance of current tracking.

This is a successful example of using adaptive control,
RBF neural network control, and sliding mode con-
trol with application to three-phase APF.

2. Dynamics of Active Power Filter

The schematic diagram of the three-phase three-wire shunt
active power filter is shown in Figure 1. In Figure 1, 𝑖

𝑠
is line

current, 𝑖
𝐿
is nonlinear load current, 𝑖

ℎ
is harmonic current,

and 𝑖
𝑐
is compensate current, 𝑖∗

𝑐
is command current as the

basis of compensate current.
The principle of shunt APF is as follows. First, the

harmonic current 𝑖
ℎ
is detected and sent to command current

operation circuit, where command current 𝑖∗
𝑐
is defined.

Then, PWM signal is generated by tracking control circuit
to control drive circuit. Last, compensation current 𝑖

𝑐
is

generated by main circuit and injected into the line to
compensate the harmonic current; so the line current is
forced to become sine waveform.

Based on Kirchhoff ’s current law, we can get the circuit
expressions as follows:

̇𝑖ca = −
𝑟𝑖ca + Vsa
𝐿

+
Vdc
𝐿
𝑠
𝑊
,

̇𝑖cb = −
𝑟𝑖cb + Vsb
𝐿

+
Vdc
𝐿
𝑠
𝑊
,

̇𝑖cc = −
𝑟𝑖cc + Vsc
𝐿

+
Vdc
𝐿
𝑠
𝑊
,

(1)

where Vsa, Vsb, and Vsc are voltages of three-phase power
system, 𝑟 is the resistance from power source to inductance
on the AC side of APF, 𝐿 is the inductance on the AC side of
APF, Vdc is the capacitors voltage on the DC side, 𝑠

𝑊
is the

sliding surface coordinate function to indicate the working
state of IGBT. We define 𝑠

𝑊
= {
1

0

𝑄𝑁=1

𝑄𝑁=0
, it is equal to 1 when

the switch is turn on, and it is equal to 0 when the switch is
turn off.This is themathematicalmodel of shunt active power
filter.
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Figure 2: Block diagram of adaptive RBF sliding mode control system.

3. Adaptive RBF Neural Sliding Control and
Stability Analysis

In this section, an adaptive RBF neural network sliding mode
controller is proposed. The sliding surface is the input of the
RBF neural network, the slidingmode controller is the output
of RBF neural network. A single input and a single output
neural sliding mode control can be achieved by using the
neural network learning function to approximate the sliding
surface coordinate function 𝑠

𝑊
of APF. The weights of the

RBF neural network controller will be updated according to
gradient method. The block diagram of the adaptive RBF
sliding mode control is shown in Figure 2.

3.1. Controller Design. Functions of (1) can be written in
vector form as:

̇𝑖
𝑐
= −
𝑟

𝐿
𝑖
𝑐
+
V
𝑠

𝐿
+
Vdc
𝐿
𝑠
𝑊
, (2)

where 𝑖 = [𝑖ca, 𝑖cb, 𝑖cc]
𝑇, V
𝑠
= [Vsa, Vsb, Vsc]

𝑇.
Define compensation current and its derivative as follows:

𝑥
1
= 𝑖
𝑐
,

𝑥
2
= �̇�
1
= ̇𝑖
𝑐
.

(3)

The derivative of 𝑥
1
and 𝑥

2
with respect to time becomes as

follows:

�̇�
1
= ̇𝑖
𝑐
= −
𝑟

𝐿
𝑖
𝑐
+
𝑉
𝑠

𝐿
+
𝑉dc
𝐿
𝑠
𝑊
,

�̇�
2
= �̈�
1
= ̈𝑖
𝑐
=
𝑑 (− (𝑟/𝐿) 𝑖

𝑐
+ (𝑉
𝑠
/𝐿) + (𝑉dc/𝐿) 𝑠𝑊)

𝑑𝑡

= −
𝑟

𝐿

̇𝑖
𝑐
+
1

𝐿

𝑑𝑉
𝑠

𝑑𝑡
+
1

𝐿

𝑑𝑉dc
𝑑𝑡
𝑠
𝑊

= −
𝑟

𝐿
(−
𝑟

𝐿
𝑖
𝑐
+
𝑉
𝑠

𝐿
+
𝑉dc
𝐿
𝑠
𝑊
) +

1

𝐿

𝑑𝑉
𝑠

𝑑𝑡
+
1

𝐿

𝑑𝑉dc
𝑑𝑡
𝑠
𝑊

=
𝑟
2

𝐿2
𝑖
𝑐
+ (−

𝑟𝑉dc
𝐿2
+
1

𝐿

𝑑𝑉dc
𝑑𝑡
) 𝑠
𝑊
+ (−

𝑟𝑉
𝑠

𝐿2
+
1

𝐿

𝑑𝑉
𝑠

𝑑𝑡
) .

(4)

Define time-varying function as 𝑓(𝑡) = (𝑟2/𝐿2)𝑖
𝑐
, constant

function 𝑏 = −(𝑟𝑉dc/𝐿
2

) + (1/𝐿)(𝑑𝑉dc/𝑑𝑡), sliding surface
coordinate function 𝑢 = 𝑠

𝑊
, disturbance function 𝑑(𝑡) =

−(𝑟𝑉
𝑠
/𝐿
2

)+(1/𝐿)(𝑑𝑉
𝑠
/𝑑𝑡). So, the dynamicmodel of this APF

control system can be expressed as follows:

�̇�
1
= 𝑥
2
,

�̇�
2
= 𝑓 (𝑡) + 𝑏𝑢 + 𝑑 (𝑡) .

(5)

Define tracking error of command current and compensation
current as follows:

𝑒 (𝑡) = 𝑖
∗

𝑐
− 𝑖
𝑐
= 𝑖
∗

𝑐
− 𝑥
1
. (6)

The derivative of 𝑒(𝑡)with respect to time becomes as follows:

̇𝑒 (𝑡) = ̇𝑖
∗

𝑐
− ̇𝑖
𝑐
= ̇𝑖
∗

𝑐
− 𝑥
2
. (7)

Define sliding surface as follows:

𝑠 (𝑡) = 𝜆𝑒 (𝑡) + ̇𝑒 (𝑡) , (8)

where 𝜆 is positive constant.
The structure of RBF neural network is shown in Figure 3.

As shown, 𝑠
1
, 𝑠
2
, and 𝑠

3
are sliding surface of the three-phase

used as inputs of RBF sliding controller; ℎ
1
, ℎ
2
, . . . , ℎ

𝑚
are

Gaussian functions;𝑤
1
, 𝑤
2
, 𝑤
𝑚
are weights; 𝑢 is the output of

RBF neural network used to approximate the sliding surface
coordinate function of APF;𝑚 is the number of hidden layer
neuron.

Here an RBF neural network is used to model the
relationship between the sliding surface and the control law.
The output of RBF neural network can be expressed as
follows:

𝑢 =

𝑚

∑

𝑗=1

𝑤
𝑗
⋅ exp(−


𝑠 − 𝑐
𝑗



2

𝑏
𝑗

) , (9)

where 𝑐
𝑗
is the centric vectors, 𝑏

𝑗
is the base width of RBF

neural network.
Based on Lyapunov stability theory, the reaching condi-

tion of the sliding surface is 𝑠(𝑡) ̇𝑠(𝑡) < 0. Because the RBF
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Figure 3: Structure of RBF neural network.

neural network is used to approximate nonlinear mapping
between the sliding surface and the output control, the
weights of the RBF neural network should be adjusted based
on the reaching condition. The weights are adjusted online
according to gradient method to find the optimal weight,
which can satisfy the reaching condition.

The adjustment indexes of the RBF is as follows:

𝐸 = 𝑠 (𝑡) ̇𝑠 (𝑡) . (10)

The adaptive law of the weight is as follows:

�̇�
𝑗
= −𝜂

𝜕𝐸

𝜕𝑤
𝑗
(𝑡)
= −𝜂

𝜕𝑠 (𝑡) ̇𝑠 (𝑡)

𝜕𝑤
𝑗
(𝑡)

= −𝜂
𝜕𝑠 (𝑡) ̇𝑠 (𝑡)

𝜕𝑢 (𝑡)
⋅
𝜕𝑢 (𝑡)

𝜕𝑤
𝑗
(𝑡)
,

(11)

where 𝜂 is the parameter of the adaptive law.
From the chain rule, the following property can be

obtained:

𝜕𝑠 (𝑡) ̇𝑠 (𝑡)

𝜕𝑢
= 𝑠 (𝑡)

𝜕 ̇𝑠 (𝑡)

𝜕𝑢
= 𝑠 (𝑡)

𝜕 [𝑐 ̇𝑒 (𝑡) + ̈𝑒 (𝑡)]

𝜕𝑢

= 𝑠 (𝑡)

𝜕 [𝑐 ̇𝑒 (𝑡) + ̈𝑖
∗

𝑐
− �̇�
2
]

𝜕𝑢

= 𝑠 (𝑡)

𝜕 [𝑐 ̇𝑒 (𝑡) + ̈𝑖
∗

𝑐
− 𝑓 (𝑡) − 𝑏𝑢 − 𝑢

𝑑
]

𝜕𝑢
= −𝑏𝑠 (𝑡) ,

𝜕𝑢 (𝑡)

𝜕𝑤
𝑗
(𝑡)
=

𝜕 [∑
𝑚

𝑗=1
𝑤
𝑗
⋅ exp (−𝑠 − 𝑐𝑗



2

/𝑏
𝑗
)]

𝜕𝑤
𝑗
(𝑡)

= exp(−

𝑠 − 𝑐
𝑗



2

𝑏
𝑗

) .

(12)

Substituting (12) into (11) yields the following:

�̇�
𝑗
= 𝛾𝑠 (𝑡) exp(−


𝑠 − 𝑐
𝑗



2

𝑏
𝑗

) = 𝛾𝑠 (𝑡) ℎ
𝑗
(𝑠) , (13)

where 𝛾 = 𝑏𝜂.

The update equation of the weights can be expressed as
follows:

𝑤 (𝑘) = 𝑤 (𝑘 − 1) + 𝑑𝑤 (𝑘) + 𝛼 (𝑤 (𝑘 − 1) − 𝑤 (𝑘 − 2))

= 𝑤 (𝑘 − 1) + 𝛾𝑠 (𝑡) ℎ
𝑗
(𝑠) + 𝛼 (𝑤 (𝑘 − 1) − 𝑤 (𝑘 − 2)) ,

(14)

where 𝛼 is the parameter in the adjustment of the weights.
If the perfect control law exists, which makes the RBF

sliding mode controller reach the best performance, at this
moment APF system reaches the sliding surface; then the
system gets to sliding mode motion.

If the time-varying function 𝑓(𝑡) in (5) is known, we can
get the perfect control law as follows:

𝑢eq =
1

𝑏
[�̇�
2
(𝑡) − 𝑓 (𝑡) − 𝑑 (𝑡) + ̇𝑠 (𝑡) + 𝜆𝑠 (𝑡)] . (15)

It can be proven that ̇𝑠(𝑡)+𝜆𝑠(𝑡) = 0. Since𝜆 > 0 and ̇𝑠(𝑡)𝑠(𝑡) <
0, the sliding surface will gradually converge to zero.

3.2. Stability Analysis. In this paper, the RBF neural network
is used to approximate the relationship between the sliding
variable and the control law.The control lawmay have certain
difference with the perfect control law 𝑢eq.

From (5) and (15) we can get the following:

̇𝑠 (𝑡) = −𝜆𝑠 (𝑡) + 𝑏 [𝑢eq − 𝑢 (𝑡)] . (16)

Since RBF neural network can be used to approximate any
nonlinear function, we make the following assumption:

Assumption. The optimal weight 𝑊 of the RBF neural net-
work exists, which makes the control law 𝑢 approximate the
perfect control law 𝑢eq with an error smaller than 𝜀 as follows.

max 𝑢 (𝑥,𝑊) − 𝑢eq (𝑥)

< 𝜀, (17)

where 𝑢(𝑥,𝑊) = ∑𝑛
𝑘=1
𝑤
𝑘
ℎ
𝑘
= 𝑊
𝑇

ℎ,𝑊 = [𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
].

Then

𝑢eq (𝑥) = 𝑊
𝑇

ℎ + 𝜀. (18)
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Define the weighting error as �̃� = 𝑊 − �̂�, where 𝑊 is
the optimal weight and �̂� is the current estimated weight.
Equation (18) can be written as follows:

̇𝑠 (𝑡) = −𝜆𝑠 (𝑡) + 𝑏 (�̃�
𝑇

ℎ + 𝜀) . (19)

The Lyapunov function can be chosen as follows:

𝑉 =
1

2
𝑠
𝑇

𝑠 +
𝑏

𝛾
�̃�
𝑇

�̃�. (20)

The derivative of 𝑉 with respect to time becomes as follows:

�̇� = 𝑠
𝑇

̇𝑠 +
𝑏

𝛾
�̃�
𝑇 ̇̃
𝑊. (21)

Substituting (19) into (21) yields the following:

�̇� = 𝑠
𝑇

[−𝜆𝑠 + 𝑏 (�̃�
𝑇

+ 𝜀)] +
𝑏

𝛾
�̃�
𝑇 ̇̃
𝑊

= −𝜆𝑠
𝑇

𝑠 + 𝑠
𝑇

𝑏�̃�
𝑇

ℎ + 𝑠
𝑇

𝑏𝜀 +
𝑏

𝛾
�̃�
𝑇 ̇̃
𝑊

= −𝜆𝑠
𝑇

𝑠 + 𝑠
𝑇

𝑏𝜀 + 𝑏�̃�
𝑇

(𝑠
𝑇

ℎ +
1

𝛾

̇̃
𝑊) .

(22)

Choosing adaptive law as follows:
̇̃
𝑊 = −𝛾𝑠

𝑇

(𝑡) ℎ (𝑠) . (23)

Since ̇̃
𝑊 = −

̇̂
𝑊, that is,

̇̂
𝑊 = 𝛾𝑠

𝑇

(𝑡) ℎ (𝑠) , (24)

it can be seen that adaptive law of RBF neural network’s
weight corresponds to the weights equation (13) derived from
gradient method.

Substituting (24) into (22) yields the following:

�̇� = −𝜆𝑠
𝑇

𝑠 + 𝑠
𝑇

𝑏𝜀 ≤ ‖𝑠‖ (−𝜆 ‖𝑠‖ + 𝑏𝜀) . (25)

If ‖𝑠‖ > 𝑏𝜀/𝜆, then �̇� < 0, so the Lyapunov stability
can be satisfied, and the sliding surface will converge to
zero. Therefore, we can get the conclusion that the proposed
RBF sliding mode controller is stable and the tracking error
converges into a small error bound.

4. Simulation Study

In this section, simulation is implemented to investigate
the proposed adaptive RBF sliding mode control towards
shunt APF using Matlab/Simulink package with SimPower
Toolbox. In the simulation, the controller starts to work from
0.05 second, and disturbance signal is introduced into the
APF system at 0.12 second. The simulation parameters of the
APF system are selected as follows.

Parameters in RBF neural network: The number of
hidden layer neuron 𝑚 = 11; the centric vectors 𝑐 = −10 :
2 : 10; the base width 𝑏 = 1; parameters in gradient method:
𝛼 = 1; 𝛾 = 10; parameters in sliding mode control: 𝜆 = 0.08.
parameters in PI control of DC side voltage: 𝑘

𝑝
= 0.03;

𝑘
𝑖
= 0.02; other parameters of APF: inductance on the AC

side𝐿 = 5mH; capacitor voltage on theDC side Vdc = 100 uF;
Figure 4 describes the wave graph of A phase current

before and after controlling the APF. It can be seen from
Figures 5 and 6 that A phase current contains numerous
harmonic before 0.05 second, the total harmonic distortion
(THD) is 24.71%. After 0.05 second, the proposed controller
begins to work, the current wave can approximate to sine
waveform in no more than 0.01 second. Moreover, distur-
bance signal is added to the APF system at 0.12 second, the
negative effect of disturbance signal can be eliminated in no
more than 0.01 second. Figure 7 draws the THD from 0.13 to
0.17 second, the THD is 2.85%. Figure 8 describes the graph
of compensation current tracking command current. We can
see that the compensation current can keep track of the
command current before 0.06 second. Besides, the tracking
performance is very good after the disturbance signal is added
from 0.12 second. So harmonic current can be eliminated
and line current is forced to sine wave form, and THD
can be obviously reduced. Figure 9 describes the graph of
voltage on the DC side tracking the reference voltage; PI
controller canmake the tracking performance verywell. After
the disturbance signal is added, the voltage on the DC side
can track the reference voltage again in no more than 0.02
second and maintain in a relative stable state. Therefore, it
can be concluded that APF can compensate the harmonic
current effectively with the proposed adaptive RBF sliding
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Figure 5: Current harmonic analysis from 0 to 0.04 second.
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Figure 6: Current harmonic analysis from 0.06 to 0.1 second.
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Figure 7: Current harmonic analysis from 0.13 to 0.17 second.
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Figure 8: Command current and compensation current.

mode controller, and the controller has strong robustness
towards disturbance signals.

Figure 10 is the wave graph of the three-phase sliding
surface 𝑠

1
, 𝑠
2
, and 𝑠

3
, before and after controlling the APF.

As we can see, the sliding surface 𝑠 = 0 is reached after 0.05
second with the control of APF, whereas the sliding surface
is not stable before 0.05 second. Thus, the sliding surfaces
gradually converge to zero, and the APF system gets to sliding
mode motion.
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Figure 9: Voltage wave of the DC side.

5. Conclusions

An adaptive RBF neural sliding mode control method is
proposed for three-phase active power filter. An RBF neu-
ral network control is used to adaptively approximate the
nonlinear function of APF. The weights of the RBF neural
network are adjusted according to gradient method. The
sliding mode control is used to improve the robustness of
the APF system. Simulation results demonstrate the good
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Figure 10: Three phase sliding surface.

compensating performance of the harmonic current with the
proposed adaptive RBF sliding mode controller.
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