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We study exponential attractors for semilinear parabolic equations with dynamic boundary conditions in bounded domains. First,
we give the existence of the exponential attractor in 𝐿

2
(Ω) × 𝐿

2
(Γ) by proving that the corresponding semigroup satisfies the

enhanced flattering property. Second, we apply asymptotic a priori estimate and obtain the exponential attractor in 𝐿𝑝(Ω) × 𝐿
𝑞
(Γ).

Finally, we show the exponential attractor in (𝐻
1
(Ω) ∩ 𝐿

𝑝
(Ω)) × 𝐿

𝑞
(Γ).

1. Introduction

Parabolic equations with dynamical boundary conditions
have strong backgrounds in mathematical physics. They
arise in the heat transfer theory in a solid in contact with
moving fluid, thermoelasticity, diffusion phenomena, heat
transfer in two medium, problems in fluid dynamic, and so
forth. At present, there are many monographs in the whole
world (see [1–13]). Several approaches have been used for
these equations, like the theory of semigroup, with Bessel
potential and Besov space, and the variational setting. In
particular, we are devoted to the long-time behavior of the
solutions. For instance, In [1], the authors showed existence of
pullback attractors. In [8, 9], the authors gave well posedness
and global attractors in 𝐿

𝑝
(Ω) × 𝐿

𝑝
(Γ). In [12, 13]; the

authors obtained uniform attractors and some asymptotic
regularity of global attractors in (𝐻

1
(Ω) ∩ 𝐿

𝑝
(Ω)) × 𝐿

𝑞
(Γ).

An exponential attractor, in contrast to a global attractor
(or a uniform attractor), enjoys a uniform exponential rate
of convergence of its solution. Because of this, exponen-
tial attractors possess more practical property. But to our
knowledge, it does not seem to be in the literature any study
of the existence of exponential attractors for this kind of
equations.

This paper is concerned with existence of exponential
attractors for the following reaction-diffusion equation with

dynamic boundary condition

𝑢
𝑡
− Δ𝑢 + 𝑓 (𝑢) = ℎ (𝑥) in Ω,

𝑢
𝑡
+
𝜕𝑢

𝜕]
+ 𝑔 (𝑢) = 𝜌 (𝑥) on Γ,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , in Ω,

(1)

where Ω ⊂ R𝑁,𝑁 ≥ 1, is a bounded domain with a smooth
boundary Γ. Here ] is the outer unit normal on Γ.

In [14], the authors established some necessary and suf-
ficient conditions for the existence of exponential attractors
for continuous and norm-to-weak continuous semigroup
and provided a new method for proving the existence
of exponential attractors by combining with the flattering
property. Motivated by some ideas in [14–16], we combine
asymptotic a prior estimate with the enhanced flattening
property and show sufficient and necessary existence of
exponential attractors in uniformly convex Banach spaces.
As an application, we prove the existence of exponential
attractors for the reaction-diffusion equation with dynamic
boundary condition.

This paper is organized as follows. In Section 2, we
recall some basic results and then give our theorems,
that is, Theorems 5, 6, and 9 and the solution semigroup
corresponding to (1). In Section 3, we obtain the exponential
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attractor in 𝐿
2
(Ω) × 𝐿

2
(Γ) for weak solutions, then combine

asymptotical a prior estimate and show the exponential
attractor in 𝐿

𝑝
(Ω) × 𝐿

𝑞
(Γ). Finally, we derive the existence

of the exponential attractor in the space (𝐻1(Ω) ∩ 𝐿
𝑝
(Ω)) ×

𝐿
𝑞
(Γ).
In the following, the constants 𝐶

𝑖
, 𝑖 = 0, 1, 2, . . . will

always denote generic constants different in various occur-
rences. The symbol 𝐶(𝑠) will denote a positive constant
dependent of 𝑠. We will write Ω

𝑇
for Ω × (0, 𝑇), Γ

𝑇
for

Γ × (0, 𝑇), (⋅, ⋅) for the inner product in 𝐿
2
(Ω) and ⟨⋅, ⋅⟩ for

the inner product in 𝐿
2
(Γ). For convenience, we denote the

norm of 𝑢 by |𝑢|
Ω
in the space 𝐿2(Ω) and |𝑢|

Γ
in the space

𝐿
2
(Γ).

2. Preliminary

2.1. The Basic Results and Theorems. Let 𝑋 be a complete
metric space and a one-parameter family of mappings 𝑆(𝑡):
let 𝑋 → 𝑋(𝑡 ≥ 0) be a semigroup. Here we omit the defini-
tions of continuous or norm-to-weak semigroups, dynamical
systems, global attractors, and exponential attractors (see [15–
20]).

Definition 1. Let 𝑋 be a metric space and 𝐵 be a bounded
subset of 𝑋. The Kuratowski measure of noncompactness
𝛼(𝐵) of 𝐵 is defined as

𝛼 (𝐵) = inf {𝛿 > 0 | 𝐵 admits a finite cover by sets

of diameter ≤ 𝛿} .

(2)

Theorem 2 (see [14]). Assume that 𝐵 is a bounded absorbing
set for discrete dynamical system 𝑆(𝑛) in 𝑋; then the following
are equivalent.

(1) Themeasure of noncompactness is exponentially decay-
ing for dynamical system (𝑆(𝑛), 𝑋), that is, there exist
𝑘, 𝑙 > 0 such that 𝛼(⋃

𝑚>𝑛
𝑆(𝑚)𝐵) ≤ 𝑘𝑒

−𝑙𝑛.

(2) For 𝑆(𝑛), there exist exponential attractors.

Theorem 3 (see [14]). Assume that B is a bounded absorbing
set for 𝑆(𝑡) in𝑋; then the following are equivalent.

(1) Themeasure of noncompactness is exponentially decay-
ing for dynamical system (𝑆(𝑡), 𝑋), that is, there exist
𝑘, 𝑙 > 0 such that 𝛼(⋃

𝑠>𝑡
𝑆(𝑠)𝐵) ≤ 𝑘𝑒

−𝑙𝑡.

(2) For 𝑆(𝑡), there exist exponential attractors.

Definition 4 (see [14] (Enhanced Flattening Property)). Let𝑋
be a uniformly convex Banach space; for any bounded set 𝐵
of 𝑋, there exist 𝑘, 𝑙 > 0 and 𝑇 > 0, and a finite dimension
subspace𝑋

1
of𝑋, such that

(1) 𝑃
𝑚
(⋃
𝑠≥𝑡

𝑆(𝑠)𝐵) is bounded and

(2) ||(𝐼 − 𝑃
𝑚
)(⋃
𝑠≥𝑡

𝑆(𝑠)𝑥)|| ≤ 𝑘𝑒
−𝑙𝑡

+ 𝑘(𝑚), for all 𝑥 ∈ 𝐵,

for all 𝑡 ≥ 𝑇.Here 𝑃
𝑚

: 𝑋 → 𝑋
1
is a bounded

projector, 𝑚 is the dimension of 𝑋
1
, || ⋅ || denotes

the norm in 𝑋, and 𝑘(𝑠) is a real-valued function
satisfying lim

𝑠→∞
𝑘(𝑠) = 0.

Inspired by [14, 21], we easily obtain the following.

Theorem 5. Let 𝑋 be a uniformly convex Banach space
and {𝑆(𝑡)}

𝑡≥0
be a continuous or norm-to-weak continuous

semigroup in𝑋. Then the following conditions are equivalent.

(1) Themeasure of noncompactness is exponentially decay-
ing for dynamical system (𝑆(𝑡), 𝑋), that is, there exist
𝑘, 𝑙 > 0 such that 𝛼(⋃

𝑠>𝑡
𝑆(𝑠)𝐵) ≤ 𝑘𝑒

−𝑙𝑡.
(2) 𝑆(𝑡) satisfies the enhanced flattening property.

Proof. (1 ⇒ 2)On account of condition (1), for any bounded
subset 𝐵 of𝑋 and for any 𝜀 > 0, there exist 𝑡 = 𝑡(𝐵) such that

𝛼(⋃

𝑠>𝑡

𝑆 (𝑠) 𝐵) ≤ 𝑘𝑒
−𝑙𝑡
. (3)

Namely, there exist a finite number of subset 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛

with diameter less than 𝑘𝑒
−𝑙𝑡, such that

⋃

𝑠>𝑡

𝑆 (𝑠) 𝐵 ⊂ ∪
𝑛

𝑖=1
𝐴
𝑖
. (4)

Let 𝑥
𝑖
∈ 𝐴
𝑖
, then

⋃

𝑠>𝑡

𝑆 (𝑠) 𝐵 ⊂ ∪
𝑛

𝑖=1
𝑁(𝑥
𝑖
, 𝑘𝑒
−𝑙𝑡
) . (5)

Let 𝑋
1
= span{𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}, since 𝑋 is uniformly convex,

there exist a projection𝑃 : 𝑋 → 𝑋
1
, such that for any 𝑥 ∈ 𝑋,

||𝑥 − 𝑃𝑥|| = dist(𝑥, 𝑋
1
). Hence,

‖(𝐼 − 𝑃) 𝑆 (𝑡) 𝑥‖ ≤ 𝑘𝑒
−𝑙𝑡

< 𝑘𝑒
−𝑙𝑡

+ 𝑘 (𝑚) . (6)

(2 ⇒ 1) have been shown in Theorem 4.3 of [14], so we
omitted it here.

ByTheorem 5, we can deduce the following.

Theorem 6. Let 𝑋 be a uniformly convex Banach space
and {𝑆(𝑡)}

𝑡≥0
be a continuous or norm-to-weak continuous

semigroup in X. Then, for dynamical system (𝑆(𝑡), 𝑋), there
exist exponential attractors in𝑋 if and only if

(1) there is a bounded absorbing set 𝐵 ⊂ 𝑋, and
(2) S(t) satisfies the enhanced flattening property.

In addition, we use later the following theorem about
global attractors.

Theorem 7 (see [15, Corollary 5.7]). Let {𝑆(𝑡)}
𝑡≥0

be a semi-
group on 𝐿

𝑝
(Ω), (𝑝 ≥ 1), be a continuous or weak continuous

semigroup on𝐿𝑞(Ω) for some 𝑞 ≤ 𝑝, and have a global attractor
in 𝐿𝑞(Ω). Then, {𝑆(𝑡)}

𝑡≥0
has a global attractor in 𝐿𝑝(Ω) if and

only if
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(1) {𝑆(𝑡)}
𝑡≥0

has a bounded absorbing set 𝐵
0
in 𝐿𝑝(Ω), and

(2) for any 𝜀 > 0 and any bounded subset 𝐵 ⊂ 𝐿
𝑝
(Ω), there

exist positive constants 𝑀 = 𝑀(, 𝐵) and 𝑇 = 𝑇(, 𝐵),
such that

∫
Ω(|𝑆(𝑡)𝑢0|≥𝑀)

𝑆 (𝑡) 𝑢0


𝑝

< 𝜀 for any 𝑢
0
∈ 𝐵, 𝑡 ≥ 𝑇, (7)

whereΩ(|𝑢| ≥ 𝑀) = {𝑥 ∈ Ω||𝑢(𝑥)| ≥ 𝑀}.

We give the following lemma concerning the covering of
the set in two different topologies used later in the proof of
Theorem 9.

Lemma 8 (see [15, Lemma 5.3]). For any 𝜀 > 0, the bounded
subset B of 𝐿𝑝(Ω) has a finite 𝜀-net in 𝐿

𝑝
(Ω) if there exists a

positive constant𝑀 = 𝑀(𝜀), such that

(1) 𝐵 has a finite (3𝑀)
(𝑞−𝑝)/𝑞

(𝜀/2)
𝑝/𝑞-net in 𝐿𝑞(Ω);

(2) ∫
Ω(|𝑢|≥𝑀)

|𝑢|
𝑝
≤ 2
−2𝑝+2

𝜀, for any 𝑢
0
∈ 𝐵
0
.

Inspired by [16], we give the subsequent theorem which
describes our new technique to construct an exponential
attractor in a stronger topological space.

Theorem 9. Assume that 𝑝 > 𝑞 > 0 andΩ ⊂ R𝑛. Let S(t) be a
continuous or norm-to-weak continuous semigroup on 𝐿

𝑝
(Ω)

and 𝐿𝑞(Ω) and 𝐵
0
be a positively invariant bounded absorbing

set in 𝐿𝑝(Ω). If the following conditions hold true:

(1) 𝑆(𝑡) has an exponential attractor in 𝐿𝑞(Ω);
(2) for any 𝜀 > 0, there exist positive constant 𝑀 = 𝑀(𝜀)

such that

∫
Ω(|𝑆(𝑡)𝑢0|≥𝑀)

𝑆 (𝑡) 𝑢0


𝑝

≤ 2
−2𝑝+2

𝜀, for any 𝑢
0
∈ 𝐵
0
, (8)

then 𝑆(𝑡) has an exponential attractor in 𝐿𝑝(Ω).

Proof. Take 𝑇 > 0, and let 𝑆𝑛 = 𝑆(𝑛𝑇); obviously 𝑆
𝑛 is

a discrete dynamical system. On account of Condition (1),
for 𝑆
𝑛 there exists an exponential attractor M in 𝐿

𝑞
(Ω).

By Theorem 2, we find that there exist 𝑘, 𝑙 > 0 such that
𝛼(⋃
𝑚>𝑛

𝑆(𝑚)𝐵) ≤ 𝑘𝑒
−𝑙𝑛. By the definition of the measure

of noncompactness, for all 𝑛 ∈ 𝑁, there exist finite points
𝑥
𝑛𝑖
∈ 𝑆(𝑛)𝐵 such that 𝑆(𝑛)𝐵 ⊂ ∪

𝑀𝑛

𝑖=1
(𝐵
𝐿
𝑞
(Ω)

(𝑥
𝑛𝑖
, 𝑘𝑒
−𝑙𝑛

)∩𝑆(𝑛)𝐵).
Then, there exist 𝑛

0
∈ N and𝑀

1
= 𝐶𝜀
𝛾/(𝑞−𝛾)

(𝛾 > 𝑞) such that

𝑘𝑒
−𝑙𝑛0 ≤ (3𝑀

1
)
(𝑞−𝑝)/𝑞

(
𝜀

2
)

𝑝/𝑞

≤ 𝑘𝑒
−𝑙(𝑛0−1). (9)

FromLemma 8 andCondition (2), it follows that 𝑆(𝑛
0
)(𝐵) has

a finite 𝜀-net in 𝐿
𝑝
(Ω).

Let 𝜀 be replaced by 𝜀/2, there 𝑛
1

∈ N and 𝑀
2

=

𝐶(𝜀/2)
𝛾/(𝑞−𝛾)

(𝛾 > 𝑞) such that

𝑘𝑒
−𝑙(𝑛0+𝑛1) ≤ (3𝑀

2
)
(𝑞−𝑝)/𝑞

(
𝜀

22
)

𝑝/𝑞

≤ 𝑘𝑒
−𝑙(𝑛0+𝑛1−1). (10)

FromLemma 8 andCondition (2), it follows that 𝑆(𝑛
0
+𝑛
1
)(𝐵)

has a finite 𝜀/2-net in 𝐿
𝑝
(Ω).

By induction, let 𝜀/2𝑖−1 be replaced by 𝜀/2𝑖, there 𝑛
𝑖
∈ N

and𝑀
𝑖+1

= 𝐶(𝜀/2
𝑖
)
𝛾/(𝑞−𝛾)

(𝛾 > 𝑞) such that

𝑘𝑒
−𝑙(𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖) ≤ (3𝑀

𝑖+1
)
(𝑞−𝑝)/𝑞

(
𝜀

2𝑖+1
)

𝑝/𝑞

≤ 𝑘𝑒
−𝑙(𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖−1).

(11)

From Lemma 8 and Condition (2), it follows that 𝑆(𝑛
0
+ 𝑛
1
+

⋅ ⋅ ⋅ + 𝑛
𝑖
)(𝐵) has a finite 𝜀/2𝑖-net in 𝐿

𝑝
(Ω). Note that

(3𝑀
𝑖+1
)
(𝑞−𝑝)/𝑞

(𝜀/2
𝑖+1
)
𝑝/𝑞

(3𝑀
𝑖
)
(𝑞−𝑝)/𝑞

(𝜀/2𝑖)
𝑝/𝑞

=
(𝑀
𝑖+1
/𝑀
𝑖
)
(𝑞−𝑝)/𝑞

2𝑝/𝑞

=

((𝜀/2
𝑖
)
𝛾/(𝑞−𝛾)

/(𝜀/2
𝑖−1
)
𝛾/(𝑞−𝛾)

)

(𝑞−𝑝)/𝑞

2𝑝/𝑞

= (
1

2
)

𝛾(𝑝−𝑞)/𝑞(𝛾−𝑞)+𝑝/𝑞

< 1.

(12)

So, the ratio of (3𝑀
𝑖+1
)
(𝑞−𝑝)/𝑞

(𝜀/2
𝑖+1
)
𝑝/𝑞 and

(3𝑀
𝑖
)
(𝑞−𝑝)/𝑞

(𝜀/2
𝑖
)
𝑝/𝑞 is a constant for given 𝛾, 𝑝, 𝑞, and

𝜀. In fact,

(3𝑀
𝑖+1
)
(𝑞−𝑝)/𝑞

(
𝜀

2𝑖+1
)

𝑝/𝑞

= (
1

2
)

𝑝/𝑞

(3𝐶)
(𝑞−𝑝)/𝑞

𝜀
(𝛾(𝑝−𝑞)/𝑞(𝛾−𝑞))+𝑝/𝑞

× (
1

2
)

((𝛾(𝑝−𝑞)/𝑞(𝛾−𝑞))+𝑝/𝑞)𝑖

.

(13)

Substituting (13) into (11), we deduce easily that

𝜀

2𝑖
≤ 2(3𝑀

𝑖+1
)
(𝑝−𝑞)/𝑞

𝑘
𝑞/𝑝

𝑒
−𝑞𝑙(𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖−1)/𝑝

= 2(3𝐶)
(𝑞−𝑝)/𝑞

𝜀
𝛾(𝑝−𝑞)/𝑞(𝛾−𝑞)

(
1

2
)

(𝛾(𝑝−𝑞)/𝑞(𝛾−𝑞))𝑖

× 𝑘
𝑞/𝑝

𝑒
−𝑞𝑙(𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖−1)/𝑝.

(14)

Choose that 2(3𝐶)
(𝑞−𝑝)/𝑞

𝜀
𝛾(𝑝−𝑞)/𝑞(𝛾−𝑞)

𝑘
𝑞/𝑝

𝑒
𝑞𝑙/𝑝

= 𝑘


≥

2(3𝐶)
(𝑞−𝑝)/𝑞

𝜀
𝛾(𝑝−𝑞)/𝑞(𝛾−𝑞)

(1/2)
(𝛾(𝑝−𝑞)/𝑞(𝛾−𝑞))𝑖

𝑘
𝑞/𝑝

𝑒
𝑞𝑙/𝑝 and 𝑙


=

𝑞𝑙/𝑝, we know that 𝑆(𝑛
0
+ 𝑛
1
+ ⋅ ⋅ ⋅ + 𝑛

𝑖
) (𝐵) has a finite

𝑘

𝑒
−𝑙

(𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖)-net in 𝐿

𝑝
(Ω).

Combining (9), (10) (11), and (13), we can choose 𝑛
1
=

𝑛
2
= ⋅ ⋅ ⋅ = 𝑛

𝑖
= [(1/𝑙)(𝛾(𝑝 − 𝑞)/𝑞(𝛾 − 𝑞) + 𝑝/𝑞) ln 2] + 1,

where [𝑎] is the integer part of 𝑎. Denoted by 𝑙
0
= [(1/𝑙)(𝛾(𝑝−

𝑞)/𝑞(𝛾 − 𝑞) + 𝑝/𝑞) ln 2] + 1, we have 𝑆(𝑛
0
+ 𝑛
1
+ ⋅ ⋅ ⋅ +

𝑛
𝑖
)(𝐵) = 𝑆(𝑛

0
+ 𝑖𝑙
0
) has a finite 𝑘


𝑒
−𝑙

(𝑛0+𝑖𝑙0)-net in 𝐿

𝑝
(Ω).

By Theorem 2, an exponential attractor exists in 𝐿
𝑝
(Ω) for

discrete semigroup 𝑆(𝑖𝑙
0
). Using the same argument as in [18],
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it is easy to deduce that an exponential attractor M exists in
𝐿
𝑝
(Ω) for discrete semigroup 𝑆(𝑛). Let M

0
= ∪
0≤𝑠≤𝑇

𝑆(𝑠)M.
As an repetition of the general method developed by Li et
al. [14], we can show thatM

0
is the exponential attractor for

dynamical system (𝑆(𝑡), 𝑋).

2.2. The Solution Semigroup. We can write Problem (1) as an
evolution for unknown 𝑢(𝑥, 𝑡) inΩ and V(𝑥, 𝑡) on Γ

𝑤
𝑡
+ 𝐴𝑤 + 𝐹 = 0, (15)

with the compatibility V = 𝛾(𝑢(𝑡)) (𝛾 is trace operator) for
𝑡 > 0 and 𝜆 > 0, where

𝑤 = (
𝑢

V
) , 𝐴 = (

−Δ + 𝜆 0

𝜕

𝜕]
0
) ,

𝐹 = (
𝑓 (𝑢) − 𝜆𝑢 − ℎ (𝑥)

𝑔 (V) − 𝜌 (𝑥)
) .

(16)

In the case Ω bounded, the operator 𝐴 has a compact
resolvent and its spectrum, denoted by 𝜎(𝐴) = {𝜇

𝑛
}
𝑛
⊂ 𝑅
+,

forms an increasing sequence converging to infinity (see [11,
Theorem 1.4]). Moreover, there exists an orthonormal basis
in 𝐿2(Ω) × 𝐿2(Γ), {𝜔

𝑛
}
𝑛
, which are solutions of the eigenvalue

problem

−Δ𝑢 + 𝜆𝑢 = 𝜇
𝑛
𝑢, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
= 𝜇
𝑛
𝑢, 𝑥 ∈ Γ,

(17)

where 𝜇
𝑛
⊂ 𝑅
+ forms an increasing sequence converging to

infinity. We denote by 𝑃
𝑛
the orthonormal projector

𝑃
𝑛
: 𝐿
2
(Ω) × 𝐿

2
(Γ) → span {𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
} ,

𝑢 =

∞

∑

𝑖=1

𝛼
𝑖
𝜔
𝑖
→ 𝑢
𝑛
=

𝑛

∑

𝑖=1

𝛼
𝑖
𝜔
𝑖
.

(18)

So, we can perform the Galerkin truncation by using
orthonormal basis mentioned above and guarantee the fol-
lowing existence and uniqueness (see [1, 8, 9, 12]).

Theorem 10. Assume that the functions 𝑓, 𝑔 ∈ C1satisfying

−𝐶
0
+ 𝐶
1|𝑠|
𝑝
≤ 𝑓 (𝑠) 𝑠 ≤ 𝐶

0
+ 𝐶
2|𝑠|
𝑝
, 𝑝 ≥ 2,

−𝐶
3
+ 𝐶
4|𝑠|
𝑞
≤ 𝑔 (𝑠) 𝑠 ≤ 𝐶

3
+ 𝐶
5|𝑠|
𝑞
, 𝑞 ≥ 2,

(19)

𝑓

(𝑠) ≥ −𝑙, 𝑔


(𝑠) ≥ −𝑚. (20)

Then, Problem (1) has a unique weak solution, for any 𝑇 > 0,
given (𝑢

0
, 𝛾(𝑢
0
)) ∈ 𝐿

2
(Ω) × 𝐿

2
(Γ) and ℎ(𝑥) ∈ 𝐿

2
(Ω), 𝜌(𝑥) ∈

𝐿
2
(Γ) there exists a solution 𝑢 with

𝑢 ∈ C ([0, 𝑇] ; 𝐿
2
(Ω)) ,

𝑢 ∈ 𝐿
2
(0, 𝑇;𝐻

1
(Ω)) ∩ 𝐿

𝑝
(Ω
𝑇
) ,

𝑢 ∈ C ([0, 𝑇] ; 𝐿
2
(Γ)) , 𝑢 ∈ 𝐿

𝑞
(Γ
𝑇
) ,

(21)

and (𝑢
0
, 𝛾(𝑢
0
)) → (𝑢(𝑡), 𝛾(𝑢)) is continuous on 𝐿2(Ω)×𝐿2(Γ).

By the last theorem,we can define the operator semigroup
{𝑆(𝑡)}
𝑡≥0

in 𝐿
2
(Ω) × 𝐿

2
(Γ) as follows:

𝑆 (𝑡) (𝑢
0
, 𝛾 (𝑢
0
)) : 𝐿
2
(Ω) × 𝐿

2
(Γ) ×R

+
→ 𝐿
2
(Ω) × 𝐿

2
(Γ) ,

(22)

which is continuous in 𝐿
2
(Ω) × 𝐿

2
(Γ).

Furthermore, we obtained the bounded absorbing set for
dynamical system (𝑆(𝑡), 𝑋) (see [8, 12]).

Theorem 11. Under the assumptions of Theorem 10, the semi-
group {𝑆(𝑡)}

𝑡≥0
have (𝐿2(Ω)×𝐿2(Γ), 𝐿𝑝(Ω)×𝐿𝑞(Γ))-, (𝐿2(Ω)×

𝐿
2
(Γ),𝐻

1
(Ω) × 𝐿

𝑞
(Γ))-bounded absorbing sets, that is, for any

bounded subset 𝐵 ⊂ 𝐿
2
(Ω) × 𝐿

2
(Γ), there exists a positive

constant𝑇, which is only dependent on the 𝐿2(Ω)×𝐿2(Γ)-norm
of 𝐵, such that

‖𝑢(𝑡)‖𝐿𝑝(Ω) ≤ 𝑅
0

for any (𝑢
0
, 𝛾 (𝑢
0
)) ∈ 𝐵, 𝑡 ≥ 𝑇,

‖𝑢(𝑡)‖𝐿𝑞(Γ) ≤ 𝑅
0

for any (𝑢
0
, 𝛾 (𝑢
0
)) ∈ 𝐵, 𝑡 ≥ 𝑇,

‖∇𝑢(𝑡)‖𝐿2(Ω) ≤ 𝑅
0

for any (𝑢
0
, 𝛾 (𝑢
0
)) ∈ 𝐵, 𝑡 ≥ 𝑇,

(23)

where𝑅
0
is a positive constant independent of 𝐵, 𝑢(𝑡) = 𝑆(𝑡)𝑢

0
.

3. The Main Results

3.1. Exponential Attractors in 𝐿2(Ω) × 𝐿2(Γ)

Theorem 12. Under the hypothesis ofTheorem 11, {𝑆(𝑡)}
𝑡≥0

has
a (𝐿2(Ω) × 𝐿

2
(Γ), 𝐿
2
(Ω) × 𝐿

2
(Γ))-exponential attractor.

Proof. Let 𝑢
2

= (𝐼 − 𝑃
𝑛
)𝑢, where 𝑃

𝑛
is denoted by the

orthonormal projector as mentioned before. Multiplying (1)
1

by 𝑢
2
and integrating by parts, we get

1

2

𝑑

𝑑𝑡
(
𝑢2



2

Ω
+
𝑢2



2

Γ
)

+ ∫
Ω

∇𝑢2


2

+ ∫
Ω

𝑓 (𝑢) 𝑢
2
+ ∫
Γ

𝑔 (𝑢) 𝑢
2

= (ℎ, 𝑢
2
) + ⟨𝜌, 𝑢

2
⟩ .

(24)

Using (19), we can deduce that

|𝑢|
𝑝
≥ |𝑢|
2
− 𝐶, |𝑢|

𝑞
≥ |𝑢|
2
− 𝐶, (25)

for any 𝑝, 𝑞 ≥ 2. Therefore,

∫
Ω

𝑓 (𝑢) 𝑢
2
+ ∫
Γ

𝑔 (𝑢) 𝑢
2

≥ ∫
Ω

𝑢2


𝑝

+ ∫
Γ

𝑢2


𝑞

− 𝐶 (𝑚 (Ω) ,𝑚 (Γ)) .

(26)

Thus, we know

𝑑

𝑑𝑡
(
𝑢2



2

Ω
+
𝑢2



2

Γ
) + 𝜇
𝑛
(∫
Ω

𝑢2


2

+ ∫
Γ

|𝑢|
2
)

≤ 𝐶 (𝑚 (Ω) ,𝑚 (Γ) , |ℎ|Ω,
𝜌
Γ
) .

(27)
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Applying the Gronwall-inequality, we have

𝑢2(𝑡)


2

Ω
+
𝑢2(𝑡)



2

Γ
≤ 𝑒
−𝜇𝑛𝑡 +

𝐶

𝜇
𝑛

. (28)

Obviously, the enhanced flattening property holds true. By
Theorem 6, we obtain the exponential attractor in 𝐿

2
(Ω) ×

𝐿
2
(Γ).

3.2. (𝐿2(Ω) × 𝐿2(Γ),𝐿𝑟(Ω) × 𝐿𝑟(Γ))-Exponential Attractor. If
𝑟 = min{𝑝, 𝑞}, we easily showed asymptotic a prior estimate
of the solution of (1) in 𝐿𝑟(Ω)×𝐿𝑟(Γ) in order to obtain global
and uniform attractors in 𝐿

𝑝
(Ω) × 𝐿

𝑝
(Γ), where 𝑟(≥ 2) is an

integer (resp., see [8, 12]).

Theorem 13. Under the hypothesis ofTheorem 11, then for any
𝜀 > 0 and any bounded subset 𝐵 ⊂ 𝐿

2
(Ω) × 𝐿

2
(Γ), there exist

two positive constants 𝑇 = 𝑇(𝐵, 𝜀) and𝑀 = 𝑀(𝜀) such that

∫
Ω(|𝑢|≥𝑀)

|𝑢|
𝑟
+ ∫
Γ(|𝑢|≥𝑀)

|𝑢|
𝑟
≤ 𝐶𝜀, ∀𝑡 ≥ 𝑇,

(𝑢
0
, 𝛾 (𝑢
0
)) ∈ 𝐵,

(29)

where the constant 𝐶 is independent of 𝜀 and 𝐵.

AfterTheorem 13, we obtain the subsequent result.

Theorem 14. Under the assumption of Theorem 11, then the
semigroup {𝑆(𝑡)}

𝑡≥0
generated by Problem (1) with initial data

𝑢
0
∈ 𝐿
2
(Ω) and 𝛾(𝑢

0
) ∈ 𝐿
2
(Γ) has a (𝐿2(Ω) × 𝐿

2
(Γ), 𝐿
𝑟
(Ω) ×

𝐿
𝑟
(Γ))-exponential attractor M

𝑟
, that is, M

𝑟
is compact,

invariant in 𝐿
𝑟
(Ω) × 𝐿

𝑟
(Γ), and attracts every bounded in

𝐿
2
(Ω) × 𝐿

2
(Γ) in the topology of 𝐿𝑟(Ω) × 𝐿

𝑟
(Γ).

Proof. ByTheorems 11 and 12, it is easily verified that {𝑆(𝑡)}
𝑡≥0

has an exponential attractor in 𝐿𝑟(Ω) × 𝐿
𝑟
(Γ) where we apply

Theorem 9.

If 𝑟 > min{𝑝, 𝑞}, the reasoning process mentioned earlier
is not available. We note the following result in [13] after
authors obtained regularity of global attractor.

Lemma 15 (see [13, Corollary 3.1]). Under the assumptions
of Theorem 11, the semigroup {𝑆(𝑡)}

𝑡≥0
has a compact global

attractorA in (𝐻1(Ω) ∩ 𝐿
𝑝
(Ω)) × 𝐿

𝑞
(Γ).

ByTheorem 7 and Lemma 15, we easily obtain the follow-
ing.

Theorem 16. Under the hypothesis ofTheorem 11, then for any
𝜀 > 0 and any bounded subset 𝐵 ⊂ 𝐿

2
(Ω) × 𝐿

2
(Γ), there exist

two positive constants 𝑇 = 𝑇(𝐵, 𝜀) and𝑀 = 𝑀(𝜀) such that

∫
Ω(|𝑢|≥𝑀)

|𝑢|
𝑝
+ ∫
Γ(|𝑢|≥𝑀)

|𝑢|
𝑞
≤ 𝐶𝜀, ∀𝑡 ≥ 𝑇,

(𝑢
0
, 𝛾 (𝑢
0
)) ∈ 𝐵,

(30)

where the constant 𝐶 is independent of 𝜀 and 𝐵.

Applying Theorem 9 to Theorems 11 and 16, we have the
following.

Corollary 17. Under the assumption of Theorem 12, the semi-
group {𝑆(𝑡)}

𝑡≥0
generated by Problem (1) with initial data 𝑢

0
∈

𝐿
2
(Ω) and 𝛾(𝑢

0
) ∈ 𝐿
2
(Γ) has a (𝐿2(Ω)×𝐿2(Γ), 𝐿𝑝(Ω)×𝐿𝑞(Γ))-

exponential attractorM
𝑝𝑞
.

Remark 18. In fact, for any integer 𝑟 ≤ max{𝑝, 𝑞}, we can
obtain Theorem 16 and Corollary 17 by Lemma 15. In other
words, if 𝑟 ≤ min{𝑝, 𝑞}, we can obtain Theorem 16 and
Corollary 17 by Lemma 15 and need not use asymptotic a
prior estimate. Here, we point this result obtained by the
different procedure.

On account of Theorem 6 and Corollary 17, we have the
following.

Corollary 19. There exists some𝑚 such that

(𝐼 − 𝑃
𝑚
)𝑢
𝐿𝑝(Ω)

+
(𝐼 − 𝑃

𝑚
)𝑢
𝐿𝑞(Γ)

≤ 𝑘𝑒
−𝑙𝑡

+ 𝑘 (𝑚) . (31)

Now, we give some a prior estimates about 𝑢
𝑡
.

Lemma 20 (see [8, 12]). Under the assumption of Theorem 11,
for any bounded subset 𝐵 ⊂ 𝐿

2
(Ω) × 𝐿

2
(Γ), there exists a

positive constant 𝑇
1
which depends only on the 𝐿2(Ω) × 𝐿

2
(Γ)-

norm of B such that

∫
Ω

𝑢𝑡 (𝑠)


2

𝑑𝑥 + ∫
Γ

𝑢𝑡 (𝑠)


2

𝑑𝑥 ≤ 𝑅
1

∀𝑠 ≥ 𝑇
1
, (𝑢
0,0
) ∈ 𝐵,

(32)

where 𝑅
1
is a positive constant which depends on𝑀.

We can easily obtain the following theorem.

Theorem 21. Under the assumption of Theorem 11, the semi-
group {𝑆(𝑡)}

𝑡≥0
generated by Problem (1) with initial data 𝑢

0
∈

𝐿
2
(Ω) and 𝛾(𝑢

0
) ∈ 𝐿
2
(Γ) satisfies the enhanced flattering in the

space𝐻1(Ω) × 𝐿
𝑞
(Γ).

Proof. Wedenote 𝑢 = 𝑢
1
+ 𝑢
2
, where 𝑢

1
= 𝑃
𝑛
𝑢, 𝑢
2
= (𝐼−𝑃

𝑛
)𝑢,

and 𝑃
𝑛
has been introduced in Section 3.

Multiplying Problem (1) by 𝑢
2
, we can get

1

2

𝑑

𝑑𝑡
∫
Ω

𝑢2


2

+
1

2

𝑑

𝑑𝑡
∫
Ω

𝑢2


2

+ ∫
Ω

∇𝑢2


2

+ ∫
Ω

𝑓 (𝑢) 𝑢
2
+ ∫
Γ

𝑔 (𝑢) 𝑢
2

= (ℎ, 𝑢
2
) + ⟨𝜌, 𝑢

2
⟩ .

(33)
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By (25) and (26), we can deduce

∫
Ω

∇𝑢2


2

≤ (
𝑢𝑡2

Ω
+ |ℎ|Ω)

𝑢2
Ω

+ (
𝑢𝑡2

Γ
+
𝜌
Γ
)
𝑢2

Γ

+ ‖𝑢‖
𝑝−1

Ω

𝑢2
𝐿𝑝(Ω)

+ ‖𝑢‖
𝑞−1

Γ

𝑢2
𝐿𝑞(Γ)

.

(34)

By Theorems 11 and 12, Corollary 19, and Lemma 20, we
know that 𝑆(𝑡)𝑢

0
satisfies the enhanced flattering property in

𝐻
1
(Ω). On account of Theorem 6 and Corollary 19, we can

deduce that Theorem 21 is valid.

It is immediate by Theorem 6, Corollary 19, and
Theorem 21.

Corollary 22. Under the assumption ofTheorem 12, the semi-
group {𝑆(𝑡)}

𝑡≥0
generated by Problem (1) with initial data

(𝑢
0
, 𝛾(𝑢
0
)) ∈ 𝐿

2
(Ω) × 𝐿

2
(Γ) has a (𝐿

2
(Ω) × 𝐿

2
(Γ), (𝐻

1
(Ω) ∩

𝐿
𝑝
(Ω)) × 𝐿

𝑞
(Γ))-exponential attractorM.
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[19] M. Grasselli and D. Pražák, “Exponential attractors for a class
of reaction-diffusion problems with time delays,” Journal of
Evolution Equations, vol. 7, no. 4, pp. 649–667, 2007.

[20] R. Temam, Infinite-Dimensional Dynamical Systems inMechan-
ics and Physics, vol. 68 of Applied Mathematical Sciences,
Springer, New York, 1997.

[21] Q. Ma, S. Wang, and C. Zhong, “Necessary and sufficient
conditions for the existence of global attractors for semigroups
and applications,” Indiana University Mathematics Journal, vol.
51, no. 6, pp. 1541–1559, 2002.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


