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We apply optimal homotopy asymptotic method (OHAM) for finding approximate solutions of the Burger’s-Huxley and Burger’s-
Fisher equations. The results obtained by proposed method are compared to those of Adomian decomposition method (ADM)
(Ismail et al., (2004)). As a result it is concluded that the method is explicit, effective, and simple to use.

1. Introduction

Nonlinear phenomena play a vital role in applied mathemat-
ics, physics, and engineering sciences. The Burger’s equation
models efficiently certain problems of a fluid flow nature,
in which either shocks or viscous dissipation is a significant
factor. It can be used as a model for any nonlinear wave prop-
agation problem subject to dissipation [1]. The first steady-
state solutions of Burger equation were given by Young et al.
[2] However, the equation gets its name from the extensive
research of Burger’s [3]. The generalized Burger’s-Huxley
introduced by Satsuma shows a prototype model for describ-
ing the communication among reaction mechanisms, con-
vection effects, and diffusion transports [4]. Burger-Fisher
equation has significant applications in various fields of
applied mathematics and has physical applications such as
gas dynamic, traffic flow, convection effect, and diffusion
transport [5–12]. Marinca and Herişanu et al. introduced a
new semianalytic method OHAM for approximate solution
of nonlinear problems of thin filmflow of a fourth-grade fluid
down a vertical cylinder. In progression of papers Marinca
and Herişanu et al. have applied this method for the solution
of nonlinear equations arising in the steady state flow of a
fourth-grade fluid past a porous plate and for the solution
of nonlinear equations arising in heat transfer [13–15]. The
method has been applied by a number of researchers for
solution of ordinary and partial differential equations [16–
21]. The motivation of this paper is to show the effectiveness

of OHAM for the solution of Burger’s-Huxley and Burger’s-
Fisher equations. We consider Burger’s-Huxley equation of
the form

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 𝛼𝑢
𝛿
(𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
−
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2

− 𝛽𝑢 (𝑥, 𝑡) (1 − 𝑢
𝛿
(𝑥, 𝑡)) (𝑢

𝛿
(𝑥, 𝑡) − 𝛾) = 0,

∀0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0

(1)

and Burger’s-Fisher equation of the form

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 𝛼𝑢
𝛿
(𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
−
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2

− 𝛽𝑢 (𝑥, 𝑡) (1 − 𝑢
𝛿
(𝑥, 𝑡)) = 0,

∀0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0,

(2)

where 𝛼, 𝛽, 𝛾, and 𝛿 are parameters and 𝛽 ≥ 0, 𝛿 ≥ 0, 𝛾 ∈
(0, 1).

The present paper is divided into three sections. In
Section 2 fundamental mathematical theory of OHAM is
presented. In Section 3 comparisons are made between the
results of the proposed method and HAM for Burger’s-
Huxley. In Section 4 solution of Burger’s-Fisher equation is
presented, and absolute error of approximate solution of
proposed method is compared with approximate solution of
HAM. In all cases the proposed method yields better results
than those of ADM.
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2. Fundamental Theory of OHAM

Here we start by describing the basic idea of OHAM. Con-
sider the partial differential equation of the form:

L (𝑢 (𝑥, 𝑡)) +N (𝑢 (𝑥, 𝑡)) + g (𝑥, 𝑡) = 0, 𝑥 ∈ Ω, (3)

B(𝑢,
𝜕𝑢

𝜕𝑡
) = 0, (4)

whereL is a linear operator andN is nonlinear operator.B
is boundary operator, 𝑢(𝑥, 𝑡) is an unknown function, and 𝑥
and 𝑡 denote spatial and time variables, respectively; Ω is the
problem domain and 𝑔(𝑥, 𝑡) is a known function.

According to the basic idea of OHAM, one can construct
the optimal homotopy 𝜓(𝑥, 𝑡; 𝑞) : Ω × [0, 1] → 𝑅 which
satisfies

(1 − 𝑞) {L (𝜓 (𝑥, 𝑡; 𝑞)) + 𝑔 (𝑥, 𝑡)}

=H (𝑞) {L (𝜓 (𝑥, 𝑡; 𝑞)) +N (𝜓 (𝑥, 𝑡; 𝑞)) + g (𝑥, 𝑡)} ,

(5)

where 𝑞 ∈ [0, 1] is an embedding parameter, 𝐻(𝑞) is a non-
zero auxiliary function for 𝑞 ̸= 0, 𝐻(0) = 0. Equation (3) is
called optimal homotopy equation. Clearly, we have

𝑞 = 0 ⇒H (𝜓 (𝑥, 𝑡; 0) , 0) =L (𝜓 (𝑥, 𝑡; 0)) + g (x, 𝑡) = 0,

(6)

𝑞 = 1 ⇒H (𝜓 (𝑥, 𝑡; 1) , 1)

=H (1) {L (𝜓 (𝑥, 𝑡; 𝑞)) +N (𝜓 (𝑥, 𝑡; 𝑞)) + g (𝑥, 𝑡)} = 0.

(7)

Clearly, when 𝑞 = 0 and 𝑞 = 1, it holds that 𝜓(𝑥, 𝑡; 0) =
𝑢0(𝑥, 𝑡) and 𝜓(𝑥, 𝑡; 1) = 𝑢(𝑥, 𝑡), respectively. Thus, as 𝑞 varies
from 0 to 1, the solution 𝜓(𝑥, 𝑡; 𝑞) approaches from 𝑢0(𝑥, 𝑡) to
𝑢(𝑥, 𝑡), where 𝑢0(𝑥, 𝑡) is obtained from (3) for 𝑞 = 0:

L (𝑢0 (𝑥, 𝑡)) + 𝑔 (𝑥, 𝑡) = 0, B(𝑢0,
𝜕𝑢0

𝜕𝑡
) = 0. (8)

Next, we choose auxiliary function𝐻(𝑞) in the form

H (𝑞) = 𝑞𝐶1 + 𝑞
2
𝐶2 + ⋅ ⋅ ⋅ . (9)

Here 𝐶1, 𝐶2, . . . are constants to be determined later.
To get an approximate solution, we expand 𝜓(𝑥, 𝑡; 𝑞, 𝐶𝑖)

in Taylor’s series about 𝑞 in the following manner:

𝜓 (𝑥, 𝑡; 𝑞, 𝐶𝑖) = 𝑢0 (𝑥, 𝑡) +

∞

∑

𝑘=1

𝑢𝑘 (𝑥, 𝑡; 𝐶𝑖) 𝑞
𝑘
, 𝑖 = 1, 2, . . . .

(10)

Substituting (10) into (4) and equating the coefficient of like
powers of 𝑞, we obtain Zeroth-order problem, given by (6),
the first- and second-order problems are given by (11)-(12),

respectively, and the general governing equations for 𝑢𝑘(𝑥, 𝑡)
are given by (13):

L (𝑢1 (𝑥, 𝑡)) = 𝐶1N0 (𝑢0 (𝑥, 𝑡)) , B(𝑢1,
𝜕𝑢1

𝜕𝑡
) = 0,

(11)

L (𝑢2 (𝑥, 𝑡)) −L (𝑢1 (𝑥, 𝑡))

= 𝐶2N0 (𝑢0 (𝑥, 𝑡))

+ 𝐶1 [L (𝑢1 (𝑥, 𝑡)) +N1 (𝑢0 (𝑥, 𝑡) , 𝑢1 (𝑥, 𝑡))] ,

B(𝑢2,
𝜕𝑢2

𝜕𝑡
) = 0,

(12)

L (𝑢𝑘 (𝑥, 𝑡)) −L (𝑢𝑘−1 (𝑥, 𝑡))

= 𝐶𝑘N0 (𝑢0 (𝑥, 𝑡))

+

𝑘−1

∑

𝑖=1

𝐶𝑖 [L (𝑢𝑘−𝑖 (𝑥, 𝑡)) +N𝑘−𝑖

× (𝑢0 (𝑥, 𝑡) , 𝑢1 (𝑥, 𝑡) , . . . , 𝑢𝑘−𝑖 (𝑥, 𝑡))] ,

B(𝑢𝑘,
𝜕𝑢𝑘

𝜕𝑡
) = 0, 𝑘 = 2, 3, . . . ,

(13)

where N𝑘−𝑖(𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡), . . . , 𝑢𝑘−𝑖(𝑥, 𝑡)) is the coefficient
of 𝑞𝑘−𝑖 in the expansion ofN(𝜓(𝑥, 𝑡; 𝑞)) about the embedding
parameter 𝑞:

N (𝜓 (𝑥, 𝑡; 𝑞, 𝐶𝑖)) =N0 (𝑢0 (𝑥, 𝑡))

+ ∑

𝑘≥1

N𝑘 (𝑢0, 𝑢1, 𝑢2, . . . , 𝑢𝑘) 𝑞
𝑘
.

(14)

Here 𝑢𝑘 for 𝑘 ≥ 0 are set of linear equations with the linear
boundary conditions, which can be easily solved.

The convergence of the series in (10) depends upon the
auxiliary constants 𝐶1, 𝐶2, . . .. If it is convergent at 𝑞 = 1, one
has:

�̃� (𝑥, 𝑡; 𝐶𝑖) = 𝑢0 (𝑥, 𝑡) + ∑

𝑘≥1

𝑢𝑘 (𝑥, 𝑡; 𝐶𝑖) . (15)

Substituting (15) into (1) results in the following expression
for residual:

R (𝑥, 𝑡; 𝐶𝑖) =L (�̃� (𝑥, 𝑡; 𝐶𝑖)) + g (𝑥, 𝑡) +N (�̃� (𝑥, 𝑡; 𝐶𝑖)) .

(16)

If 𝑅(𝑥, 𝑡; 𝐶𝑖) = 0, then �̃�(𝑥, 𝑡; 𝐶𝑖) will be the exact solution.
For computing the auxiliary constants, 𝐶𝑖, 𝑖 = 1, 2, . . . , 𝑚,

there aremanymethods likeGalerkin’sMethod, RitzMethod,
Least Squares Method, and Collocation Method to find the
optimal values of𝐶𝑖, 𝑖 = 1, 2, 3, . . ., One can apply theMethod
of Least Squares as

I (𝐶𝑖) = ∫

𝑡

0

∫
Ω

R
2
(𝑥, 𝑡, 𝐶𝑖) 𝑑𝑥 𝑑𝑡, (17)
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where 𝑅 is the residual, 𝑅(𝑥, 𝑡; 𝐶𝑖) = 𝐿(�̃�(𝑥, 𝑡; 𝐶𝑖)) + 𝑔(𝑥, 𝑡) +
𝑁(�̃�(𝑥, 𝑡; 𝐶𝑖)), and

𝜕I

𝜕𝐶1

=
𝜕I

𝜕𝐶2

= ⋅ ⋅ ⋅ =
𝜕I

𝜕𝐶𝑚

= 0. (18)

The constants 𝐶𝑖 can also be determined by another method
as

R (ℎ1; 𝐶𝑖) =R (ℎ2; 𝐶𝑖) = ⋅ ⋅ ⋅ =R (ℎ𝑚; 𝐶𝑖) = 0,

𝑖 = 1, 2, . . . , 𝑚,

(19)

at any time 𝑡, where ℎ𝑖 ∈ Ω. The convergence depends upon
constants 𝐶1, 𝐶2, . . ., can be optimally identified and mini-
mized by (18).

3. Application of OHAM

In this section we apply OHAM for the two problems: the
first is the Burger’s-Huxley equation (1) and the second is the
Burger’s-Fisher equation (2).

3.1. Application of OHAM for Burger’s-Huxley Equation. Let
us consider Burger’s-Huxley equation of form (1):

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 𝛼𝑢
𝛿
(𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
−
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2

− 𝛽𝑢 (𝑥, 𝑡) (1 − 𝑢
𝛿
(𝑥, 𝑡)) (𝑢

𝛿
(𝑥, 𝑡) − 𝛾) = 0,

∀0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0,

(20)

Subject to constant initial condition

𝑢 (𝑥, 0) = (0.5𝛾 + 0.5𝛾 tanh (𝐴1𝑥))
1/𝛿
. (21)

The exact solution of (26) with given condition is given by

𝑢 (𝑥, 0) = (0.5𝛾 + 0.5𝛾 tanh (𝐴1 (𝑥 − 𝐴2𝑡)))
1/𝛿
, (22)

where

𝐴1 =

−𝛼𝛿 + 𝛿√𝛼2 + 4𝛽 (1 + 𝛿)

4 (1 + 𝛿)
𝛾,

𝐴2 =
𝛼𝛾

(1 + 𝛿)
−

(1 + 𝛿 − 𝛾) (−𝛼 + √𝛼2 + 4𝛽 (1 + 𝛿))

2 (1 + 𝛿)
.

(23)

For computational work, we have taken 𝛼 = 1, 𝛽 = 1, 𝛿 = 1,
and 𝛾 = 0.001 for various values of 𝑥 and 𝑡.

Following the basic idea of OHAM presented in preced-
ing section we start with

Zeroth-Order Problem
𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑡
= 0,

𝑢0 (𝑥, 0) = (0.0005 + 0.0005 tanh (0.00025𝑥)) .
(24)

Its solution is

𝑢0 (𝑥, 𝑡) = (0.0005 + 0.0005 tanh (0.00025𝑥)) . (25)

First-Order Problem
𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑡
− (1 + 𝐶1)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑡
− 𝐶1𝑢0 (𝑥, 𝑡)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥

+ 𝐶1

𝜕
2
𝑢0 (𝑥, 𝑡)

𝜕𝑥2
− 0.001𝐶1𝑢0 (𝑥, 𝑡) + 0.001𝐶1𝑢

2

0
(𝑥, 𝑡)

− 𝐶1𝑢
3

0
(𝑥, 𝑡) = 0,

𝑢1 (𝑥, 0) = 0.

(26)

Its solution is
𝑢1 (𝑥, 𝑡)

= −𝑡 (−2.4987500000000003 × 10
−7
𝐶1

− 6.25 × 10
−11
𝐶1sech

2
(0.00025𝑥)

+ 1.249999999999317

× 10
−10
𝐶1 tanh (0.00025𝑥)

− 1.25 × 10
−10
𝐶1sech

2
(0.00025𝑥)

× tanh (0.00025𝑥)

+ 2.49875 × 10
−7
𝐶1tanh

2
(0.00025𝑥)

−1.25 × 10
−10
𝐶1tanh

3
(0.00025𝑥)) .

(27)

Second-Order Problem
𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑡
− (1 + 𝐶1)

𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑡
− 𝐶2𝑢0 (𝑥, 𝑡)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥

+ 𝐶2

𝜕
2
𝑢0 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶2

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑡
− 𝐶1𝑢1 (𝑥, 𝑡)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥

− 𝐶1𝑢0 (𝑥, 𝑡)
𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑥
+ 𝐶1

𝜕
2
𝑢1 (𝑥, 𝑡)

𝜕𝑥2
− 0.001𝐶2𝑢0 (𝑥, 𝑡)

+ 1.001𝐶2𝑢
2

0
(𝑥, 𝑡) − 𝐶2𝑢

3

0
(𝑥, 𝑡) − 0.001𝐶1𝑢1 (𝑥, 𝑡)

+ 2.002𝐶1𝑢0 (𝑥, 𝑡) 𝑢1 (𝑥, 𝑡) − 3𝐶1𝑢
2

0
(𝑥, 𝑡) 𝑢1 (𝑥, 𝑡) = 0,

𝑢2 (𝑥, 0) = 0.

(28)

Its solution is

𝑢2 (𝑥, 𝑡, 𝐶1)

= −𝑡 − 2.4987500000000003 × 10
−7
𝐶1 − 6.25

× 10
−11
𝐶1sech

2
(0.00025𝑥)

+ 1.249999999999317 × 10
−10
𝐶1



4 Journal of Applied Mathematics

× tanh (0.00025𝑥) − 1.25 × 10−10𝐶1

× sech2 (0.00025𝑥) tanh (0.00025𝑥)

+ 2.49875 × 10
−7
𝐶1tanh

2
(0.00025𝑥)

− 1.25 × 10
−10
𝐶1tanh

3
(0.00025𝑥) .

(29)

Third-Order Problem

𝜕𝑢3 (𝑥, 𝑡)

𝜕𝑡
− (1 + 𝐶1)

𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑡
− 𝐶3𝑢0 (𝑥, 𝑡)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥

+ 𝐶3

𝜕
2
𝑢0 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶3

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑡
− 𝐶2𝑢1 (𝑥, 𝑡)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥

− 𝐶2𝑢0 (𝑥, 𝑡)
𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑥
+ 𝐶2

𝜕
2
𝑢1 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶2

𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑡

− 𝐶1𝑢2 (𝑥, 𝑡)
𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥
− 𝐶1𝑢1 (𝑥, 𝑡)

𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑥

+ 𝐶1

𝜕
2
𝑢2 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶1𝑢0 (𝑥, 𝑡)

𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑥

− 0.001𝐶3𝑢0 (𝑥, 𝑡) + 1.001𝐶3𝑢
2

0
(𝑥, 𝑡)

− 𝐶3𝑢
3

0
(𝑥, 𝑡) − 0.001𝐶2𝑢1 (𝑥, 𝑡)

− 3𝐶2𝑢
2

0
(𝑥, 𝑡) 𝑢1 (𝑥, 𝑡) + 1.001𝐶1𝑢

2

1
(𝑥, 𝑡)

− 3𝐶1𝑢0 (𝑥, 𝑡) 𝑢
2

1
(𝑥, 𝑡) − 0.001𝐶1𝑢2 (𝑥, 𝑡)

+ 2.002𝐶1𝑢0 (𝑥, 𝑡) 𝑢2 (𝑥, 𝑡) − 3𝐶1𝑢
2

0
(𝑥, 𝑡) 𝑢2 (𝑥, 𝑡)

+ 2.002𝐶2𝑢0 (𝑥, 𝑡) 𝑢1 (𝑥, 𝑡) = 0,

𝑢3 (𝑥, 0) = 0.

(30)

Its solution is

𝑢3 (𝑥, 𝑡, 𝐶1, 𝐶2, 𝐶3)

= (
1

(1 + 𝑒0.5𝑥)
2
𝑡sech2 (0.25𝑥)

× (−0.0625𝐶2 − 0.0625𝐶3

+ 𝐶1 (−0.0625 + 𝐶1 (−0.125 − 0.015625𝑡)

+ 𝐶2 (−0.125 − 0.015625𝑡)

− 0.000651042𝐶
2

1
(5.0718 + 𝑡)

× (18.9282 + 𝑡) )

+ ( (288𝐶2 + 288𝐶3 + 𝐶1

× (288 + 576𝐶2 + 𝐶1 (576 − 24𝑡)

− 24𝐶2𝑡 − 3𝐶
2

1
(−6.58301 + 𝑡)

× (14.583 + 𝑡) cosh (0.25𝑥)

+ (−96𝐶2 − 96𝐶3 + 𝐶1

× (−96 − 192𝐶2 + 𝐶1 (−192 − 24𝑡)

− 24𝐶2𝑡 + 5𝐶
2

1
(−7.396 + 𝑡)

× (2.596 + 𝑡) )) sinh (0.25𝑥))

−24𝐶2𝑡 + 5𝐶
2

1
(−7.396 + 𝑡) (2.596 + 𝑡)))

× sinh (0.25𝑥)

× (−0.000651042 cosh (0.75𝑥)

−0.000651042 sinh (0.75𝑥) ))) .

(31)

Adding (25), (27), (29), and (31) we obtain

�̃� (𝑥, 𝑡, 𝐶1, 𝐶2) = 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡, 𝐶1)

+ 𝑢2 (𝑥, 𝑡, 𝐶1, 𝐶2) + 𝑢3 (𝑥, 𝑡, 𝐶1, 𝐶2, 𝐶3) .

(32)

For the calculations of the constants 𝐶1, 𝐶2, and 𝐶3 using the
collocation method, we have computed that

𝐶1 = −1.0000010231545267,

𝐶2 = −9.98159444155818 × 10
−7,

𝐶3 = −2.041939789528322 × 10
−12.

Putting the values of these constants into (32) the third order
approximate solution using OHAM is

𝑢3 (𝑥, 𝑡)

= 0.5 − 5.2607845247854 × 10
−6
𝑡sech2 (0.25𝑥)

+
1

(1 + 𝑒0.5𝑥)
2

× (6.360090415451543 × 10
−9

+ (1.3153067008227217 × 10
−6

+ 0.0006512058813062292𝑡) 𝑡

+ (1.2720180853076355 × 10
−8

− 0.002604823525224917𝑡
2
) cosh (0.5𝑥)
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Table 1: Comparison of absolute errors of OHAM and ADM [5] for 𝛼 = 1, 𝛽 = 1, 𝛿 = 1, and 𝛾 = 0.001.

𝑡
ADM
𝑥 = 0.1

OHAM
𝑥 = 0.1

ADM
𝑥 = 0.5

OHAM
𝑥 = 0.5

ADM
𝑥 = 0.9

OHAM
𝑥 = 0.9

0.05 1.93715 × 10
−7

1.87406 × 10
−8

1.9373 × 10
−7

1.87406 × 10
−8

1.93745 × 10
−7

1.87406 × 10
−8

0.1 3.87434 × 10
−7

3.74812 × 10
−8

3.87464 × 10
−7

3.74812 × 10
−8

3.87494 × 10
−7

3.74812 × 10
−8

1 3.87501 × 10
−6

3.74812 × 10
−7

3.87531 × 10
−6

3.74812 × 10
−7

3.87561 × 10
−6

3.74812 × 10
−7

Table 2: Comparison of absolute errors obtained by OHAM and ADM [5] for 𝛼 = 0, 𝛽 = 1, 𝛿 = 1, and 𝛾 = 0.001.

𝑡
ADM
𝑥 = 0.1

OHAM
𝑥 = 0.1

ADM
𝑥 = 0.5

OHAM
for 𝑥 = 0.5

ADM
𝑥 = 0.9

OHAM
𝑥 = 0.9

0.05 1.93715 × 10
−7

2.49875 × 10
−8

1.9373 × 10
−7

2.49875 × 10
−8

1.93745 × 10
−7

2.49875 × 10
−8

0.1 3.87434 × 10
−7

4.9975 × 10
−8

3.87464 × 10
−7

4.9975 × 10
−8

3.87494 × 10
−7

4.9975 × 10
−8

1 3.87501 × 10
−6

4.9975 × 10
−7

3.87531 × 10
−6

4.9975 × 10
−7

3.87561 × 10
−6

4.9975 × 10
−7

Table 3: Comparison of absolute errors obtained by OHAM and
ADM [5] for 𝛼 = 0, 𝛽 = 1, 𝛿 = 2, and 𝛾 = 0.001.

𝑡 Error ADM Error OHAM
0.05 5.58836 × 10

−7
2.7938 × 10

−7

0.1 1.11766 × 10
−6

5.58771 × 10
−7

1 1.00741 × 10
−5

5.5896 × 10
−6

+ (6.36009042653818 × 10
−9

+ (−1.3153067008227217 × 10
−6

+ 0.0006512058813062292𝑡) 𝑡) cosh (𝑥)

+ (1.2720180853076355 × 10
−8

− 0.002604823525224917𝑡
2
) sinh (0.5𝑥)

+ (6.36009042653818 × 10
−9

+ (−1.3153067008227217 × 10
−9

+ 0.0006512058813062292𝑡) 𝑡) sinh (𝑥)

− 0.5 tanh (0.25𝑥) + 0.007813813661895406𝑡2

× sech2 (0.25𝑥) tanh (0.25𝑥) + sech2 (0.25𝑥)

× (0.06250525442670962𝑡)) .

(33)

Table 1 shows a comparison betweenOHAMsolution and
ADM solution for 𝛼 = 1 and 𝛾 = 0.001. For 𝛼 = 0 (1) is
reduced to the generalized Huxley equation which describes
nerve pulse propagation in nerve fibers and wall motion
in liquid crystals [22]. Tables 2 and 3 show a comparison
between ADM solution and OHAM solution for 𝛼 = 0 and
𝛽 = 1 respectively. Table 4 shows absolute errors of OHAM
solution for larger domain for 𝛼 = 0, 1, 𝛽 = 1, and 𝛿 = 1, 2
respectively.

3.2. Application of OHAM for Burger’s-Fisher Equation. Con-
sider the Burger’s-Fisher equation of form (2):

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 𝛼𝑢
𝛿
(𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
−
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2

− 𝛽𝑢 (𝑥, 𝑡) (1 − 𝑢
𝛿
(𝑥, 𝑡)) = 0,

∀0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0,

(34)

subject to constant initial condition

𝑢 (𝑥, 0) = (0.5 + 0.5 tanh( −𝛼𝛿

2 (𝛿 + 1)
𝑥))

1/𝛿

, (35)

with exact solution given by

𝑢 (𝑥, 𝑡) = 0.5 + 0.5 tanh

× (
−𝛼𝛿

2 (𝛿 + 1)

×(𝑥 − (
𝛼

(𝛿 + 1)
+
𝛽 (𝛿 + 1)

𝛼
) 𝑡))

1/𝛿

.

(36)

For computational work, we have taken 𝛼 = 0.001, 𝛽 = 0.001,
and 𝛿 = 1 for various values of 𝑥 and 𝑡.

Zeroth-Order Problem

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑡
= 0,

𝑢0 (𝑥, 0) = (0.5 + 0.5 tanh(
−0.001

4
𝑥)) .

(37)

Its solution is

𝑢0 (𝑥, 𝑡) = (0.5 − 0.5 tanh(
0.001

4
𝑥)) . (38)
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Table 4: Absolute errors of OHAM for 𝛼 = 0, 1, 𝛽 = 1, 𝛿 = 1, 2, and 𝑥 = 2.

𝑡 𝛼 = 1, 𝛽 = 1, 𝛿 = 1, and 𝛾 = 0.001 𝛼 = 0, 𝛽 = 1, 𝛿 = 1, and 𝛾 = 0.001 𝛼 = 0, 𝛽 = 1, 𝛿 = 2, and 𝛾 = 0.001
0.1 3.74812 × 10

−8
2.49875 × 10

−8
2.23403 × 10

−6

0.2 7.49625 × 10
−8

4.9975 × 10
−8

4.46806 × 10
−6

0.3 1.12444 × 10
−7

7.49625 × 10
−8

6.70209 × 10
−6

0.4 1.49925 × 10
−7

9.995 × 10
−8

8.93612 × 10
−6

0.5 1.87406 × 10
−7

1.24937 × 10
−7

1.11702 × 10
−5

0.6 2.24887 × 10
−7

1.49925 × 10
−7

1.34042 × 10
−5

0.7 2.62369 × 10
−7

1.74912 × 10
−7

1.56382 × 10
−5

0.8 2.9985 × 10
−7

1.999 × 10
−7

1.78722 × 10
−5

0.9 3.37331 × 10
−7

2.24887 × 10
−7

2.01063 × 10
−5

1.0 3.74812 × 10
−7

2.49875 × 10
−7

2.23403 × 10
−5

Table 5: Comparison of absolute errors obtained by OHAM and ADM [5] for 𝛼 = 0.001, 𝛽 = 0.001, and 𝛿 = 1.

𝑡
ADM for
𝑥 = 0.1

OHAM
𝑥 = 0.1

ADM
𝑥 = 0.5

OHAM
𝑥 = 0.5

ADM
𝑥 = 0.9

OHAM
𝑥 = 0.9

0.005 9.68763 × 10
−6

1.12257 × 10
−7

9.68691 × 10
−6

2.28888 × 10
−7

9.68619 × 10
−6

2.28888 × 10
−7

0.001 1.93753 × 10
−6

2.24513 × 10
−8

1.93738 × 10
−6

4.57775 × 10
−8

1.93724 × 10
−6

4.57775 × 10
−8

0.01 1.93752 × 10
−5

2.24514 × 10
−7

1.93738 × 10
−5

4.57777 × 10
−7

1.93724 × 10
−5

4.57777 × 10
−7

First-Order Problem

𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑡
− (1 + 𝐶1)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑡
− 0.001𝐶1𝑢0 (𝑥, 𝑡)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥

− 0.001𝐶1𝑢0 (𝑥, 𝑡) (1 − 𝑢0 (𝑥, 𝑡)) + 𝐶1

𝜕
2
𝑢0 (𝑥, 𝑡)

𝜕𝑥2
= 0,

𝑢1 (𝑥, 0) = 0.

(39)

Its solution is

𝑢1 (𝑥, 𝑡, 𝐶1)

= −𝑡 (0.00025𝐶1 + 6.25 × 10
−8
𝐶1

× sech2 (0.00025𝑥)

− 0.00025𝐶1tanh
2
(0.00025𝑥)) .

(40)

Second-Order Problem

𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑡
− (1 + 𝐶1)

𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑡
+ 0.001𝐶2𝑢0 (𝑥, 𝑡)

× (1 − 𝑢0 (𝑥, 𝑡)) + 𝐶2

𝜕
2
𝑢0 (𝑥, 𝑡)

𝜕𝑥2

− 𝐶2

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑡
− 0.001𝐶2𝑢0 (𝑥, 𝑡)

𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥

− 0.001𝐶1𝑢1 (𝑥, 𝑡)
𝜕𝑢0 (𝑥, 𝑡)

𝜕𝑥
− 0.001𝐶1𝑢0 (𝑥, 𝑡)

×
𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑥
+ 𝐶1

𝜕
2
𝑢1 (𝑥, 𝑡)

𝜕𝑥2
− 0.001𝐶1𝑢1 (𝑥, 𝑡)

− 0.002𝐶1𝑢0 (𝑥, 𝑡) 𝑢1 (𝑥, 𝑡) = 0,

𝑢2 (𝑥, 0) = 0.

(41)

Its solution is

𝑢2 (𝑥, 𝑡, 𝐶1, 𝐶2)

= sech5 (0.00025𝑥)

× ( − 0.000187547𝐶1𝑡 − 0.000187547𝐶2𝑡

+ 𝐶
2

1
(−0.000187547𝑡)) cosh (0.00025𝑥)

+ −0.0000625156𝐶1𝑡 − 0.0000625156𝐶2𝑡

+ 𝐶
2

1
(−0.0000625156𝑡) + 2.71051

× 10
−20
𝐶1𝑡 sinh (0.00025𝑥) + 2.71051

× 10
−20
𝐶
2

1
𝑡 sinh (0.00025𝑥) + 2.71051

× 10
−20
𝐶2𝑡 sinh (0.00025𝑥) + 3.12656

× 10
−8
𝐶
2

1
𝑡
2 sinh (0.00025𝑥) + 3.12656

× 10
−8
𝐶
2

1
𝑡
2 sinh (0.00075𝑥) .

(42)
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Table 6: Comparison of absolute errors obtained by OHAM and ADM [5] for 𝛼 = 1, 𝛽 = 1, and 𝛿 = 2.

𝑡
ADM for
𝑥 = 0.1

OHAM
𝑥 = 0.1

ADM
𝑥 = 0.5

OHAM
𝑥 = 0.5

ADM
𝑥 = 0.9

OHAM
𝑥 = 0.9

0.0005 1.40177 × 10
−3

5.87633 × 10
−5

1.34526 × 10
−3

1.06736 × 10
−5

1.27699 × 10
−3

4.64718 × 10
−5

0.0001 2.80396 × 10
−4

1.17539 × 10
−5

2.69094 × 10
−4

5.33686 × 10
−5

2.55438 × 10
−4

9.29303 × 10
−6

0.001 2.80301 × 10
−3

1.17512 × 10
−4

2.69000 × 10
−3

1.06739 × 10
−4

2.55346 × 10
−3

9.296 × 10
−4

Table 7: Absolute errors of OHAM for 𝑥 = 2 and 𝑡 ∈ [0.1, 1].

𝑡
𝛼 = 0.001, 𝛽 = 0.001, and

𝛿 = 1

𝛼 = 0.001, 𝛽 = 0.001,
and 𝛿 = 2

0.1 1.98526 × 10
−9

1.09926 × 10
−5

0.2 3.20807 × 10
−8

2.19856 × 10
−5

0.3 1.63084 × 10
−7

2.9789 × 10
−5

0.4 5.16881 × 10
−7

4.39726 × 10
−5

0.5 1.26475 × 10
−6

5.49666 × 10
−5

0.6 2.62763 × 10
−6

6.5961 × 10
−5

0.7 4.87621 × 10
−6

7.69557 × 10
−5

0.8 8.33106 × 10
−6

8.79507 × 10
−5

0.9 1.33626 × 10
−5

9.89461 × 10
−5

The third order approximate solution using OHAM is given
by

�̃� (𝑥, 𝑡, 𝐶1, 𝐶2) = 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡, 𝐶1)

+ 𝑢2 (𝑥, 𝑡, 𝐶1, 𝐶2) + 𝑢3 (𝑥, 𝑡, 𝐶1, 𝐶2, 𝐶3) ,

(43)

where 𝑢3(𝑥, 𝑡, 𝐶1, 𝐶2, 𝐶3) is obtained in same lines as for first
problem.

For the calculations of the constants 𝐶1, 𝐶2, and 𝐶3 using
the collocation method we have computed that

𝐶1 = −5.928318703338053 × 10
−7
,

𝐶2 = −465.9630543691778,

𝐶3 = 1.8651679832921486.

(44)

The third order OHAM solution yields very encouraging
results after being compared with Fourth order approximate
solution by ADM [5].

Table 5 shows a comparison between OHAM solution
and ADM solution for 𝛼 = 0.001, 𝛽 = 0.001, and 𝛿 =

1. Table 6 compares between OHAM solution and ADM
solution for 𝛼 = 1, 𝛽 = 1, and 𝛿 = 2. Table 7 shows the
reliability of OHAM for larger domain.

4. Conclusion

We successfully applied OHAM for solution of Burger’s-
Huxley and Burger’s-Fisher equations. The method is simple
in applicability and is fast converging to the exact solution.
The results obtained by OHAM are very consistent in com-
parison with ADM.
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