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A nonstandard numerical scheme has been constructed and analyzed for a mathematical model that describes HIV infection of
CD4+ T cells. This new discrete system has the same stability properties as the continuous model and, particularly, it preserves
the same local asymptotic stability properties. Linearized Stability Theory and Schur-Cohn criteria are used for local asymptotic
stability of this discrete timemodel.This proposed nonstandard numerical scheme is compared with the classical explicit Euler and
fourth order Runge-Kutta methods. To show the efficiency of this numerical scheme, the simulated results are given in tables and
figures.

1. Introduction

Mathematical models are used not only in the natural
sciences and engineering disciplines, but also in the social
sciences. The differential equations in these mathematical
models are usually nonlinear autonomous differential equa-
tion systems which have only time-independent parameters.
It is not always possible to find the exact solutions of the
nonlinear models that have at least two ordinary differential
equations. It is sometimes more useful to find numerical
solutions of this type systems in order to programme easily
and visualize the results. Numerous methods can be used
to obtain the numerical solutions of differential equations.
By applying a numerical method to a continuous differential
equation system, it becomes a difference equation system,
in other words discrete time system. While applying these
numerical methods, it is necessary that the new difference
equation system should provide the positivity conditions
and exhibit the same quantitative behaviours of continuous
system such as stability, bifurcation, and chaos. It is well
known that some traditional and explicit schemes such as for-
ward Euler and Runge-Kutta are unsuccessful at generating
oscillation, bifurcations, chaos, and false steady states, despite

using adaptative step size [1–6]. For forward Euler’s method,
if the step size ℎ is chosen small enough and the positivity
conditions are satisfied, it is seen that local asymptotic
stability for a fixed point is saved while in some special
cases Hopf bifurcation cannot be seen. Instead of classical
methods, nonstandard finite difference scheme (NFDS) can
be alternatively used to obtain more qualitative results and to
remove numerical instabilities. These schemes are developed
for compensating the weaknesses that may be caused by stan-
dard differencemethods, for example, numerical instabilities.
Also, the dynamic consistency could be presented well by
NFDS [7]. The most important advantage of this scheme is
that, choosing a convenient denominator function instead of
the step size ℎ, better results can be obtained. If the step size ℎ
is chosen small enough, the obtained results do not change
significantly but if ℎ gets larger this advantage comes into
focus.

The NFDS modeling procedures were given in 1989 by
Mickens [8]. It removes the problems discussed above by
using the suitable denominator function 𝜙 = ℎ + 𝑂(ℎ

2
).

The papers [2, 8–16] show how to choose the denominator
function and apply this scheme to many models. Micken’s
method can be summarized by using [13] as follows.
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Let us consider the following ordinary differential equa-
tion:

𝑑𝑥

𝑑𝑡

= 𝐹 (𝑥, 𝜆) , (1)

where 𝜆 is a parameter. The simplest nonstandard finite
difference schemes are

𝑡 → 𝑡
𝑛
= ℎ𝑛, 𝑥 (𝑡) → 𝑥

𝑛
, 𝐹 (𝑥) → 𝐹 (𝑥

𝑛
) ,

𝑑𝑥

𝑑𝑡

→

𝑥
𝑛+1
− 𝑥
𝑛

𝜙

,

(2)

where 𝜙 depends on the step size Δ𝑡 = ℎ and satisfies 𝜙 =
ℎ + 𝑂(ℎ

2
). It should be chosen

𝜙 =

1 − 𝑒
−𝑅ℎ

𝑅

, (3)

where 𝑅 is calculated from a knowledge of the fixed points of
(1), that is,

𝐹 (𝑥) = 0. (4)

Assume that the last equation has 𝐼-real solutions and denote
by

{𝑥
𝑖
; 𝑖 = 1, 2, . . . , 𝐼} . (5)

Now define 𝑅
𝑖
as

𝑅
𝑖
=

𝑑𝐹

𝑑𝑥








𝑥=𝑥𝑖

, (6)

and take 𝑅 as

𝑅 = Max {

𝑅
𝑖





; 𝑖 = 1, 2, . . . , 𝐼} . (7)

In this paper, an NFDS scheme is applied to human
immunodeficiency virus (HIV), which has spread rapidly
around theworld in recent years and thus it gains importance.
In the last decade, the published papers about the epidemi-
ology of HIV are less in number and they are not detailed
enough. A few of these models were simulated using numeri-
calmethods such as Runge-Kutta or Eulermethods.However,
explicit methods are generally known to exhibit contrived
chaos whenever the discretization parameters exceed certain
values [17, 18].

A model about HIV infection of CD4+ T cells was
presented by Perelson andNelson [19, 20].Thismodel is given
as follows:

𝑑𝑇

𝑑𝑡

= 𝑝 − 𝛼𝑇 + 𝑟𝑇(1 −

𝑇 + 𝐼

𝑇max
) − 𝑘𝑉𝑇,

𝑑𝐼

𝑑𝑡

= 𝑘𝑉𝑇 − 𝛽𝐼,

𝑑𝑉

𝑑𝑡

= 𝑁𝛽𝐼 − 𝛾𝑉,

(8)

where 𝑇(𝑡), 𝐼(𝑡), 𝑉(𝑡) denote the concentration of CD4+ T
cells, the concentration of infected CD4+ T cells by the HIV

viruses, and free HIV virus particles, respectively. 𝑘 > 0 is
the infection rate. Each infected CD4+ T cell is assumed to
produce 𝑁 virus particles during its life time [21]. 𝑇max is
the maximum level of CD4+ T cell population density in the
body. 𝑟𝑇(1 − (𝑇 + 𝐼)/𝑇max) is logistic equation, where 𝑟 is
the average specific T-cell growth rate [19]. 𝑝, 𝛼, 𝛽, and 𝛾
are positive constants and 𝑝 is the source of CD4+ T cells
from precursors, 𝛼 is the death rate of CD4+ T cells, 𝛽 is
the death rate of infected cells, and finally 𝛾 is the viral
clearance rate constant [22–24].Nelson et al. focused on other
models of HIV-1 infection in [25, 26].Thesemodels deal with
dynamics occurring after drug treatment. They analyzed the
delay differential equationmodels ofHIV-1 infection. Initially
they give a standard model of HIV and then afterwards they
give delay model of HIV. They analyze the model and give
some lemma and proofs. Culshaw and Ruan consider a delay
differential equation model of HIV infection of CD4+ T cells
[27].

This paper is organized as follows: in Section 2, in
order to obtain explicit solutions of (8), first the model is
discretizated in a nonstandard form and this discrete model
provides the positivity conditions. In Section 3, some lemmas
and Linearized Stability Theorem are given for the local
asymptotic stability of the discrete time systems. In Section 4,
the theorical results obtained in former section are compared
with the other numerical methods and the simulated results
are given.

2. Discretization of the Model

The nonlinear differential equation system (1) will be dis-
cretizated as follows:

𝑇 (𝑡) → 𝑇
𝑛
,

𝐼 (𝑡) → 𝐼
𝑛+1
,

𝑉 (𝑡) → 𝑉
𝑛+1
,

𝑇
2

(𝑡) → 𝑇
𝑛+1
𝑇
𝑛
,

𝑇 (𝑡) 𝐼 (𝑡) → 𝑇
𝑛+1
𝐼
𝑛
,

𝑇 (𝑡) 𝑉 (𝑡) → 𝑇
𝑛+1
𝑉
𝑛
.

(9)

If 𝑇
𝑛+1

, 𝐼
𝑛+1

, and 𝑉
𝑛+1

are explicitly solve from (8), the
following iterations will be obtained:

𝑇
𝑛+1

=

(1 + (𝑟 − 𝛼) 𝜙
1
(ℎ, 𝛼)) 𝑇

𝑛
+ 𝜙
1
(ℎ, 𝛼) 𝑝

1 + 𝜙
1
(ℎ, 𝛼) (𝑘𝑉

𝑛
+ 𝑟 (𝑇

𝑛
+ 𝐼
𝑛
) /𝑇max)

,

𝐼
𝑛+1

=

𝐼
𝑛
+ 𝜙
2
(ℎ, 𝛽) 𝑘𝑉

𝑛
𝑇
𝑛+1

1 + 𝛽𝜙
2
(ℎ, 𝛽)

,

𝑉
𝑛+1

=

𝑉
𝑛
+ 𝜙
3
(ℎ, 𝛾)𝑁𝛽𝐼

𝑛+1

1 + 𝜙
3
(ℎ, 𝛾) 𝛾

,

(10)
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where denominator functions are chosen as

𝜙
1
(ℎ, 𝛼) =

𝑒
(𝑟−𝛼)ℎ

− 1

𝑟 − 𝛼

,

𝜙
2
(ℎ, 𝛽) =

𝑒
𝛽ℎ
− 1

𝛽

,

𝜙
3
(ℎ, 𝛾) =

𝑒
𝛾ℎ
− 1

𝛾

.

(11)

Detailed information about how to find different nonlocal
terms to different denominator functions can be read in
[9, 10, 13, 15]. Let 𝑟

1
, 𝑟
2
, 𝑟
3
≥ 0 and 𝑝, 𝑘, 𝑟, 𝑇max > 0. In order

to obtain positive iterations 𝑇
𝑛+1

, 𝐼
𝑛+1

, and 𝑉
𝑛+1

we have to
require 𝑟−𝛼 > 0 or if 𝑟−𝛼 < 0 then 𝜙

1
> 1/(𝑇

𝑛
(𝛼−1)+𝑝). If

we take the numerical values and initial conditions in [21],
for each nonnegative initial conditions 𝑟

1
, 𝑟
2
, and 𝑟

3
, the

iterations 𝑇
𝑛
, 𝐼
𝑛
, and𝑉

𝑛
and consequently 𝑇

𝑛+1
, 𝐼
𝑛+1

, and𝑉
𝑛+1

are also nonnegative.

3. Stability Analysis of the Model

Some useful lemmas and a theorem should be given for
local asymptotic stability of discrete systems. Especially, it is
necessary to investigate Schur-Cohn criteria which deal with
coefficient matrix of the linearized system as follows:

(i) det𝐵 < 1,

(ii) 1 − tr𝐵 + det𝐵 > 0,

(iii) 1 + tr𝐵 + det𝐵 > 0,

where 𝐵 and tr𝐵 denote coefficient matrix of the linearized
system and trace of the matrix, respectively. One can find
information in [13, 28–31] about the usage of Schur-Cohn
criteria which do not need many process as in continuous
models.

The following lemmas and theorem given in citejury, cite-
jodar are relevant to the roots of characteristic polynomials.

Lemma 1. For the quadratic equation 𝜆2−𝑎𝜆+𝑏 = 0 the roots
satisfy |𝜆

𝑖
| < 1, 𝑖 = 1, 2, if and only if the following conditions

are satisfied:

(i) 𝑏 < 1,

(ii) 1 − 𝑎 + 𝑏 > 0,

(iii) 1 + 𝑎 + 𝑏 > 0.

Lemma 2 (Jury conditions, Schur-Cohn criteria, 𝑛 = 3).
Suppose the characteristic polynomial 𝑝(𝜆) is given by 𝑝(𝜆) =
𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
. The solutions 𝜆

𝑖
, 𝑖 = 1, 2, 3, of 𝑝(𝜆) = 0

satisfy |𝜆
𝑖
| < 1 if the following three conditions are held:

(i) 𝑝(1) = 1 + 𝑎
1
+ 𝑎
2
+ 𝑎
3
> 0,

(ii) (−1)3𝑝(−1) = 1 − 𝑎
1
+ 𝑎
2
− 𝑎
3
> 0,

(iii) 1 − (𝑎
3
)
2

> |𝑎
2
− 𝑎
3
𝑎
1
|.

Theorem 3 (the linearized stability theorem). Let 𝑥 be an
equilibrium point of the difference equation

𝑥
𝑛+1

= 𝐹 (𝑥
𝑛
, 𝑥
𝑛−1
, . . . , 𝑥

𝑛−𝑘
) , 𝑛 = 0, 1, . . . , (12)

where the function 𝐹 is a continuously differentiable function
defined on some open neighborhood of an equilibrium point 𝑥.
Then the following statements are true.

(1) If all the roots of the characteristic polynomial have
absolute value less then one, then the equilibrium point
𝑥 is locally asymptotically stable.

(2) If at least one root of the characteristic polynomial has
absolute value greater than one, then the equilibrium
point 𝑥 is unstable.

Equilibrium points of (8) are found as follows:

𝑋
∗

1
= (𝑇
∗

1
, 𝐼
∗

1
, 𝑉
∗

1
)

= (−

𝑇max (𝛼 − 𝑟 + √(𝛼 − 𝑟)
2

+ 4𝑟𝑝/𝑇max)

2𝑟

, 0, 0) ,

𝑋
∗

2
= (𝑇
∗

2
, 𝐼
∗

2
, 𝑉
∗

2
)

= (

𝑇max (𝑟 − 𝛼 + √(𝛼 − 𝑟)
2

+ 4𝑟𝑝/𝑇max)

2𝑟

, 0, 0) ,

𝑋
∗

3
= (𝑇
∗

3
, 𝐼
∗

3
, 𝑉
∗

3
) = (

𝛾

𝑘𝑁

, −

𝜏

𝑁

, −

𝛽𝜏

𝛾

) ,

(13)

where

𝜏 =

−𝑝𝑇max𝑘
2
𝑁
2
+ 𝛼𝛾𝑇max𝑘𝑁 − 𝑟𝛾𝑇max𝑘𝑁 + 𝑟𝛾

2

𝑘 (𝑟𝛾 + 𝑘𝑁𝛽𝑇max)
. (14)

Only fixed points 𝑋∗
2
and 𝑋∗

3
have real biological meaning:

the uninfected steady state 𝑋∗
2

= (𝑇
∗

2
, 𝐼
∗

2
, 𝑉
∗

2
) and the

(positive) infected steady state 𝑋∗
3
= (𝑇
∗

3
, 𝐼
∗

3
, 𝑉
∗

3
) [21, 22].

Firstly, let us examine the fixed point 𝑋∗
2
. Equation (10) is

rewritten as follows:

𝑓 =

(1 + (𝑟 − 𝛼) 𝜙
1
(ℎ, 𝛼)) 𝑇

𝑛
+ 𝜙
1
(ℎ, 𝛼) 𝑝

1 + 𝜙
1
(ℎ, 𝛼) (𝑘𝑉

𝑛
+ 𝑟 (𝑇

𝑛
+ 𝐼
𝑛
) /𝑇max)

,

𝑔 =

𝐼
𝑛
+ 𝜙
2
(ℎ, 𝛽) 𝑘𝑉

𝑛
𝑇
𝑛+1

1 + 𝛽𝜙
2

,

ℎ =

𝑉
𝑛
+ 𝜙
3
(ℎ, 𝛾)𝑁𝛽𝐼

𝑛+1

1 + 𝜙
3
(ℎ, 𝛾) 𝛾

.

(15)

By using these equations, Jacobian matrix will be found:

𝐽 (𝑇
𝑛
, 𝐼
𝑛
, 𝑉
𝑛
) = [

[

𝑓
𝑇𝑛
𝑓
𝐼𝑛
𝑓
𝑉𝑛

𝑔
𝑇𝑛
𝑔
𝐼𝑛
𝑔
𝑉𝑛

ℎ
𝑇𝑛
ℎ
𝐼𝑛
ℎ
𝑉𝑛

]

]

, (16)
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where

𝑓
𝑇𝑛
=

𝜂

𝜔

−

(𝜂𝑇
𝑛
+ 𝜙
1
𝑝) 𝜙
1
𝑟

𝜔
2
𝑇max

,

𝑓
𝐼𝑛
= −

(𝜂𝑇
𝑛
+ 𝜙
1
𝑝) 𝜙
1
𝑟

𝜔
2
𝑇max

,

𝑓
𝑉𝑛
= −

(𝜂𝑇
𝑛
+ 𝜙
1
𝑝) 𝜙
1
𝑘

𝜔
2

,

𝑔
𝑇𝑛
=

𝑘𝜙
2
𝑉
𝑛
𝜂

(1 + 𝜙
2
𝛽)𝜔

−

𝑘𝜙
2
𝑉
𝑛
(𝜂𝑇
𝑛
+ 𝜙
1
𝑝) 𝜙
1
𝑟

(1 + 𝜙
2
𝛽)𝜔
2
𝑇max

,

𝑔
𝐼𝑛
=

1

1 + 𝛽𝜙
2

−

𝑘𝜙
2
𝑉
𝑛
(𝜂𝑇
𝑛
+ 𝜙
1
𝑝) 𝜙
1
𝑟

(1 + 𝜙
2
𝛽)𝜔
2
𝑇max

,

𝑔
𝑉𝑛
= −

𝑘
2
𝜙
2
𝑉
𝑛
(𝜂𝑇
𝑛
+ 𝜙
1
𝑝) 𝜙
1

(1 + 𝜙
2
𝛽)𝜔
2

+

𝑘𝜙
2
(𝜂𝑇
𝑛
+ 𝜙
1
𝑝)

(1 + 𝜙
2
𝛽)𝜔

,

ℎ
𝑇𝑛
=

𝜙
3
𝑁𝛽𝑘𝜙

2
𝑉
𝑛
𝜂

(1 + 𝜙
2
𝛽) (1 + 𝜙

3
𝛾) 𝜔

−

𝜙
3
𝑁𝛽𝑘𝜙

2
𝑉
𝑛
(𝜂𝑇
𝑛
+ 𝜙
1
𝑝) 𝜙
1
𝑟

(1 + 𝜙
2
𝛽) (1 + 𝜙

1
𝛾) 𝜔
2
𝑇max

,

ℎ
𝐼𝑛
=

𝜙
3
𝑁𝛽(1 − 𝑘𝜙

2
𝑉
𝑛
(𝜂𝑇
𝑛
+ 𝜙
1
𝑝) 𝜙
1
𝑟/𝜔
2
𝑇max)

(1 + 𝜙
2
𝛽) (1 + 𝜙

3
𝛾)

,

ℎ
𝑉𝑛
=

1

1 + 𝜙
3
𝛾

+

𝜙
3
𝑁𝛽

(1 + 𝜙
2
𝛽) (1 + 𝜙

3
𝛾)

⋅ (

−𝑘
2
𝜙
2
(𝜂𝑇
𝑛
+ 𝜙
1
𝑝)𝑉
𝑛
𝜙
1

𝜔
2

+

𝑘𝜙
2
(𝜂𝑇
𝑛
+ 𝜙
1
𝑝)

𝜔

) ,

𝜂 = (1 + (𝑟 − 𝛼) 𝜙
1
) ,

𝜔 = (1 + 𝜙
1
(𝑘𝑉
𝑛
+

𝑟 (𝑇
𝑛
+ 𝐼
𝑛
)

𝑇max
)) .

(17)

Firstly, let us find Jacobian matrix of (10) around 𝑋∗
2
to

analyze the stability of this fixed point. We obtain

𝐽 (𝑇
∗

2
, 𝐼
∗

2
, 𝑉
∗

2
)

=

[
[
[
[
[
[
[
[
[

[

𝜂𝜁𝑇max − 𝜒𝜙1𝑟

𝜁
2
𝑇max

−𝜙
1
𝑟𝜒

𝜁
2
𝑇max

−𝜙
1
𝑘𝜒

𝜁
2

0

1

1 + 𝛽𝜙
2

𝜙
2
𝑘𝜒

(1 + 𝛽𝜙
2
) 𝜁

0

𝜙
3
𝑁𝛽

(1 + 𝛽𝜙
2
) (1 + 𝛾𝜙

3
)

𝜁 (1 + 𝛽𝜙
2
) + 𝜙
3
𝑁𝛽𝜙
2
𝑘𝜒

(1 + 𝛽𝜙
2
) (1 + 𝛾𝜙

3
) 𝜁

]
]
]
]
]
]
]
]
]

]

,

(18)

where

𝜁 = (1 +

𝜙
1
𝑟𝑇
∗

2

𝑇max
) ,

𝜒 = 𝜂𝑇
∗

2
+ 𝜙
1
𝑝.

(19)

To analyze the stability of𝑋∗
2
, we need to find eigenvalues [32]

(𝜆 −

𝜂𝜁𝑇max − 𝜒𝜙1𝑟

𝜁
2
𝑇max

) (𝜆
2

− 𝑎𝜆 + 𝑏) = 0, (20)

where

𝑎 = Trace𝐵,

𝑏 = Det𝐵,

𝐵 =

[
[
[
[

[

1

1 + 𝛽𝜙
2

𝜙
2
𝑘𝜒

(1 + 𝛽𝜙
2
) 𝜁

𝜙
3
𝑁𝛽

(1 + 𝛽𝜙
2
) (1 + 𝛾𝜙

3
)

𝜁 (1 + 𝛽𝜙
2
) + 𝜙
3
𝑁𝛽𝜙
2
𝑘𝜒

(1 + 𝛽𝜙
2
) (1 + 𝛾𝜙

3
) 𝜁

]
]
]
]

]

.

(21)

The first eigenvalue is

𝜆
1
=

𝜂𝜁𝑇max − 𝜒𝜙1𝑟

𝜁
2
𝑇max

. (22)

We can find the other eigenvalues from

𝑓 (𝜆) = 𝜆
2

− 𝑎𝜆 + 𝑏 = 0, (23)

where

𝑎 =

𝜁 (1 + 𝛾𝜙
3
) + 𝜁 (1 + 𝛽𝜙

2
) + 𝜙
3
𝑁𝛽𝜙
2
𝑘𝜒

𝜁 (1 + 𝛾𝜙
3
) (1 + 𝛽𝜙

2
)

,

𝑏 =

1

(1 + 𝛾𝜙
3
) (1 + 𝛽𝜙

2
)

.

(24)

By considering Lemma 1,when |𝜆
𝑖
| < 1, 𝑖 = 1, 2, the following

conditions are satisfied and then the fixed point𝑋∗
2
is locally

asymptotic stable

(i) 𝑏 = 1/(1 + 𝛾𝜙
3
)(1 + 𝛽𝜙

2
) < 1,

(ii) 𝑓(−1) = 1 + 𝑎 + 𝑏 = (𝜁((1 + 𝛾𝜙
3
)(1 + 𝛽𝜙

2
) + 3 + 𝛾𝜙

3
+

𝛽𝜙
2
) + 𝑘𝜙

3
𝑁𝛽𝜙
2
𝜒)/𝜁(1 + 𝛽𝜙

2
)(1 + 𝛾𝜙

3
) > 0,

(iii) 𝑓(1) = 1 − 𝑎 + 𝑏 = (𝜁((1 + 𝛾𝜙
3
)(1 + 𝛽𝜙

2
) − 1 − 𝛾𝜙

3
−

𝛽𝜙
2
) − 𝑘𝜙

3
𝑁𝛽𝜙
2
𝜒)/𝜁(1 + 𝛽𝜙

2
)(1 + 𝛾𝜙

3
) > 0.

Finally, let us examine the fixed point 𝑋∗
3
. Jacobian matrix

around the fixed point𝑋∗
3
is obtained as follows:
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𝐽 (𝑇
∗

3
, 𝐼
∗

3
, 𝑉
∗

3
) =

[
[
[
[
[
[
[
[
[

[

𝜂𝜗𝑇max − 𝜙1𝑟

𝜗
2
𝑇max

−

𝜙
1
𝑟

𝜗
2
𝑇max

−

𝜙
1
𝑘

𝜗
2

𝑘𝜙
2
𝑉
∗

3
(𝜂𝜗𝑇max − 𝜙1𝑟)

𝜗
2
(1 + 𝜙

2
𝛽)𝑇max

𝜗
2
𝑇max − 𝑘𝜙2𝜙1𝑟𝑉

∗

3

𝜗
2
𝑇max (1 + 𝜙2𝛽)

𝑘𝜙
2
 (𝜗 − 𝑉

∗

3
𝜙
1
𝑘)

𝜗
2
(1 + 𝜙

2
𝛽)

(𝜙
3
𝑁𝛽𝑘𝜙

2
𝑉
∗

3
) (𝜂𝜗𝑇max − 𝜙1𝑟)

𝜗
2
𝑇max (1 + 𝜙2𝛽) (1 + 𝜙3𝛾)

𝜙
3
𝑁𝛽(𝜗

2
𝑇max − 𝑘𝜙2𝜙1𝑟𝑉

∗

3
)

𝜗
2
𝑇max (1 + 𝜙2𝛽) (1 + 𝜙3𝛾)

𝜗
2
(1 + 𝜙

2
𝛽) + 𝜙

3
𝑁𝛽𝑘𝜙

2
 (−𝑘𝑉

∗

3
𝜙
1
+ 𝜗)

𝜗
2
(1 + 𝜙

2
𝛽) (1 + 𝜙

3
𝛾)

]
]
]
]
]
]
]
]
]

]

,

(25)

where

𝜗 = (1 + 𝜙
1
(𝑘𝑉
∗

3
+

𝑟 (𝑇
∗

3
+ 𝐼
∗

3
)

𝑇max
)) ,

 = (𝜂𝑇
∗

3
+ 𝜙
1
𝑝) .

(26)

By considering Lemma 2, we write the characteristic polyno-
mial of 𝐽(𝑇∗

3
, 𝐼
∗

3
, 𝑉
∗

3
) as follows:

𝑝 (𝜆) = 𝜆
3

+ 𝑎
1
𝜆
2

+ 𝑎
2
𝜆 + 𝑎
3
, (27)

where

𝑎
1
= − ((1 + 𝛾𝜙

3
) (𝜃
1
+ 𝜃
2
(1 + 𝛽𝜙

2
)) + 𝜗

2

𝑇max (1 + 𝛽𝜙2)

+𝑇max𝜙2𝜙3𝑁𝛽𝑘𝜃3) 𝑇max (1 + 𝛾𝜙3) × (𝜗
4

)

−1

𝑎
2
=

(𝜃
1
𝜃
2
+ 𝜙
2
𝜃
2
𝑘𝑉
∗

3
𝜙
1
𝑟) (1 + 𝛾𝜙

3
)

𝑇
2

max𝜗
4
(1 + 𝜙

2
𝛽) (1 + 𝛾𝜙

3
)

+

𝑇max𝜗
2
(𝜃
1
+ 𝜃
2
(1 + 𝜙

2
𝛽))

𝑇
2

max𝜗
4
(1 + 𝜙

2
𝛽) (1 + 𝛾𝜙

3
)

+

𝜙
3
𝑁𝛽𝑘𝜙

2
𝑇max𝜃2 (𝑉

∗

3
𝑘𝜙
1
+ 𝜃
3
)

𝑇
2

max𝜗
4
(1 + 𝜙

2
𝛽) (1 + 𝛾𝜙

3
)

,

𝑎
3
= −

𝜃
2

𝜗
4
(1 + 𝛾𝜙

3
) (1 + 𝛽𝜙

2
) 𝑇
2

max
,

(28)

where

𝜃
1
= 𝜗
2

𝑇max − 𝑘𝜙2𝑉
∗

3
𝜙
1
𝑟,

𝜃
2
= 𝜂𝜗𝑇max − 𝜙1𝑟,

𝜃
3
= 𝜗 − 𝑉

∗

3
𝜙
1
𝑘,

𝜃
4
= 𝜗
2

(1 + 𝜙
2
𝛽) (1 + 𝜙

3
𝛾) .

(29)

If Lemma 2 is satisfied, we can say that the fixed point 𝑋∗
3
is

locally asymptotically stable. Finally, it is important to say that
the stability depends on time step size ℎ as it can be seen in
Jacobian.

4. Numerical Results

In this section,wewill use the values and the initial conditions
in [21]. These values are given as follows:

𝑝 = 0.1, 𝛼 = 0.02, 𝛽 = 0.3,

𝛾 = 2.4, 𝑘 = 0.0027,

𝑇max = 1500, 𝑁 = 10, 𝑟
1
= 0.1,

𝑟
2
= 0, 𝑟

3
= 0.1, ℎ = 0.01.

(30)

𝑅
0
= 𝑘𝑁𝑇

∗

2
/𝛾 is the basic reproduction number.Wang and Li

[21] present that if the basic reproduction number𝑅
0
≤ 1, the

HIV infection is cleared from the T-cell population; if𝑅
0
> 1,

the HIV infection persists. In this section we will calculate
𝑅
0
and see whether 𝑋∗

2
is locally asymptotically stable or not

for different values of 𝑟. And by using the criterion given
in Section 3, we will check the validity of the results. For
the fixed point 𝑋∗

3
, we will use Lemma 2, and we will also

conclude whether fixed point 𝑋∗
3
is asymptotically stable or

not.

4.1. Analysis of the Fixed Point 𝑋∗
2
. For 𝑟 = 0.05, firstly let us

calculate the basic reproduction number

𝑅
0
=

𝑘𝑁𝑇
∗

2

𝛾

= 10.16236213 > 1. (31)

The first eigenvalue is

𝜆
1
= 0.9996978319. (32)

From (23), other eigenvalues are found as follows:





𝜆
2





= 1.015636510,





𝜆
3





= 0.9583755908.

(33)

From Lemma 1, we see that

(i) 𝑏 = 0.9733612405 < 1,
(ii) 𝑓(−1) = 3.947373342 > 0,

(iii) 𝑓(1) = −0.6508605 × 10
−3
< 0.

Therefore, the fixed point𝑋∗
2
is unstable for 𝑟 = 0.05.
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For 𝑟 = 0.8, the basic reproduction number is;

𝑅
0
= 16.45456718 > 1, (34)

and the first eigenvalue is

𝜆
1
= 0.9922289848. (35)

From (23),





𝜆
2





= 1.022738962,





𝜆
3





= 0.9517201132.

(36)

So according to Lemma 1,

(i) 𝑏 = 0.9733612405 < 1,

(ii) 𝑓(−1) = 3.947820316 > 0,

(iii) 𝑓(1) = −0.10978345 × 10−2 < 0.

As a result, the fixed point𝑋∗
2
is unstable for 𝑟 = 0.8.

For 𝑟 = 3; the basic reproduction number is

𝑅
0
= 16.76287750 > 1. (37)

The first eigenvalue is

𝜆
1
= 0.9706383389, (38)

and other eigenvalues are found as follows:





𝜆
2





= 1.023053068,





𝜆
3





= 0.9514279092.

(39)

By Lemma 1,

(i) 𝑏 = 0.9733612413 < 1,

(ii) 𝑓(−1) = 3.947842218 > 0,

(iii) 𝑓(1) = −0.11197357 × 10
−2
< 0.

Therefore,𝑋∗
2
fixed point is unstable for 𝑟 = 3. For 𝑟 = 0.001,

the basic reproduction number is

𝑅
0
= 0.5919960938 < 1. (40)

We obtain the eigenvalues as 𝜆
1
= 0.999809947, 𝜆

2
=

0.9972049810, and by Lemma 1, 𝜆
3
= 0.9760894290:

(i) 𝑏 = 0.9733612405 < 1,

(ii) 𝑓(−1) = 3.9446655650 > 0,

(iii) 𝑓(1) = 0.668305 × 10
−4
> 0.

So, the fixed point 𝑋∗
2
is locally asymptotically stable for 𝑟 =

0.001.

Table 1: Qualitative results of the fixed point 𝑋∗
3
for different time

step sizes, 𝑟 = 0.05, 𝑡 = 0–5000.

ℎ Euler Runge-Kutta NFDS
0.001 Convergence Convergence Convergence
0.01 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
0.5 Divergence Convergence Convergence
1 Divergence Divergence Convergence
10 Divergence Divergence Convergence
100 Divergence Divergence Convergence

Table 2: Qualitative results of the fixed point 𝑋∗
2
for different time

step sizes, 𝑟 = 0.001, 𝑡 = 0–500.

ℎ Euler Runge-Kutta NFDS
0.001 Convergence Convergence Convergence
0.01 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
0.5 Convergence Convergence Convergence
1 Divergence Convergence Convergence
10 Divergence Divergence Convergence
100 Divergence Divergence Convergence

Table 3: Stability results of the fixed points𝑋∗
2
For different 𝑟 values.

𝑟 𝑅
0

Stability
0.001 0.591960938 stable
0.01 0.1117598344 stable
0.02 0.9742785788 stable
0.021 1.433991904 unstable
0.04 8.493379921 unstable
0.05 10.16236213 unstable
0.8 16.45456718 unstable

4.2. Analysis of the Fixed Point 𝑋∗
3
. For 𝑟 = 0.05, let us find

characteristic polynomial of 𝐽(𝑇∗
3
, 𝐼
∗

3
, 𝑉
∗

3
):

𝑝 (𝜆) = 𝜆
3

− 2.973320340𝜆
2

+ 2.946641816𝜆

− 0.9733214565.

(41)

By using Lemma 2,

(i) 𝑝(1) = 0.20 × 10
−7
> 0,

(ii) (−1)3𝑝(−1) = 7.893283612 > 0,

(iii) 1−(𝑎3)
2
= 0.526453423 × 10

−1

|𝑎2−𝑎3𝑎1| = 0.52645332 × 10
−1 } 1 − (𝑎3)

2

> |𝑎
2
− 𝑎
3
𝑎
1
|.

Therefore the fixed point 𝑋∗
3
is locally asymptotically stable

for 𝑟 = 0.05. For 𝑟 = 0.8, let us find characteristic polynomial
of 𝐽(𝑇∗

3
, 𝐼
∗

3
, 𝑉
∗

3
):

𝑝 (𝜆) = 𝜆
3

− 2.972874374𝜆
2

+ 2.945765581𝜆

− 0.9728906881.

(42)
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Figure 1: NFDS solutions for 𝑇(𝑡), 𝐼(𝑡), and 𝑉(𝑡), 𝑟 = 0.05.

From Lemma 2,

(i) 𝑝(1) = 0.519 × 10
−6
> 0,

(ii) (−1)3𝑝(−1) = 7.891530643 > 0,

(iii) 1−(𝑎3)
2
= 0.534837090 × 10

−1

|𝑎2−𝑎3𝑎1| = 0.53483786 × 10
−1 } 1 − (𝑎3)

2

̸> |𝑎
2
− 𝑎
3
𝑎
1
|.

We obtain that the fixed point 𝑋∗
3
is unstable for 𝑟 = 0.8. For

𝑟 = 3, let us find characteristic polynomial of 𝐽(𝑇∗
3
, 𝐼
∗

3
, 𝑉
∗

3
):

𝑝 (𝜆) = 𝜆
3

− 2.971566609𝜆
2

+ 2.943214150𝜆

− 0.9716455797.

(43)
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Figure 2: NFDS solutions for 𝑇(𝑡) and 𝐼(𝑡), 𝑟 = 0.8.

By using Lemma 2,

(i) 𝑝(1) = 0.1961 × 10
−5
> 0,

(ii) (−1)3𝑝(−1) = 7.886426339 > 0,

(iii) 1−(𝑎3)
2
= 0.559048674 × 10

−1

|𝑎2−𝑎3𝑎1| = .55904590 × 10
−1 } 1 − (𝑎3)

2

> |𝑎
2
− 𝑎
3
𝑎
1
|.

We have the fixed point 𝑋∗
3
locally asymptotically stable for

𝑟 = 3.

5. Conclusions

In general, it is too hard to analyze the stability of non-
linear three-dimensional systems. In this paper, by using
the proposed NFDS scheme, nonlinear ordinary differential
equation system which describes HIV infection of CD4+
T cells, is discretizated and the behaviour of the model is
investigated. It is seen that the local asymptotic stability
results of the fixed points 𝑋∗

2
and 𝑋∗

3
of the discrete time

system satisfying the positivity condition are the same as in
[21]. In Tables 1 and 2, for different step size ℎ and for different
𝑟 values, the qualitative stability results, obtained by NFDS,
of the fixed point 𝑋∗

3
and 𝑋∗

2
are respectively compared to

classical methods such as forward Euler and Runge-Kutta.
The fixed points 𝑋∗

2
and 𝑋∗

3
are locally asymptotically stable

for the values 𝑟 given in these two tables. If step size ℎ is
chosen small enough, the results of the proposed NFDS are
similar with the results of the other two numerical methods.
But if the step size is chosen larger, the efficiency of NFDS is
clearly seen. In Table 3, stability results for fixed point𝑋∗

2
are
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Figure 3: Comparison with NFDS and 4th order Runge-Kutta
solutions for 𝐼(𝑡), 𝑉(𝑡), and 𝑇(𝑡), 𝑟 = 3.

given for different 𝑟 values. It is shown in [21] that if 𝑅
0
> 1,

𝑋
∗

2
is unstable andHIV infection persist in T-cell population.

If 0.093453 < 𝑟 < 1.9118, then 𝑋∗
3
is unstable. So in case of

𝑟 = 0.8, neither 𝑋∗
2
nor 𝑋∗

3
are stable (Figure 2). In Figures

1 and 3, the NFDS solutions of 𝑇, 𝐼 and 𝑉 converges to fixed
point 𝑋∗

3
as simulated for 𝑟 = 0.05 and 𝑟 = 3, respectively.

Also in Figure 3, Runge-Kutta and proposed NFDS scheme
are compared graphically. All the numerical calculations and
simulations are performed by using Maple programme. In
conclusion, the efficiency of the proposed NFDS scheme is
investigated and compared with other numerical methods.
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