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This paper addresses the robust stability for a class of linear discrete-time stochastic systems with convex polytopic uncertainties.
The system to be considered is subject to both interval time-varying delays and convex polytopic type uncertainties. Based on
the augmented parameter-dependent Lyapunov-Krasovskii functional, new delay-dependent conditions for the robust stability are
established in terms of linear matrix inequalities. An application to robust stabilization of linear discrete-time stochastic control
systems is given. Numerical examples are included to illustrate the effectiveness of our results.

1. Introduction

In the past decades, the problem of stability for neutral
differential systems, which have delays in both its state and
the derivatives of its states, has been widely investigated by
many researchers. Such systems are often encountered in
engineering, biology, and economics. The existence of time
delay is frequently a source of instability or poor perfor-
mances in the systems. Recently, some stability criteria for
neutral system with time delay have been given in [1–8]
and the references therein. Some delay-dependent stability
criteria for discrete-time systems with time-varying delay
are investigated in [2, 6, 9–11], where the discrete Lyapunov
functional method is employed to prove stability conditions
in terms of linear matrix inequalities (LMIs). A number of
research works for dealing with asymptotic stability problem
for discrete systems with interval time-varying delays have
been presented in [12–24]. Theoretically, stability analysis of
the systems with time-varying delays is more complicated,
especially for the case where the system matrices belong to
some convex polytope. In this case, the parameter-dependent
Lyapunov-Krasovskii functionals are constructed as the con-
vex combination of a set of functions assures the robust

stability of the nominal systems, and the stability conditions
must be solved upon a grid on the parameter space, which
results in testing a finite number of linear matrix inequalities
(LMIs) [11, 25, 26]. To the best of the authors’ knowledge,
the stability for linear discrete-time systems with both time-
varying delays and polytopic uncertainties has not been fully
investigated.Thepapers [27, 28] propose sufficient conditions
for robust stability of discrete and continuous polytopic
systems without time delays. More recently, combining the
ideas in [25, 26], improved conditions for D-stability and
D-stabilization of linear polytopic delay-difference equations
with constant delays have been proposed in [29]. To the
best of our knowledge, the stability and stabilization of
linear discrete-time stochastic systems with convex polytopic
uncertainties, nondifferentiable time-varying delays has not
been fully studied yet (see, e.g., [1, 3–11, 13–36] and the
references therein), which are important in both theories and
applications. This motivates our research.

In this paper, we consider polytopic discrete-time
stochastic equations with interval time-varying delays. By
using the parameter-dependent Lyapunov-Krasovskii func-
tional combined with LMI techniques, we propose new
criteria for the robust stability of the stochastic system. The
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delay-dependent stability conditions are formulated in terms
of LMIs, being thus solvable by the numeric technology
available in the literature to date. The result is applied to
robust stabilization of linear discrete-time stochastic control
systems. Compared to other results, our result has its own
advantages. First, it deals with the delay-difference stochastic
system, where the state-space data belong to the convex
polytope of uncertainties and the rate of change of the state
depends not only on the current state of the systems, but
also its state at some times in the past. Second, the time
delay is assumed to be a time-varying function belonging to a
given interval, whichmeans that the lower and upper bounds
for the time-varying delay are available. Third, our approach
allows us to apply in robust stabilization of the linear discrete-
time stochastic system subjected to polytopic uncertainties
and external controls.Therefore, our results are more general
than the related previous results.

The paper is organized as follows. Section 2 introduces
the main notations, definitions, and some lemmas needed for
the development of the main results. In Section 3, sufficient
conditions are derived for robust stability, stabilization of
discrete-time stochastic systems with interval time-varying
delays, and polytopic uncertainties. They are followed by
some remarks. Illustrative examples are given in Section 4.

2. Preliminaries

The following notations will be used throughout this paper.
𝑅
+ denotes the set of all real nonnegative numbers;𝑅𝑛 denotes

the 𝑛-dimensional space with the scalar product ⟨⋅, ⋅⟩ and the
vector norm ‖ ⋅ ‖;𝑅𝑛×𝑟 denotes the space of all realmatrices of
(𝑛× 𝑟)-dimension.𝐴𝑇 denotes the transpose of𝐴; a matrix𝐴

is symmetric if 𝐴 = 𝐴
𝑇, and a matrix 𝐼 is the identity matrix

of appropriate dimension.
Matrix 𝐴 is semipositive definite (𝐴 ≥ 0) if ⟨𝐴𝑥, 𝑥⟩ ≥ 0, for
all 𝑥 ∈ 𝑅

𝑛
; 𝐴 is positive definite (𝐴 > 0) if ⟨𝐴𝑥, 𝑥⟩ > 0 for all

𝑥 ̸= 0; 𝐴 ≥ 𝐵means that 𝐴 − 𝐵 ≥ 0.
Consider delay-difference stochastic systems with poly-

topic uncertainties of the form

𝑥 (𝑘 + 1) = 𝐴 (𝜉) 𝑥 (𝑘) + 𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

+ 𝜎 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘) 𝜔 (𝑘) ,

𝑘 = 0, 1, 2, . . . ,

𝑥 (𝑘) = V
𝑘
, 𝑘 = −ℎ

2
, −ℎ
2
+ 1, . . . , 0,

(1)

where 𝑥(𝑘) ∈ 𝑅
𝑛 is the state (Figures 1 and 2), and the system

matrices are subjected to uncertainties and belong to the
polytopeΩ given by

Ω = {[𝐴,𝐷] (𝜉) :=

𝑝

∑

𝑖=1

𝜉
𝑖
[𝐴
𝑖
, 𝐷
𝑖
] ,

𝑝

∑

𝑖=1

𝜉
𝑖
= 1, 𝜉
𝑖
≥ 0} , (2)

where 𝐴
𝑖
, 𝐷
𝑖
, 𝑖 = 1, 2, . . . , 𝑝, are given constant matrices

with appropriate dimensions, 𝜔(𝑘) is a scalar Wiener process
(Brownian Motion) on (Ω,F,P) with

𝐸 [𝜔 (𝑘)] = 0, 𝐸 [𝜔
2

(𝑘)] = 1,

𝐸 [𝜔 (𝑖) 𝜔 (𝑗)] = 0 (𝑖 ̸= 𝑗) ,

(3)
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Figure 1: The simulation of the solutions 𝑥
1
(𝑘) and 𝑥

2
(𝑘) with the

initial condition 𝜙(𝑘) = [10 5]
𝑇, 𝑘 ∈ [0, 10].
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Figure 2: The simulation of the solutions 𝑥
1
(𝑘) and 𝑥

2
(𝑘) with the

initial condition 𝜙(𝑘) = [10 5]
𝑇, 𝑘 ∈ [0, 10].

and 𝜎: 𝑅𝑛 × 𝑅
𝑛
× 𝑅 → 𝑅

𝑛 is the continuous function and is
assumed to satisfy that

𝜎
𝑇

(𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘) 𝜎 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘)

≤ 𝜌
1
𝑥
𝑇

(𝑘) 𝑥 (𝑘) + 𝜌
2
𝑥
𝑇

(𝑘 − ℎ (𝑘)) 𝑥 (𝑘 − ℎ (𝑘)) ,

𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) ∈ 𝑅
𝑛

,

(4)

where 𝜌
1
> 0 and 𝜌

2
> 0 are known constant scalars.

For simplicity, we denote 𝜎(𝑥(𝑘), 𝑥(𝑘 − ℎ(𝑘)), 𝑘) by 𝜎,
respectively.



Journal of Applied Mathematics 3

The time-varying function ℎ(𝑘) satisfies the condition:

0 < ℎ
1
≤ ℎ (𝑘) ≤ ℎ

2
, ∀𝑘 = 0, 1, 2, . . . . (5)

Remark 1. It is worth noting that the time delay is a time-
varying function belonging to a given interval, which allows
the time delay to be a fast time-varying function, and the
lower bound is not restricted to being zero as considered in
[2, 6, 9–11, 18–24, 30–33].

Definition 2. The system (1) is robustly stable in the mean
square if there exists a positive definite scalar function 𝑉(𝑘,

𝑥(𝑘)): 𝑅𝑛 × 𝑅
𝑛

→ 𝑅 such that

𝐸 [Δ𝑉 (𝑘, 𝑥 (𝑘))]

= 𝐸 [𝑉 (𝑘 + 1, 𝑥 (𝑘 + 1)) − 𝑉 (𝑘, 𝑥 (𝑘))] < 0,

(6)

along any trajectory of zero solution of the system (1) for all
uncertainties inΩ.

Proposition 3. For real numbers 𝜉
𝑖

≥ 0, 𝑖 = 1, 2, . . . , 𝑝,
∑
𝑝

𝑖=1
𝜉
𝑖
= 1, the following inequality holds:

(𝑝 − 1)

𝑝

∑

𝑖=1

𝜉
2

𝑖
− 2

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
≥ 0. (7)

Proof. The proof is followed from completing the square

(𝑝 − 1)

𝑝

∑

𝑖=1

𝜉
2

𝑖
− 2

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
=

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

(𝜉
𝑖
− 𝜉
𝑗
)
2

≥ 0. (8)

3. Main Results

3.1. Robust Stability. In this section, we present sufficient
delay-dependent conditions for the robust stability of system
(1). Let us set

𝑥𝑘
 = sup
𝑠∈[−ℎ2 ,0]

‖𝑥 (𝑘 + 𝑠)‖ ,

M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
) = (

(ℎ
2
− ℎ
1
+ 1)𝑄

𝑖
− 𝑃
𝑖
− 𝑆
1𝑖
𝐴
𝑗
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
+ 2𝜌
1
𝐼 𝑆
1𝑖
− 𝑆
1𝑖
𝐴
𝑗

−𝑆
1𝑖
𝐷
𝑗
− 𝑆
2𝑖
𝐴
𝑗

𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
𝑃
𝑖
+ 𝑆
1𝑖
+ 𝑆
𝑇

1𝑖
𝑆
2𝑖
− 𝑆
1𝑖
𝐷
𝑗

−𝐷
𝑇

𝑗
𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑗
𝑆
𝑇

2𝑖
𝑆
𝑇

2𝑖
− 𝐷
𝑇

𝑗
𝑆
𝑇

1𝑖
−𝑄
𝑖
− 𝑆
2𝑖
𝐷
𝑗
− 𝐷
𝑇

𝑗
𝑆
𝑇

2𝑖
+ 2𝜌
2
𝐼

) ,

S = (

𝑆 0 0

0 0 0

0 0 0

) , 𝑃 (𝜉) =

𝑝

∑

𝑖=1

𝜉
𝑖
𝑃
𝑖
, 𝑄 (𝜉) =

𝑝

∑

𝑖=1

𝜉
𝑖
𝑄
𝑖
, 𝑆

1
(𝜉) =

𝑝

∑

𝑖=1

𝜉
𝑖
𝑆
1𝑖
, 𝑆

2
(𝜉) =

𝑝

∑

𝑖=1

𝜉
𝑖
𝑆
2𝑖
.

(9)

Theorem 4. The system (1) is robustly stable in the mean
square if there exist symmetric matrices 𝑃

𝑖
> 0, 𝑄

𝑖
> 0, 𝑖 =

1, 2 . . . , 𝑝, and constant matrices 𝑆 ≥ 0, 𝑆
1𝑖
, 𝑆
2𝑖
, 𝑖 = 1, 2 . . . , 𝑝,

satisfying the following LMIs:

(i) M
𝑖𝑖
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
) +S < 0, 𝑖 = 1, 2, . . . , 𝑝;

(ii) M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
)+M
𝑗𝑖
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
)−(2/(𝑝−1))S < 0,

𝑖 = 1, 2, . . . , 𝑝 − 1; 𝑗 = 𝑖 + 1, . . . , 𝑝.

Proof. Consider the following parameter-dependent Lyapun-
ov-Krasovskii functional for system (1):

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) , (10)

where
𝑉
1
(𝑘) = 𝑥 (𝑘) 𝑃 (𝜉) 𝑥 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑖=𝑘−ℎ(𝑘)

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) ,

𝑉
3
(𝑘) =

−ℎ
1
+1

∑

𝑗=−ℎ
2
+2

𝑘−1

∑

𝑙=𝑘+𝑗+1

𝑥
𝑇

(𝑙) 𝑄 (𝜉) 𝑥 (𝑙) .

(11)

We can verify that

𝜆
1
‖𝑥 (𝑘)‖

2

≤ 𝑉 (𝑘) ≤ 𝜆
2

𝑥𝑘


2

. (12)

Let us set 𝑧(𝑘) = [𝑥
𝑇
(𝑘) 𝑥
𝑇
(𝑘 + 1) 𝑥

𝑇
(𝑘 − ℎ(𝑘)) 𝜔

𝑇
(𝑘)], and

𝐺 (𝜉) = (

0 0 0 0

0 𝑃 (𝜉) 0 0

0 0 0 0

0 0 0 0

) , 𝐹 (𝜉) = (

𝑃 (𝜉) 0 0 0

𝐼 𝐼 0 0

0 0 𝐼 0

0 0 0 𝐼

) .

(13)
Then, with the difference of 𝑉

1
(𝑘) along the solution of

the system (1) and taking the mathematical expectation, we
obtained
𝐸 [Δ𝑉

1
(𝑘)]

= 𝐸 [𝑥
𝑇

(𝑘 + 1) 𝑃 (𝜉) 𝑥 (𝑘 + 1) − 𝑥
𝑇

(𝑘) 𝑃 (𝜉) 𝑥 (𝑘)]

= 𝐸
[
[
[

[

𝑧(𝑘)
𝑇

𝐺 (𝜉) 𝑧 (𝑘) − 2𝑧
𝑇

(𝑘) 𝐹
𝑇

(𝜉)(

0.5𝑥 (𝑘)

0

0

0

)
]
]
]

]

,

(14)
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because of
𝑧
𝑇

(𝑘) 𝐺 (𝜉) 𝑧 (𝑘) = 𝑥(𝑘 + 1)
𝑇

𝑃 (𝜉) 𝑥 (𝑘 + 1) ,

2𝑧
𝑇

(𝑘) 𝐹
𝑇

(𝜉)(

0.5𝑥 (𝑘)

0

0

0

) = 𝑥
𝑇

(𝑘) 𝑃 (𝜉) 𝑥 (𝑘) .

(15)

Using the expression of system (1)

0 = −𝑆
1
(𝜉) 𝑥 (𝑘 + 1) + 𝑆

1
(𝜉) 𝐴 (𝜉) 𝑥 (𝑘)

+ 𝑆
1
(𝜉)𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝑆

1
(𝜉) 𝜎𝜔 (𝑘) ,

0 = −𝑆
2
(𝜉) 𝑥 (𝑘 + 1) + 𝑆

2
(𝜉) 𝐴 (𝜉) 𝑥 (𝑘)

+ 𝑆
2
(𝜉)𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝑆

2
(𝜉) 𝜎𝜔 (𝑘) ,

0 = −𝜎
𝑇

𝑥 (𝑘 + 1) + 𝜎
𝑇

𝐴 (𝜉) 𝑥 (𝑘)

+ 𝜎
𝑇

𝐷(𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝜎
𝑇

𝜎𝜔 (𝑘) ,

(16)

we have

− 2𝑧
𝑇

(𝑘) 𝐹
𝑇

(𝜉)(

0.5𝑥 (𝑘)

−𝑆
1
(𝜉) 𝑥 (𝑘 + 1) + 𝑆

1
(𝜉) 𝐴 (𝜉) 𝑥 (𝑘) + 𝑆

1
(𝜉)𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝑆

1
(𝜉) 𝜎𝜔 (𝑘)

−𝑆
2
(𝜉) 𝑥 (𝑘 + 1) + 𝑆

2
(𝜉) 𝐴 (𝜉) 𝑥 (𝑘) + 𝑆

2
(𝜉)𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝑆

2
(𝜉) 𝜎𝜔 (𝑘)

−𝜎
𝑇
𝑥 (𝑘 + 1) + 𝜎

𝑇
𝐴 (𝜉) 𝑥 (𝑘) + 𝜎

𝑇
𝐷 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) + 𝜎

𝑇
𝜎𝜔 (𝑘)

)𝑧 (𝑘)

= −𝑧
𝑇

(𝑘) 𝐹
𝑇

(𝜉)(

0.5𝐼 0 0

𝑆
1
(𝜉) 𝐴 (𝜉) −𝑆

1
(𝜉) 𝑆
1
(𝜉)𝐷 (𝜉) 𝑆

1
(𝜉) 𝜎

𝑆
2
(𝜉) 𝐴 (𝜉) −𝑆

2
(𝜉) 𝑆
2
(𝜉)𝐷 (𝜉) 𝑆

2
(𝜉) 𝜎

𝜎
𝑇
𝐴 (𝜉) −𝜎

𝑇
𝜎
𝑇
𝐷(𝜉) 𝜎

𝑇
𝜎

)𝑧 (𝑘)

− 𝑧
𝑇

(𝑘)(

0.5𝐼 0 0

𝑆
1
(𝜉) 𝐴 (𝜉) −𝑆

1
(𝜉) 𝑆
1
(𝜉)𝐷 (𝜉) 𝑆

1
(𝜉) 𝜎

𝑆
2
(𝜉) 𝐴 (𝜉) −𝑆

2
(𝜉) 𝑆
2
(𝜉)𝐷 (𝜉) 𝑆

2
(𝜉) 𝜎

𝜎
𝑇
𝐴 (𝜉) −𝜎

𝑇
𝜎
𝑇
𝐷 (𝜉) 𝜎

𝑇
𝜎

)

𝑇

𝐹 (𝜉) 𝑧 (𝑘) .

(17)

Therefore, from (14), it follows that
𝐸 [Δ𝑉

1
(𝑘)]

= 𝐸 [𝑥
𝑇

(𝑘) [−𝑃 (𝜉) − 𝑆
1
(𝜉) 𝐴 (𝜉) − 𝐴(𝜉)

𝑇

𝑆
𝑇

1
(𝜉)] 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) [𝑆
1
(𝜉) − 𝑆

1
(𝜉) 𝐴 (𝜉)] 𝑥 (𝑘 + 1)

+ 2𝑥
𝑇

(𝑘) [−𝑆
1
(𝜉)𝐷 (𝜉)

−𝑆
2
(𝜉) 𝐴 (𝜉)] 𝑥 (𝑘 − ℎ (𝑘))

+ 2𝑥
𝑇

(𝑘) [−𝑆
1
(𝜉) 𝜎 − 𝜎

𝑇

𝐴 (𝜉)] 𝜔 (𝑘)

+ 𝑥 (𝑘 + 1) [𝑃 (𝜉) + 𝑆
1
(𝜉) + 𝑆

𝑇

1
(𝜉)]

× 𝑥 (𝑘 + 1)

+ 2𝑥 (𝑘 + 1) [𝑆
2
(𝜉) − 𝑆

1
(𝜉)𝐷 (𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 2𝑥 (𝑘 + 1) [𝜎
𝑇

− 𝑆
1
(𝜉) 𝜎] 𝜔 (𝑘)

+ 𝑥
𝑇

(𝑘 − ℎ (𝑘)) [−𝑆
2
(𝜉)𝐷 (𝜉) − 𝐷

𝑇

(𝜉) 𝑆
𝑇

2
(𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥
𝑇

(𝑘 − ℎ (𝑘)) [−𝑆
2
(𝜉) 𝜎 − 𝜎

𝑇

𝐷 (𝜉)] 𝜔 (𝑘)

+ 𝜔
𝑇

(𝑘) [−2𝜎
𝑇

𝜎]𝜔 (𝑘)] .

(18)

By assumption (3), we have

𝐸 [Δ𝑉
1
(𝑘)]

= 𝐸 [𝑥
𝑇

(𝑘) [−𝑃 (𝜉) − 𝑆
1
(𝜉) 𝐴 (𝜉) − 𝐴(𝜉)

𝑇

𝑆
𝑇

1
(𝜉)] 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) [𝑆
1
(𝜉) − 𝑆

1
(𝜉) 𝐴 (𝜉)] 𝑥 (𝑘 + 1)

+ 2𝑥
𝑇

(𝑘) [−𝑆
1
(𝜉)𝐷 (𝜉) − 𝑆

2
(𝜉) 𝐴 (𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥 (𝑘 + 1) [𝑃 (𝜉) + 𝑆
1
(𝜉) + 𝑆

𝑇

1
(𝜉)] 𝑥 (𝑘 + 1)

+ 2𝑥 (𝑘 + 1) [𝑆
2
(𝜉) − 𝑆

1
(𝜉)𝐷 (𝜉)] 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥
𝑇

(𝑘 − ℎ (𝑘)) [−𝑆
2
(𝜉)𝐷 (𝜉) − 𝐷

𝑇

(𝜉) 𝑆
𝑇

2
(𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝜔
𝑇

(𝑘) [−2𝜎
𝑇

𝜎]𝜔 (𝑘)] .

(19)

Applying assumption (4), the following estimations holds:

− 𝜎
𝑇

(𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘) 𝜎
𝑖
(𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘)

≤ 𝜌
1
𝑥
𝑇

(𝑘) 𝑥 (𝑘) + 𝜌
2
𝑥
𝑇

(𝑘 − ℎ (𝑘)) 𝑥 (𝑘 − ℎ (𝑘)) .

(20)
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Therefore, we have

𝐸 [Δ𝑉
1
(𝑘)]

= 𝐸 [𝑥
𝑇

(𝑘) [−𝑃 (𝜉) − 𝑆
1
(𝜉) 𝐴 (𝜉) − 𝐴(𝜉)

𝑇

𝑆
𝑇

1
(𝜉)

+2𝜌
1
𝐼] 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) [𝑆
1
(𝜉) − 𝑆

1
(𝜉) 𝐴 (𝜉)] 𝑥 (𝑘 + 1)

+ 2𝑥
𝑇

(𝑘) [−𝑆
1
(𝜉)𝐷 (𝜉) − 𝑆

2
(𝜉) 𝐴 (𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥 (𝑘 + 1) [𝑃 (𝜉) + 𝑆
1
(𝜉) + 𝑆

𝑇

1
(𝜉)]

× 𝑥 (𝑘 + 1)

+ 2𝑥 (𝑘 + 1) [𝑆
2
(𝜉) − 𝑆

1
(𝜉)𝐷 (𝜉)]

× 𝑥 (𝑘 − ℎ (𝑘))

+ 𝑥
𝑇

(𝑘 − ℎ (𝑘)) [−𝑆
2
(𝜉)𝐷 (𝜉) − 𝐷

𝑇

(𝜉) 𝑆
𝑇

2
(𝜉)

+ 2𝜌
2
𝐼] 𝑥 (𝑘 − ℎ (𝑘)) ] .

(21)

The expectation of the difference of 𝑉
2
(𝑘) is given by

𝐸 [Δ𝑉
2
(𝑘)]

= 𝐸[

𝑘

∑

𝑖=𝑘+1−ℎ(𝑘+1)

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)

−

𝑘−1

∑

𝑖=𝑘−ℎ(𝑘)

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)]

= 𝐸[

𝑘−ℎ
1

∑

𝑖=𝑘+1−ℎ(𝑘+1)

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)

+ 𝑥
𝑇

(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

− 𝑥
𝑥

(𝑘 − ℎ (𝑘)) 𝑄 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

+

𝑘−1

∑

𝑖=𝑘+1−ℎ
1

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)

−

𝑘−1

∑

𝑖=𝑘+1−ℎ(𝑘)

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)] .

(22)

Since ℎ(𝑘) ≥ ℎ
1
, we have

𝑘−1

∑

𝑖=𝑘+1−ℎ
1

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) −

𝑘−1

∑

𝑖=𝑘+1−ℎ(𝑘)

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) ≤ 0, (23)

and, hence, from (22), we have

𝐸 [Δ𝑉
2
(𝑘)]

≤ 𝐸[

𝑘−ℎ
1

∑

𝑖=𝑘+1−ℎ(𝑘+1)

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖)

+ 𝑥
𝑇

(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

−𝑥
𝑇

(𝑘 − ℎ (𝑘)) 𝑄 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) ] .

(24)

The difference of 𝑉
3
(𝑘) is given by

𝐸 [Δ𝑉
3
(𝑘)]

= 𝐸[

[

−ℎ
1
+1

∑

𝑗=−ℎ
2
+2

[𝑥
𝑇

(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 + 𝑗 − 1)𝑄 (𝜉)

× 𝑥 (𝑘 + 𝑗 − 1) ]]

]

= 𝐸[

[

(ℎ
2
− ℎ
1
) 𝑥
𝑇

(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

−

𝑘−ℎ
1

∑

𝑙=𝑘+1−ℎ
2

𝑥
𝑇

(𝑙) 𝑄 (𝜉) 𝑥 (𝑙)]

]

.

(25)

Since

𝑘−ℎ
1

∑

𝑖=𝑘=1−ℎ(𝑘+1)

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) −

𝑘−ℎ
1

∑

𝑖=𝑘+1−ℎ
2

𝑥
𝑇

(𝑖) 𝑄 (𝜉) 𝑥 (𝑖) ≤ 0,

(26)

we obtain from (24) and (25) that

𝐸 [Δ𝑉
2
(𝑘) + Δ𝑉

3
(𝑘)]

≤ 𝐸 [(ℎ
2
− ℎ
1
+ 1) 𝑥

𝑇

(𝑘) 𝑄 (𝜉) 𝑥 (𝑘)

−𝑥
𝑇

(𝑘 − ℎ (𝑘)) 𝑄 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))] .

(27)

Therefore, combining the inequalities (21), (27) gives

𝐸 [Δ𝑉 (𝑘)] ≤ 𝐸 [𝜓
𝑇

(𝑘) 𝑇 (𝜉) 𝜓 (𝑘)] , (28)

where
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𝜓 (𝑘) = [𝑥 (𝑘) 𝑥 (𝑘 + 1) 𝑥 (𝑘 − ℎ (𝑘))]
𝑇

,

𝑇 (𝜉) = (

𝑀(𝜉) 𝑆
1
(𝜉) − 𝑆

1
(𝜉) 𝐴 (𝜉) −𝑆

1
(𝜉)𝐷 (𝜉) − 𝑆

2
(𝜉) 𝐴 (𝜉)

𝑆
𝑇

1
(𝜉) − 𝐴

𝑇

(𝜉) 𝑆
𝑇

1
(𝜉) 𝑃 (𝜉) + 𝑆

1
(𝜉) + 𝑆

𝑇

1
(𝜉) 𝑆

2
(𝜉) − 𝑆

1
(𝜉)𝐷 (𝜉)

−𝐷
𝑇

(𝜉) 𝑆
𝑇

1
(𝜉) − 𝐴

𝑇

(𝜉) 𝑆
𝑇

2
(𝜉) 𝑆

𝑇

2
(𝜉) − 𝐷

𝑇

(𝜉) 𝑆
𝑇

1
(𝜉) −𝑄 (𝜉) − 𝑆

2
(𝜉)𝐷 (𝜉) − 𝐷

𝑇

(𝜉) 𝑆
𝑇

2
(𝜉) + 2𝜌

2
𝐼

) ,

𝑀 (𝜉) = (ℎ
2
− ℎ
1
+ 1)𝑄 (𝜉) − 𝑃 (𝜉) − 𝑆

1
(𝜉) 𝐴 (𝜉) − 𝐴(𝜉)

𝑇

𝑆
1
(𝜉)
𝑇

+ 2𝜌
1
𝐼.

(29)

Let us denote that

𝑀
𝑖𝑗
:= (ℎ
2
− ℎ
1
+ 1)𝑄

𝑖
− 𝑃
𝑖
− 𝑆
1𝑖
𝐴
𝑗
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
+ 2𝜌
1
𝐼,

(𝑆
1
𝐴)
𝑖𝑗
:= 𝑆
1𝑗
𝐴
𝑖
+ 𝑆
1𝑖
𝐴
𝑗
, (𝑆

2
𝐴)
𝑖𝑗
:= 𝑆
2𝑗
𝐴
𝑖
+ 𝑆
2𝑖
𝐴
𝑗
,

(𝑆
1
𝐷)
𝑖𝑗
:= 𝑆
1𝑗
𝐷
𝑖
+ 𝑆
1𝑖
𝐷
𝑗
, (𝑆

2
𝐷)
𝑖𝑗
:= 𝑆
2𝑗
𝐷
𝑖
+ 𝑆
2𝑖
𝐷
𝑗
,

𝑃
𝑖𝑗
= 𝑃
𝑖
+ 𝑃
𝑗
, 𝑄

𝑖𝑗
= 𝑄
𝑖
+ 𝑄
𝑗
,

𝑆
1𝑖𝑗

= 𝑆
1𝑖
+ 𝑆
1𝑗
, 𝑆

2𝑖𝑗
= 𝑆
2𝑖
+ 𝑆
2𝑗
.

(30)

From the convex combination of the expression of𝑃(𝜉),𝑄(𝜉),
𝑆
1
(𝜉), 𝑆
2
(𝜉), 𝐴(𝜉),𝐷(𝜉), we have

𝑇 (𝜉) =

𝑝

∑

𝑖=1

𝜉
2

𝑖
(

𝑀
𝑖𝑖

𝑆
1𝑖
− 𝑆
1𝑖
𝐴
𝑖

−𝑆
1𝑖
𝐷
𝑖
− 𝑆
2𝑖
𝐴
𝑖

𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑖
𝑆
𝑇

1𝑖
𝑃
𝑖
+ 𝑆
1𝑖
+ 𝑆
𝑇

1𝑖
𝑆
2𝑖
− 𝑆
1𝑖
𝐷
𝑖

−𝐷
𝑇

𝑖
𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑖
𝑆
𝑇

2𝑖
𝑆
𝑇

2𝑖
− 𝐷
𝑇

𝑖
𝑆
𝑇

1𝑖
−𝑄
𝑖
− 𝑆
2𝑖
𝐷
𝑖
− 𝐷
𝑇

𝑖
𝑆
𝑇

2𝑖
+ 2𝜌
2
𝐼

)

+

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
(

𝑀
𝑖𝑗
+ 𝑀
𝑗𝑖

𝑆
1𝑖𝑗

− (𝑆
1
𝐴)
𝑖𝑗

−(𝑆
1
𝐷)
𝑖𝑗
− (𝑆
2
𝐴)
𝑖𝑗

𝑆
𝑇

1𝑖𝑗
− (𝐴
𝑇
𝑆
𝑇

1
)
𝑖𝑗

𝑃
𝑖𝑗
+ 𝑆
1𝑖𝑗

+ 𝑆
𝑇

1𝑖𝑗
𝑆
2𝑖𝑗

− (𝑆
1
𝐷)
𝑖𝑗

−(𝐷
𝑇
𝑆
𝑇

1
)
𝑖𝑗

− (𝐴
𝑇
𝑆
𝑇

2
)
𝑖𝑗

𝑆
𝑇

2𝑖𝑗
− (𝐷
𝑇
𝑆
𝑇

1
)
𝑖𝑗

−𝑄
𝑖𝑗
− (𝑆
2
𝐷)
𝑖𝑗
− (𝐷
𝑇
𝑆
𝑇

2
)
𝑖𝑗

+ 2𝜌
2
𝐼

)

=

𝑝

∑

𝑖=1

𝜉
2

𝑖
M
𝑖𝑖
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
) +

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
[M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
) +M

𝑗𝑖
(𝑃, 𝑄, 𝑆

1
, 𝑆
2
)] .

(31)

Then, the conditions (i) and (ii) give

𝑇 (𝜉) < −

𝑝

∑

𝑖=1

𝜉
2

𝑖
S +

2

𝑝 − 1

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
S ≤ 0, (32)

because of Proposition 3 as

(𝑝 − 1)

𝑝

∑

𝑖=1

𝜉
2

𝑖
− 2

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

𝜉
𝑖
𝜉
𝑗
=

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=𝑖+1

(𝜉
𝑖
− 𝜉
𝑗
)
2

≥ 0,

(33)

and, hence, we finally obtain from (28) that
𝐸 [Δ𝑉 (𝑘)] ≤ 𝐸 [𝜓

𝑇

(𝑘) 𝑇 (𝜉) 𝜓 (𝑘)] < 0, ∀𝑘 = 0, 1, 2, . . . ,

(34)

which togetherwith (12) andDefinition 2 implies that the sys-
tem (1) is robustly stable in the mean square. This completes
the proof of the theorem.

Remark 5. The stability conditions of Theorem 4 are more
appropriate for most of real systems since it is usually
impossible in practice to know exactly the delay but lower and
upper bounds are always possible.

3.2. Robust Stabilization. This section deals with a stabiliza-
tion problem considered in [15] for constructing a delayed
feedback controller, which stabilizes the resulting closed-loop
system. The robust stability condition obtained in previous
sectionwill be applied to design a time-delayed state feedback
controller for the discrete-time control system described by

𝑥 (𝑘 + 1) = 𝐴 (𝜉) 𝑥 (𝑘) + 𝐵 (𝜉) 𝑢 (𝑘)

+ 𝜎 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)), 𝑘) 𝜔 (𝑘) ,

𝑘 = 0, 1, 2, . . . ,

(35)

where 𝑢(𝑘) ∈ 𝑅
𝑛 is the control input, and the systemmatrices

are subjected to uncertainties and belong to the polytope Ω

given by

Ω = {[𝐴, 𝐵] (𝜉) :=

𝑝

∑

𝑖=1

𝜉
𝑖
[𝐴
𝑖
, 𝐵
𝑖
] ,

𝑝

∑

𝑖=1

𝜉
𝑖
= 1, 𝜉
𝑖
≥ 0} ,

(36)

where 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 = 1, 2, . . . , 𝑝, are given constant matrices with

appropriate dimensions. As in [8], we consider a parameter-
dependent delayed feedback control law

𝑢 (𝑘) = 𝐹 (𝜉) 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘 = −ℎ
2
, . . . , 0, (37)
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where ℎ(𝑘) is the time-varying delay function satisfying 0 <

ℎ
1

≤ ℎ(𝑘) ≤ ℎ
2
, and 𝐹(𝜉) is the controller gain to be

determined. Applying the feedback controller (37) to the
system (35), the closed-loop time-delay system is

𝑥 (𝑘 + 1) = 𝐴 (𝜉) 𝑥 (𝑘) + 𝐵 (𝜉) 𝐹 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

+ 𝜎 (𝑥 (𝑘) , 𝑥 (𝑘 − ℎ (𝑘)) , 𝑘) 𝜔 (𝑘) ,

𝑘 = 0, 1, 2, . . .

(38)

Definition 6. The system (35) is robustly stabilizable in the
mean square if there is a delayed feedback control (37) such
that the closed-loop delay system (38) is robustly stable in the
mean square.

Let

M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
) = (

(ℎ
2
− ℎ
1
+ 1)𝑄

𝑖
− 𝑃
𝑖
− 𝑆
1𝑖
𝐴
𝑗
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
+ 2𝜌
1
𝐼 𝑆
1𝑖
− 𝑆
1𝑖
𝐴
𝑗

−𝑃
𝑖
− 𝑆
1𝑖
𝐴
𝑗

𝑆
𝑇

1𝑖
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
𝑃
𝑖
+ 𝑆
1𝑖
+ 𝑆
𝑇

1𝑖
𝑆
1𝑖
− 𝑃
𝑖

−𝑃
𝑖
− 𝐴
𝑇

𝑗
𝑆
𝑇

1𝑖
𝑆
𝑇

1𝑖
− 𝑃
𝑖

−𝑄
𝑖
− 𝑃
𝑖
− 𝑃
𝑖
+ 2𝜌
2
𝐼

) ,

S = (

𝑆 0 0

0 0 0

0 0 0

) .

(39)

The following theorem can be derived fromTheorem 4.
Theorem 7. The system (35) is robustly stabilizable in the
mean square by the delayed feedback control (37), where

𝐹 (𝜉) = 𝐵
𝑇

(𝜉) [𝐵 (𝜉) 𝐵
𝑇

(𝜉)]
−1

𝑆
𝑇

1
(𝜉) [𝑆
1
(𝜉) 𝑆
𝑇

1
(𝜉)]
−1

𝑃 (𝜉) ,

(40)
if there exist symmetric matrices 𝑃

𝑖
> 0, 𝑄

𝑖
> 0, 𝑖 = 1, 2 . . . , 𝑝,

and constant matrices 𝑆
1𝑖
, 𝑖 = 1, 2, . . . , 𝑝, 𝑆 ≥ 0, satisfying the

following LMIs:
(i) M

𝑖𝑖
(𝑃, 𝑄, 𝑆

1
) +S < 0, 𝑖 = 1, 2, . . . , 𝑝;

(ii) M
𝑖𝑗
(𝑃, 𝑄, 𝑆

1
) + M

𝑗𝑖
(𝑃, 𝑄, 𝑆

1
) − (2/(𝑝 − 1))S < 0, 𝑖 =

1, 2, . . . , 𝑝 − 1; 𝑗 = 𝑖 + 1, . . . , 𝑝.

Proof. Taking 𝑆
1𝑖

= 𝑆
2𝑖
and using the feedback control (37),

the closed-loop system becomes system (Σ
𝜉
), where 𝐷(𝜉) =

𝐵(𝜉)𝐹(𝜉) = 𝑆
𝑇

1
(𝜉)[𝑆
1
(𝜉)𝑆
𝑇

1
(𝜉)]
−1

𝑃(𝜉). Since 𝑆
1
(𝜉)𝐷(𝜉) = 𝑃(𝜉),

the robust stability condition of the closed-loop system (38),
by Theorem 4, is immediately derived.

Remark 8. The stabilization conditions of Theorem 7 are
more appropriate for most of real systems since it is usually
impossible in practice to know exactly the delay but lower and
upper bounds are always possible.

4. Numerical Examples

To illustrate the effectiveness of the previous theoretical
results, we consider the following numerical examples.

Example 9 (robust stability). Consider system Σ
𝜉
for 𝑝 = 2,

where the delay function ℎ(𝑘) is given by

ℎ (𝑘) = 1 + 28 sin2 𝑘𝜋
2

, 𝑘 = 0, 1, 2, . . . ,

𝐴
1
= (

−30.5 1

2 −3.5
) , 𝐴

2
= (

−35.5 1

3 −4.5
) ,

𝐷
1
= (

−1.5 0.1

0.4 −2.15
) , 𝐷

2
= (

−2.5 0.2

0.3 −1.85
) .

(41)

By using the LMI Toolbox in MATLAB, the LMIs (i) and (ii)
of Theorem 4 are feasible with ℎ

1
= 1, ℎ

2
= 29, 𝜌

1
= 0.011,

𝜌
2
= 0.015, andwe use the condition in theTheorem 4 for this

example. The solutions of LMI verify as follow of the form

𝑃
1
= (

4.6120 0.2565

0.2565 3.3703
) , 𝑃

2
= (

2.9556 0.0381

0.0381 3.5256
) ,

𝑄
1
= (

0.1402 0.0109

0.0109 0.0145
) , 𝑄

2
= (

0.3550 0.0101

0.0101 0.2101
) ,

𝑆
11

= (
−0.0596 −0.0430

0.0031 0.0453
) ,

𝑆
12

= (
−0.0197 −0.0095

0.0045 0.0375
) ,

𝑆
21

= (
0.0006 0.0250

−0.0029 −0.1615
) ,

𝑆
22

= (
−0.0002 0.0133

−0.0030 −0.1228
) ,

𝑆 = (
2.0759 0.0459

0.0459 1.3271
) .

(42)

Therefore, the system is robustly stable.

Example 10 (robust stabilization). Consider system (35) for
𝑝 = 2, where the delay function ℎ(𝑘) is given by

ℎ (𝑘) = 1 + 34 sin2 𝑘𝜋
2

, 𝑘 = 0, 1, 2, . . . ,

𝐴
1
= (

−30.5 1

2 −3.5
) , 𝐴

2
= (

−35.5 1

3 −4.5
) ,

𝐵
1
= (

−1.5 0.1

0.4 −2.15
) , 𝐵

2
= (

−2.5 0.2

0.3 −1.85
) .

(43)
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By using the LMI Toolbox in MATLAB, the LMIs (i) and (ii)
of Theorem 7 are feasible with ℎ

1
= 1, ℎ

2
= 35, 𝜌

1
= 0.011,

𝜌
2
= 0.015, andwe use the condition in theTheorem 7 for this

example. The solutions of LMI verify as follow of the form

𝑃
1
= (

1.3886 −0.0760

−0.0760 1.3559
) , 𝑃

2
= (

1.6286 0.0649

0.0649 1.5243
) ,

𝑄
1
= (

0.0097 −0.0048

−0.0048 0.0057
) ,

𝑄
2
= (

0.0728 −0.0159

−0.0159 0.0621
) ,

𝑆
11

= (
−0.0274 0.0827

−0.0133 −0.2222
) ,

𝑆
12

= (
−0.0209 0.0619

−0.0226 −0.1942
) ,

𝑆 = (
0.5954 −0.0672

−0.0672 0.5469
) .

(44)

Therefore, the system is robustly stabilizable with the feed-
back control

𝑢 (𝑘) = 𝐵
𝑇

(𝜉) [𝐵 (𝜉) 𝐵
𝑇

(𝜉)]
−1

𝑆
𝑇

1
(𝜉) [𝑆
1
(𝜉) 𝑆
𝑇

1
(𝜉)]
−1

𝑃 (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

= (𝜉
1
𝐵
1
+ 𝜉
2
𝐵
2
)
𝑇

[(𝜉
1
𝐵
1
+ 𝜉
2
𝐵
2
) (𝜉
1
𝐵
1
+ 𝜉
2
𝐵
2
)
𝑇

]
−1

× (𝜉
1
𝑆
11

+ 𝜉
2
𝑆
12
)
𝑇

[(𝜉
1
𝑆
11

+ 𝜉
2
𝑆
12
) (𝜉
1
𝑆
11

+ 𝜉
2
𝑆
12
)
𝑇

]
−1

(𝜉
1
𝑃
1
+ 𝜉
2
𝑃
2
) (𝜉) 𝑥 (𝑘 − ℎ (𝑘))

= (
−1.5𝜉
1
− 2.5𝜉

2
0.4𝜉
1
+ 0.3𝜉

2

0.1𝜉
1
+ 0.2𝜉

2
−2.15𝜉

1
− 1.85𝜉

2

) × (
−1.5𝜉
1
− 2.5𝜉

2
0.4𝜉
1
+ 0.3𝜉

2

0.1𝜉
1
+ 0.2𝜉

2
−2.15𝜉

1
− 1.85𝜉

2

)

−1

× (
−1.5𝜉
1
− 2.5𝜉

2
0.1𝜉
1
+ 0.2𝜉

2

0.4𝜉
1
+ 0.3𝜉

2
−2.15𝜉

1
− 1.85𝜉

2

)

−1

× (
−0.0274𝜉

1
− 0.0209𝜉

2
−0.0133𝜉

1
− 0.0226𝜉

2

0.0827𝜉
1
+ 0.0619𝜉

2
−0.2222𝜉

1
− 0.1942𝜉

2

)

× (
−0.0274𝜉

1
− 0.0209𝜉

2
−0.0133𝜉

1
− 0.0226𝜉

2

0.0827𝜉
1
+ 0.0619𝜉

2
−0.2222𝜉

1
− 0.1942𝜉

2

)

−1

× (
−0.0274𝜉

1
− 0.0209𝜉

2
0.0827𝜉

1
+ 0.0619𝜉

2

−0.0133𝜉
1
− 0.0226𝜉

2
−0.2222𝜉

1
− 0.1942𝜉

2

)

−1

× (
1.3886𝜉

1
+ 1.6286𝜉

2
−0.0760𝜉

1
+ 0.0649𝜉

2

−0.0760𝜉
1
+ 0.0649𝜉

2
1.3559𝜉

1
+ 1.5243𝜉

2

)

= (
−2.0829𝜉

2

1
− 5.9144𝜉

1
𝜉
2
− 4.0715𝜉

2

2
−0.0304𝜉

2

1
+ 0.0260𝜉

1
𝜉
2
+ 0.0195𝜉

2

2

−0.0076𝜉
2

1
− 0.0087𝜉

1
𝜉
2
+ 0.0128𝜉

2

2
−2.9152𝜉

2

1
− 5.7856𝜉

1
𝜉
2
− 2.8200𝜉

2

2

)𝑥 (𝑘 − ℎ (𝑘)) .

(45)

Therefore, the feedback delayed controller is

𝑢
1
(𝑘) = [−2.0829𝜉

2

1
− 5.9144𝜉

1
𝜉
2
− 4.0715𝜉

2

2
]

× 𝑥
1
(𝑘 − ℎ (𝑘))

+ [−0.0304𝜉
2

1
+ 0.0260𝜉

1
𝜉
2
+ 0.0195𝜉

2

2
]

× 𝑥
2
(𝑘 − ℎ (𝑘)) ,

𝑢
2
(𝑘) = [−0.0076𝜉

2

1
− 0.0087𝜉

1
𝜉
2
+ 0.0128𝜉

2

2
]

× 𝑥
1
(𝑘 − ℎ (𝑘))

+ [−2.9152𝜉
2

1
− 5.7856𝜉

1
𝜉
2
− 2.8200𝜉

2

2
]

× 𝑥
2
(𝑘 − ℎ (𝑘)) .

(46)

5. Conclusion

In this paper, new delay-dependent mean square robust sta-
bility conditions for linear polytopic delay-difference stochas-
tic equations with interval time-varying delays have been
presented in terms of LMIs. An application to mean square
robust stabilization of discrete stochastic control systems

with time-delayed feedback controllers has been studied.
Numerical examples have been given to demonstrate the
effectiveness of the proposed conditions.
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[3] S. Elaydi and I. Győri, “Asymptotic theory for delay difference
equations,” Journal of Difference Equations andApplications, vol.
1, no. 2, pp. 99–116, 1995.

[4] V. Kolmanovskii and A. Myshkis, Applied Theory of Functional
Differential Equations, Springer, Berlin, Germany, 1992.

[5] O. M. Kwon and J. H. Park, “Exponential stability of uncertain
dynamic systems including state delay,” Applied Mathematics
Letters, vol. 19, no. 9, pp. 901–907, 2006.

[6] W. J. Mao and J. Chu, “D-stability and D-stabilization of
linear discrete time-delay systemswith polytopic uncertainties,”
Automatica, vol. 45, no. 3, pp. 842–846, 2009.

[7] P. T. Nam, H. M. Hien, and V. N. Phat, “Asymptotic stability
of linear state-delayed neutral systems with polytope type
uncertainties,” Dynamic Systems and Applications, vol. 19, no. 1,
pp. 63–72, 2010.

[8] V. N. Phat and J. Y. Park, “On the Gronwall inequality and
asymptotic stability of nonlinear discrete systems with multiple
delays,” Dynamic Systems and Applications, vol. 10, no. 4, pp.
577–588, 2001.

[9] T. L. Hsien and C. H. Lee, “Exponential stability of discrete
time uncertain systems with time-varying delay,” Journal of the
Franklin Institute, vol. 332, no. 4, pp. 479–489, 1995.

[10] D. H. Ji, J. H. Park, W. J. Yoo, and S. C. Won, “Robust
memory state feedback model predictive control for discrete-
time uncertain state delayed systems,”AppliedMathematics and
Computation, vol. 215, no. 6, pp. 2035–2044, 2009.

[11] G. Rajchakit, T. Rojsiraphisal, and M. Rajchakit, “Robust
stability and stabilization of uncertain switched discrete-time
systems,”Advances in Difference Equations, vol. 2012, article 134,
2012.

[12] E. K. Boukas, “State feedback stabilization of nonlinear discrete-
time systems with time-varying time delay,”Nonlinear Analysis.
Theory, Methods & Applications., vol. 66, no. 6, pp. 1341–1350,
2007.

[13] H. Gao and T. Chen, “New results on stability of discrete-time
systems with time-varying state delay,” IEEE Transactions on
Automatic Control, vol. 52, no. 2, pp. 328–334, 2007.

[14] X. Jiang, Q. L. Han, and X. Yu, “Stability criteria for linear
discrete-time systems with interval-like time-varying delay,” in
Proceedings of the American Control Conference (ACC ’05), pp.
2817–2822, June 2005.

[15] B. Zhang, S. Xu, and Y. Zou, “Improved stability criterion and
its applications in delayed controller design for discrete-time
systems,” Automatica, vol. 44, no. 11, pp. 2963–2967, 2008.

[16] M. Yu, L. Wang, and T. Chu, “Robust stabilization of discrete-
time systems with time-varying delays,” in Proceedings of
the American Control Conference (ACC ’05), pp. 3435–3440,
Portland, Ore, USA, June 2005.

[17] K. Ratchagit and V. N. Phat, “Stability criterion for discrete-
time systems,” Journal of Inequalities and Applications, vol. 2010,
Article ID 201459, 6 pages, 2010.

[18] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Qualitative
analysis of discrete-time switched systems,” in Proceedings of
the American Control Conference (ACC ’02), pp. 1880–1885,May
2002.

[19] M. Rajchakit, P. Niamsup, and G. Rajchakit, “A switching rule
for exponential stability of switched recurrent neural networks
with interval time-varying delay,” Advances in Difference Equa-
tions, vol. 2013, article 44, 2013.

[20] K. Ratchagit, “A switching rule for the asymptotic stability
of discrete-time systems with convex polytopic uncertainties,”
Asian-European Journal of Mathematics, vol. 5, no. 2, Article ID
1250025, 12 pages, 2012.

[21] M. Rajchakit and G. Rajchakit, “Mean square exponential
stability of stochastic switched system with interval time-
varying delays,” Abstract and Applied Analysis, vol. 2012, Article
ID 623014, 12 pages, 2012.

[22] W. A. Zhang and L. Yu, “Stability analysis for discrete-time
switched time-delay systems,” Automatica, vol. 45, no. 10, pp.
2265–2271, 2009.

[23] V. N. Phat and K. Ratchagit, “Stability and stabilization of
switched linear discrete-time systems with interval time-vary-
ing delay,” Nonlinear Analysis: Hybrid Systems, vol. 5, no. 4, pp.
605–612, 2011.

[24] M. O. Abou Al-Ola, K. Fujimoto, and T. Yoshinaga, “Common
Lyapunov function based on Kullback-Leibler divergence for
a switched nonlinear system,” Mathematical Problems in Engi-
neering, vol. 2011, Article ID 723509, 12 pages, 2011.

[25] Y. He, M. Wu, J. H. She, and G. P. Liu, “Parameter-dependent
Lyapunov functional for stability of time-delay systems with
polytopic-type uncertainties,” IEEE Transactions on Automatic
Control, vol. 49, no. 5, pp. 828–832, 2004.

[26] D. Henrion, D. Arzelier, D. Peaucelle, and M. Šebek, “LMI
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