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We study the input-to-state stability of singularly perturbed control systemswith delays. By using the generalizedHalanay inequality
and Lyapunov functions, we derive the input-to-state stability of some classes of linear and nonlinear singularly perturbed control
systems with delays.

1. Introduction

The stability properties of control systems are an important
research field. The concept of input-to-state stability (ISS) of
the control systems was proposed by Sontag [1]. Since then,
the ISS of the control systems has been widely studied (cf. [2–
12]), and most of the obtained results are often based on the
Lyapunov functions.

Singularly perturbed control systems are a special class of
control systems which is characterized by small parameters
multiplying the highest derivates. Recently, many attentions
have been devoted to the study of singularly perturbed
systems, in particular, to their stability properties. Saberi and
Khalil [13] investigated the asymptotic and exponential stabil-
ity of nonlinear singularly perturbed systems. They obtained
a quadratic-type Lyapunov function as a weighted sum of
quadratic-type Lyapunov functions of the reduced and the
boundary-layer systems. They used the composite Lyapunov
function to estimate the degree of exponential stability and
the domain of attraction of stable equilibrium point. Corless
andGlielmo [14] obtained some results and properties related
to exponential stability of singularly perturbed systems.They
pointed out that, if both the reduced and the boundary-
layer systems are exponentially stable, then, provided that

some further regularity conditions are satisfied, the full-order
system is exponentially stable for sufficiently small value 𝜖.
Liu et al. [15] derived the exponential stability criteria of
singularly perturbed systems with time delay. Christofides
and Teel [11] obtained a type of total stability for the input-to-
state stability property with respect to singular perturbations
under the assumptions that the reduced system is ISS and the
boundary-layer system is uniformly globally asymptotically
stable. Tian [16, 17] discussed the analytic and numerical
dissipativity and exponential stability of singularly perturbed
delay differential equations. There are some results about
the stability of numerical methods for control systems (cf.
[18, 19]).

The previous studies have mainly focused on the expo-
nential stability of singularly perturbed systems with or with-
out delays and the ISS of singularly perturbed control systems
without delay. There are no results about the ISS of delay
singulary perturbed control systems. In this paper, we study
the ISS of some classes of delay singularly perturbed control
systems. By using the generalized Halanay inequality and
the Lyapunov functions, we obtain the sufficient conditions
under which these delay singularly perturbed control systems
are input-to-state stable.
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2. Preliminary

We introduce the following symbols (cf. [8, 11, 15]).
(1) ‖ ⋅ ‖ denotes the standard Euclidean norm of a

vector, ‖|𝑥
𝑡
|‖ = sup

𝜎∈[𝑡−𝜏,𝑡]
‖𝑥(𝜎)‖ and ‖𝐴‖ =

max
1≤𝑗≤𝑚

(∑
𝑛

𝑖=1
𝑎
2

𝑖𝑗
)
1/2 denotes the norm of an 𝑛 × 𝑚

matrix 𝐴 = (𝑎
𝑖𝑗
). A matrix 𝐴(𝑡) is bounded means

that ‖𝐴(𝑡)‖ < ∞.
(2) 𝐴𝑇 denotes the transpose of the matrix 𝐴, 𝜆

𝑖
(𝐴)

denotes the 𝑖th eigenvalue of the matrix 𝐴, and
Re 𝜆
𝑖
(𝐴) denotes the real part of 𝜆

𝑖
(𝐴).

(3) The matrix 𝐴 > 0 means that 𝐴 is positive-definite.
The vector V = (V

1
, V
2
, . . . , V

𝑛
)
𝑇
≥ 0 (> 0)means each

component V
𝑖
≥ 0 (> 0), 𝑖 = 1, 2, . . . , 𝑛.

(4) A real 𝑛 × 𝑛matrix𝐴 = (𝑎
𝑖𝑗
) with 𝑎

𝑖𝑗
≤ 0 for all 𝑖 ̸= 𝑗 is

an𝑀-matrix if 𝐴 is nonsingular and 𝐴−1 > 0.
(5) For any measurable locally essentially bounded func-

tion 𝑢 : 𝑅
≥0

→ 𝑅
𝑑, ‖𝑢
[0,𝑡)

‖ = sup
𝑡≥0
{‖𝑢(𝑡)‖}.

(6) A function 𝛾: 𝑅
≥0

→ 𝑅
≥0

is a 𝜅-function if it is
continuous, strictly increasing, and 𝛾(0) = 0.

(7) A function 𝛽: 𝑅
≥0
× 𝑅
≥0

→ 𝑅
≥0

is a 𝜅𝜑-function if,
for each fixed 𝑡 ≥ 0, the function 𝛽(⋅, 𝑡) ∈ 𝜅, and for
each fixed 𝑠 ≥ 0, the function 𝛽(𝑠, ⋅) is decreasing and
𝛽(𝑠, 𝑡) → 0 as 𝑡 → ∞.

Lemma 1 (see [20]). Let 𝐴(𝑡) be an 𝑛 × 𝑛 matrix whose
elements are continuous functions defined on the time interval
𝐽 = [0,∞) and the following assumptions hold:

(i)Re 𝜆 (𝐴 (𝑡)) ≤ −𝑐
1
< 0, ∀𝑡 ∈ 𝐽,

(ii) ‖𝐴 (𝑡)‖ ≤ 𝑐
2
, ∀𝑡 ∈ 𝐽,

(iii) 

𝐴

(𝑡)






≤ 𝑐
2
, ∀𝑡 ∈ 𝐽.

(1)

Then there exists a positive-definitive matrix 𝑃(𝑡) such that
the following algebraic Lyapunov equation holds:

𝐴
𝑇
(𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐴 (𝑡) = −𝐼, (2)

where 𝑐
1
, 𝑐
2
are constants, 𝐼 is the identity matrix, and 𝑃(𝑡) is

bounded.

The following generalized Halanay inequality will play a
key role in studying the ISS for the system (9).

Lemma 2 (generalized Halanay inequality (see [16, 17])).
Suppose

𝑤

(𝑡) ≤ 𝜆 (𝑡) − 𝛼 (𝑡) 𝑤 (𝑡) + 𝛽 (𝑡) sup

𝑡−𝜏≤𝜎≤𝑡

𝑤 (𝜎) , for 𝑡 ≥ 𝑡
0
.

(3)

Here𝑤(𝑡) is a non-negative real-value continuous function, 𝜏 ≥
0, 𝜆(𝑡), 𝛼(𝑡), and 𝛽(𝑡) are continuous with 0 ≤ 𝜆(𝑡) ≤ 𝜆

∗,
𝛼(𝑡) ≥ 𝛼

0
> 0, and 0 < 𝛽(𝑡) ≤ 𝑞𝛼(𝑡) for 𝑡 ≥ 𝑡

0
and 0 ≤ 𝑞 < 1.

Then

𝑤 (𝑡) ≤

𝜆
∗

(1 − 𝑞) 𝛼
0

+ 𝐺𝑒
−𝜇
⋆

(𝑡−𝑡
0
)
, 𝑡 ≥ 𝑡

0
, (4)

where 𝐺 = sup
𝑡
0
−𝜏≤𝜎≤𝑡

0

|𝑤(𝜎)| and 𝜇⋆ > 0 is defined as

𝜇
⋆
= inf
𝑡≥𝑡
0

{𝜇 (𝑡) : 𝜇 (𝑡) − 𝛼 (𝑡) + 𝛽 (𝑡) 𝑒
𝜇(𝑡)𝜏

= 0} . (5)

Lemma 3. Let 𝐴(𝑡) and 𝐵(𝑡) be 𝑛 × 𝑛 matrix-value func-
tions, ](𝑡) = (]

1
(𝑡),]
2
(𝑡), . . . , ]

𝑛
(𝑡))
𝑇, and let Γ(𝑡) =

(Γ
1
(𝑡), Γ
2
(𝑡), . . . , Γ

𝑛
(𝑡))
𝑇 be vector functions of dimensions 𝑛.

Assume that

(i) 𝜆
𝑖
(𝐴(𝑡) + 𝐴

𝑇
(𝑡)) ≤ −𝑎(𝑡) < 0 (𝑖 = 1, 2, . . . , 𝑛), 𝐵(𝑡) is

bounded;
(ii) −𝑞𝑎(𝑡) + (1 + 𝑞)‖𝐵(𝑡)‖ + 𝑞 ≤ 0 with 0 ≤ 𝑞 < 1;
(iii) 𝑎(𝑡) − ‖𝐵(𝑡)‖ − 1 ≥ 𝑎

∗

0
> 0;

(iv) ](𝑡) ≤ Γ(𝑡) + 𝐴(𝑡)](𝑡) + 𝐵(𝑡)sup
𝑡−𝜏≤𝜎≤𝑡

](𝜎), ‖Γ(𝑡)‖ ≤
Γ
∗,

for 𝑡 ≥ 𝑡
0
, where sup

𝑡−𝜏≤𝜎≤𝑡
](𝜎) = (sup

𝑡−𝜏≤𝜎≤𝑡
]
1
(𝜎),

sup
𝑡−𝜏≤𝜎≤𝑡

]
2
(𝜎),. . . , sup

𝑡−𝜏≤𝜎≤𝑡
]
𝑛
(𝜎))
𝑇.Then the following esti-

mate holds

‖]‖ ≤
Γ
∗

√(1 − 𝑞) 𝑎
∗

0

+












]
𝑡
0












𝑒
−𝛾
∗

(𝑡−𝑡
0
)
, for 𝑡 ≥ 𝑡

0
, (6)

where 𝛾∗ is defined as

2𝛾
∗
= inf {𝛾 (𝑡) : 𝛾 (𝑡) − (𝑎 (𝑡) − ‖𝐵 (𝑡)‖ − 1) + ‖𝐵 (𝑡)‖ 𝑒𝛾(𝑡)𝜏} .

(7)

Proof. Let 𝑉(𝑡) = ‖]‖2 = ]𝑇]. Then

𝑉

(𝑡) = ]

𝑇

] + ]𝑇]

≤ 2]𝑇Γ (𝑡) + ]𝑇 (𝐴(𝑡)𝑇 + 𝐴 (𝑡)) ] (𝑡)

+ 2]𝑇𝐵 (𝑡) sup
𝑡−𝜏≤𝜎≤𝑡

] (𝜎)

≤ 2 ‖] (𝑡)‖ ‖Γ (𝑡)‖ − 𝑎 (𝑡) ‖] (𝑡)‖2

+ 2 ‖𝐵 (𝑡)‖ ‖] (𝑡)‖









]
𝑡











≤ ‖Γ (𝑡)‖
2
+ ‖] (𝑡)‖2 − 𝑎 (𝑡) ‖] (𝑡)‖2

+ ‖𝐵 (𝑡)‖ (‖] (𝑡)‖2 +









]
𝑡











2

)

≤ ‖Γ (𝑡)‖
2
− (𝑎 (𝑡) − ‖𝐵 (𝑡)‖ − 1) ‖] (𝑡)‖2

+ ‖𝐵 (𝑡)‖









]
𝑡











2

.

(8)

Moreover, by the conditions (i)–(iii), the estimate (6) can
be derived as a consequence of (3)–(5) and (8).

Consider the delay singularly perturbed control systems

𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , 𝑢 (𝑡)) , 𝑡 ≥ 0,

𝜖𝑦

(𝑡) = 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡) , 𝑢 (𝑡)) , 0 < 𝜖 ≪ 1,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑦 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(9)
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where 𝑡 ∈ 𝑅 is the “time,” 𝑥 ∈ 𝑅
𝑚 and 𝑦 ∈ 𝑅

𝑛 are
the state variables, 𝑢(𝑡) ∈ 𝑅

𝑑 is the control input which
is locally essentially bounded, 𝜖 is the singular perturbation
parameter, and 𝜏 is a constant time delay. The sufficiently
smooth mapping 𝑓 : 𝑅 ×𝑅𝑚 ×𝑅𝑚 ×𝑅𝑛 ×𝑅𝑛 ×𝑅𝑑 → 𝑅

𝑚
, 𝑔 :

𝑅×𝑅
𝑚
×𝑅
𝑚
×𝑅
𝑛
×𝑅
𝑛
×𝑅
𝑑
→ 𝑅
𝑛 has bounded derivatives and

𝑓(𝑡, 0, 0, 0, 0, 0) = 𝑔(𝑡, 0, 0, 0, 0, 0) = 0. 𝜑 ∈ 𝑅
𝑚 and 𝜓 ∈ 𝑅

𝑛

are given vector-functions and the derivative of 𝜓 exists.

Definition 4. The delay singularly perturbed control system
(9) is ISS if there exist 𝜅𝜑-functions 𝛽

1
, 𝛽
2
: 𝑅
≥0

× 𝑅
≥0

→

𝑅
≥0

and 𝜅-functions 𝛾
1
, 𝛾
2
such that, for any initial functions

𝜑(𝑡), 𝜓(𝑡) and each essentially bounded input 𝑢(𝑡), the solu-
tion of (9) satisfy





𝑥 (𝑡, 𝜑, 𝜓, 𝑢, 𝜖)





≤ 𝛽
1
(𝜉, 𝑡) + 𝛾

1
(




𝑢
[0,𝑡)





) ,





𝑦 (𝑡, 𝜑, 𝜓, 𝑢, 𝜖)





≤ 𝛽
2
(𝜉, 𝑡) + 𝛾

2
(




𝑢
[0,𝑡)





) ,

(10)

where 𝑥(𝑡, 𝜑, 𝜓, 𝑢, 𝜖), 𝑦(𝑡, 𝜑, 𝜓, 𝑢, 𝜖) are the solutions of (9),
𝜉 = sup

−𝜏≤𝑡≤0
‖𝜑(𝑡)‖ + sup

−𝜏≤𝑡≤0
‖𝜓(𝑡)‖ + sup

−𝜏≤𝑡≤0
‖𝜓

(𝑡)‖.

3. Linear Systems

In this section, we are concerned with ISS of the following
linear delay singularly perturbed control systems as a special
class of (9):

𝑥

= 𝐴
11
(𝑡) 𝑥 + 𝐴

12
(𝑡) 𝑥
𝑡
+ 𝐵
11
(𝑡) 𝑦

+ 𝐵
12
(𝑡) 𝑦
𝑡
+ 𝐶
1
(𝑡) 𝑢 (𝑡) , 𝑡 ≥ 0,

𝜖𝑦

= 𝐴
21
(𝑡) 𝑥 + 𝐴

22
(𝑡) 𝑥
𝑡
+ 𝐵
21
(𝑡) 𝑦

+ 𝐶
2
(𝑡) 𝑢 (𝑡) , 0 < 𝜖 ≪ 1,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑦 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [−𝜏, 0] .

(11)

Here we let 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑥
𝑡
= 𝑥(𝑡 − 𝜏), 𝑦

𝑡
= 𝑦(𝑡 − 𝜏),

and 𝑢 = 𝑢(𝑡) for simplicity; 𝐴
1𝑗
(𝑡) ∈ 𝑅

𝑚×𝑚, 𝐴
2𝑗
(𝑡) ∈ 𝑅

𝑛×𝑚,
𝐵
1𝑗
(𝑡) ∈ 𝑅

𝑚×𝑛
(𝑗 = 1, 2), 𝐵

21
(𝑡) ∈ 𝑅

𝑛×𝑛, 𝐶
1
(𝑡) ∈ 𝑅

𝑚×𝑑,
and 𝐶

2
(𝑡) ∈ 𝑅

𝑛×𝑑 are smooth matrix functions of 𝑡, and
𝐵
21
(𝑡) is nonsingular for every 𝑡. Now, we introduce some

assumptions.

Assumption 5. There exist positive constants 𝑐
1
and 𝑐
2
such

that, for for all 𝑡 ∈ 𝐽 = [0, +∞),

Re 𝜆 (𝐴
11
(𝑡)) ≤ −𝑐

1
,





𝐴
11
(𝑡)




≤ 𝑐
2
,






𝐴


11
(𝑡)






≤ 𝑐
2
,

Re 𝜆 (𝐵
21
(𝑡)) ≤ −𝑐

1
,





𝐵
21
(𝑡)




≤ 𝑐
2
,






𝐵


21
(𝑡)






≤ 𝑐
2
,






𝐵
−1

21
(𝑡)






≤ c
2
,






𝐵
−1

21
(𝑡) 𝐴
21
(𝑡)






≤ 𝑐
2
,






𝐵
−1

21
(𝑡) 𝐴
22
(𝑡)






≤ 𝑐
2
,






𝐵
−1

21
(𝑡) 𝐶
2
(𝑡)






≤ 𝑐
2
.

(12)

FromAssumption 5 and Lemma 1, we can easily show that
there exist the differentiable positive-definite matrices 𝑃

1
(𝑡)

and 𝑃
2
(𝑡) such that

𝐴
𝑇

11
(𝑡) 𝑃
1
(𝑡) + 𝑃

1
(𝑡) 𝐴
11
(𝑡) = −𝐼

𝑚
, (13a)

𝐵
𝑇

21
(𝑡) 𝑃
2
(𝑡) + 𝑃

2
(𝑡) 𝐵
21
(𝑡) = −𝐼

𝑛
, (13b)

where 𝐼
𝑚
, 𝐼
𝑛
are𝑚×𝑚, 𝑛×𝑛 identitymatrices, respectively, [21]

shows that Assumption 5 guarantees that Reference, for every
𝑡 ≥ 𝑡

0
, (13a), (13b) have unique positive-definite solutions

𝑃
1
(𝑡) and 𝑃

2
(𝑡) given by

𝑃
1
(𝑡) = ∫

∞

0

𝑒
𝐴
𝑇

11
(𝑡)𝜃

𝑒
𝐴
11
(𝑡)𝜃

𝑑𝜃,

𝑃
2
(𝑡) = ∫

∞

0

𝑒
𝐵
𝑇

21
(𝑡)𝜃

𝑒
𝐵
21
(𝑡)𝜃

𝑑𝜃,

(14)

respectively. It follows from the boundness and the positive-
definiteness of 𝑃

1
(𝑡) and 𝑃

2
(𝑡) that there exist positive con-

stants𝑀
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
(𝑖 = 1, 2) such that

𝑀
1
≤




𝑃
𝑖
(𝑡)




≤ 𝑀
2
, 𝑖 = 1, 2,

𝛼
1
‖𝑥‖
2
≤ 𝑥
𝑇
𝑃
1
(𝑡) 𝑥 ≤ 𝛽

1
‖𝑥‖
2
,

𝛼
2





𝑦





2

≤ 𝑦
𝑇
𝑃
2
(𝑡) 𝑦 ≤ 𝛽

2





𝑦





2

.

(15)

Assumption 6. There exist bounded functions 𝑎
𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡),

and 𝑐
𝑖
(𝑡) (𝑖, 𝑗 = 1, 2) such that

2𝑥
𝑇
𝑃
1
(𝑡) (𝐴

12
(𝑡) 𝑥
𝑡
+ 𝐵
11
(𝑡) 𝑦 + 𝐵

12
(𝑡) 𝑦
𝑡
+ 𝐶
1
(𝑡) 𝑢 (𝑡))

+ 𝑥
𝑇
𝑃


1
(𝑡) 𝑥

≤ 𝑐
1
(𝑡) ‖𝑢 (𝑡)‖

2
+ 𝑎
11
(𝑡) ‖𝑥‖

2
+ 𝑎
12
(𝑡)










𝑥
𝑡











2

+ 𝑏
11
(𝑡)





𝑦 − ℎ






2

+ 𝑏
12
(𝑡)










(𝑦 − ℎ)

𝑡











2

,

− 2(𝑦 − ℎ)
𝑇

𝑃
2
(𝑡) ℎ

+ (𝑦 − ℎ)

𝑇

𝑃


2
(𝑡) (𝑦 − ℎ)

≤ 𝑐
2
(𝑡) ‖𝑢 (𝑡)‖

2
+ 𝑎
21
(𝑡) ‖𝑥‖

2
+ 𝑎
22
(𝑡)










𝑥
𝑡











2

+ 𝑏
21
(𝑡)





𝑦 − ℎ






2

+ 𝑏
22
(𝑡)










(𝑦 − ℎ)

𝑡











2

,

(16)

where

ℎ =

{
{

{
{

{

−𝐵
−1

21
(𝑡)

× [𝐴
21
(𝑡) 𝑥 + 𝐴

22
(𝑡) 𝑥
𝑡
+ 𝐶
2
(𝑡) 𝑢 (𝑡)] , 𝑡 ≥ 0

𝜓 (𝑡) − 𝜖𝐵
−1

21
(𝑡) 𝜓

(𝑡) , 𝑡 ∈ [−𝜏, 0] .

(17)

Assumption 7. (1) There exists a positive number 𝜖
0
such that

−𝐴(𝑡) is an𝑀-matrix;
(2) 𝜆
𝑖
(𝐴(𝑡) + 𝐴

𝑇
(𝑡)) ≤ −𝑎(𝑡) < 0 (𝑖 = 1, 2);

(3) −𝑞𝑎(𝑡) + (1 + 𝑞)‖𝐵(𝑡)‖ + 𝑞 ≤ 0 with 0 ≤ 𝑞 < 1;
(4) 𝑎(𝑡) − ‖𝐵(𝑡)‖ − 1 ≥ 𝑎

∗

0
> 0,
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where

𝐴 (𝑡) = (

−

1 − 𝑎
11
(𝑡)

𝛽
1

𝑏
11
(𝑡)

𝛼
2

𝑎
21
(𝑡)

𝛼
1

−

1 − 𝜖
0
𝑏
21
(𝑡)

𝜖
0
𝛽
2

),

𝐵 (𝑡) = (

𝑎
12
(𝑡)

𝛼
1

𝑏
12
(𝑡)

𝛼
2

𝑎
22
(𝑡)

𝛼
1

𝑏
22
(𝑡)

𝛼
2

).

(18)

Theorem8. If Assumptions 5–7 hold, then the delay singularly
perturbed control system (11) is input-to-state stable for 𝜖 ∈

(0, 𝜖
0
].

Proof. Let𝑉(𝑡, 𝑥) = 𝑥
𝑇
𝑃
1
(𝑡)𝑥,𝑊(𝑡, 𝑥, 𝑦) = (𝑦−ℎ)

𝑇
𝑃
2
(𝑡)(𝑦−

ℎ). For the derivative of𝑉(𝑡, 𝑥) along the trajectory of (11), we
have

𝑉

(𝑡, 𝑥) = [𝐴

11
(𝑡) 𝑥 + 𝐴

12
(𝑡) 𝑥
𝑡
+ 𝐵
11
(𝑡) 𝑦

+𝐵
12
(𝑡) 𝑦
𝑡
+ 𝐶
1
(𝑡) 𝑢]
𝑇

𝑃
1
(𝑡) 𝑥

+ 𝑥
𝑇
𝑃
1
(𝑡) [𝐴

11
(𝑡) 𝑥 + 𝐴

12
(𝑡) 𝑥
𝑡

+𝐵
11
(𝑡) 𝑦 + 𝐵

12
(𝑡) 𝑦
𝑡
+ 𝐶
1
(𝑡) 𝑢]

+ 𝑥
𝑇
𝑃


1
(𝑡) 𝑥

= 𝑥
𝑇
(𝐴
𝑇

11
(𝑡) 𝑃
1
(𝑡) + 𝑃

1
(𝑡) 𝐴
11
(𝑡)) 𝑥

+ 2𝑥
𝑇
𝑃
1
(𝑡) [𝐴

12
(𝑡) 𝑥
𝑡
+ 𝐵
11
(𝑡) 𝑦

+𝐵
12
(𝑡) 𝑦
𝑡
+ 𝐶
1
(𝑡) 𝑢]

+ 𝑥
𝑇
𝑃


1
(𝑡) 𝑥

≤ − (1 − 𝑎
11
(𝑡)) ‖𝑥‖

2
+ 𝑎
12
(𝑡)










𝑥
𝑡











2

+ 𝑏
11
(𝑡)





𝑦 − ℎ






2

+𝑏
12
(𝑡)










(𝑦 − ℎ)

𝑡











2

+𝑐
1
(𝑡) ‖𝑢‖

2
.

(19)

For the derivative of𝑊(𝑡, 𝑥, 𝑦) along the trajectory of (11), we
have

𝑊

(𝑡, 𝑥, 𝑦)

= [

1

𝜖

(𝐴
21
(𝑡) 𝑥 + 𝐴

22
(𝑡) 𝑥
𝑡
+ 𝐵
21
(𝑡) 𝑦 + 𝐶

2
(𝑡) 𝑢) − ℎ


]

𝑇

× 𝑃
2
(𝑡) (𝑦 − ℎ) + (𝑦 − ℎ)

𝑇

𝑃
2
(𝑡)

× [

1

𝜖

(𝐴
21
(𝑡) 𝑥 + 𝐴

22
(𝑡) 𝑥
𝑡
+ 𝐵
21
(𝑡) 𝑦 + 𝐶

2
(𝑡) 𝑢) − ℎ


]

+ (𝑦 − ℎ)
𝑇

𝑃


2
(𝑡) (𝑦 − ℎ)

=

1

𝜖

(𝑦 − ℎ)
𝑇

[𝐵
𝑇

21
(𝑡) 𝑃
2
(𝑡) + 𝑃

2
(𝑡) 𝐵
21
(𝑡)]

𝑇

− 2(𝑦 − ℎ)
𝑇

(𝑡) ℎ

+ (𝑦 − ℎ)

𝑇

𝑃


2
(𝑡) (𝑦 − ℎ)

≤ −

1

𝜖

(1 − 𝜖𝑏
21
(𝑡))





𝑦 − ℎ






2

+ 𝑎
21
(𝑡) ‖𝑥‖

2

+ 𝑎
22
(𝑡)










𝑥
𝑡











2

+ 𝑏
22
(𝑡)










(𝑦 − ℎ)

𝑡











2

+ 𝑐
2
(𝑡) ‖𝑢‖

2
.

(20)

From (1) of Assumption 7, we can derive (1 − 𝜖
0
𝑏
21
(𝑡))/

𝜖
0
𝛽
2
> 0 and the following inequalities for 𝜖 ∈ (0, 𝜖

0
] and

𝑡 ≥ 0:

𝑉

≤ −

1 − 𝑎
11
(𝑡)

𝛽
1

𝑉 +

𝑏
11
(𝑡)

𝛼
2

𝑊

+

𝑎
12
(𝑡)

𝛼
1










𝑉
𝑡










+

𝑏
12
(𝑡)

𝛼
2










𝑊
𝑡










+ 𝑐
1
(𝑡) ‖𝑢‖

2
,

𝑊

≤

𝑎
21
(𝑡)

𝛼
1

𝑉 −

1 − 𝜖𝑏
21
(𝑡)

𝜖𝛽
2

𝑊+

𝑎
22
(𝑡)

𝛼
1










𝑉
𝑡











+

𝑏
22
(𝑡)

𝛼
2










𝑊
𝑡










+ 𝑐
2
(𝑡) ‖𝑢‖

2

≤

𝑎
21
(𝑡)

𝛼
1

𝑉 −

1 − 𝜖
0
𝑏
21
(𝑡)

𝜖
0
𝛽
2

𝑊+

𝑎
22
(𝑡)

𝛼
1










𝑉
𝑡











+

𝑏
22
(𝑡)

𝛼
2










𝑊
𝑡










+ 𝑐
2
(𝑡) ‖𝑢‖

2
.

(21)

It follows from Lemma 3 that there exist positive constants
𝜆, 𝑎
∗

0
, and 𝑐

∗

0
such that

𝑉 ≤ (












𝑉
𝑡
0












+












𝑊
𝑡
0












) 𝑒
−2𝜆𝑡

+

𝑐
∗

0





𝑢
[0,𝑡)






2

√(1 − 𝑞) 𝑎
∗

0

,

𝑊 ≤ (












𝑉
𝑡
0












+












𝑊
𝑡
0












) 𝑒
−2𝜆𝑡

+

𝑐
∗

0





𝑢
[0,𝑡)






2

√(1 − 𝑞) 𝑎
∗

0

,

(22)

where ‖(𝑐
1
(𝑡), 𝑐
2
(𝑡))
𝑇
‖ ≤ 𝑐
∗

0
and 𝜆 is defined by

4𝜆 = inf
𝑡≥0

{𝜆 (𝑡) : 𝜆 (𝑡) − (𝑎 (𝑡) −






𝐵 (𝑡)






− 1) +






𝐵 (𝑡)






𝑒
𝜆(𝑡)𝜏

} .

(23)
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By the definition of 𝑉(𝑡, 𝑥) and the positive-definiteness of
𝑃
1
(𝑡), we have

𝛼
1
‖𝑥‖
2
≤ 𝑉

≤ (












𝑉
𝑡
0












+












𝑊
𝑡
0












) 𝑒
−2𝜆𝑡

+

𝑐
∗

0





𝑢
[0,𝑡)






2

√(1 − 𝑞) 𝑎
∗

0

≤ (𝛽
1










𝑥
0











2

+ 𝛽
2










(𝑦 − ℎ)

0











2

) 𝑒
−2𝜆𝑡

+

𝑐
∗

0





𝑢
[0,𝑡)






2

√(1 − 𝑞) 𝑎
∗

0

≤ (𝛽
1










𝑥
0











2

+ 𝛽
2










𝑦
0











2

+ 𝛽
2










ℎ
0











2

) 𝑒
−2𝜆𝑡

+

𝑐
∗

0





𝑢
[0,𝑡)






2

√(1 − 𝑞) 𝑎
∗

0

≤ (𝛽
1










𝑥
0











2

+ 2𝛽
2










𝑦
0











2

+ 𝛽
2
𝜖
2

0
𝑐
2

2












𝜓


0













2

) 𝑒
−2𝜆𝑡

+

𝑐
∗

0





𝑢
[0,𝑡)






2

√(1 − 𝑞) 𝑎
∗

0

,

‖𝑥‖
2
≤ 𝐾
2

1
(









𝜑
0











2

+









𝜓
0











2

+












𝜓


0













2

) 𝑒
−2𝜆𝑡

+𝐾
2

2





𝑢
[0,𝑡)






2

,

(24)

where 𝐾
2

1
= max{𝛽

1
/𝛼
1
, 2𝛽
2
/𝛼
1
, 𝛽
2
𝜖
2

0
𝑐
2

2
/𝛼
1
} and 𝐾

2

2
=

𝑐
∗

0
/√(1 − 𝑞)𝑎

∗

0
𝛼
1
. Moreover,

‖𝑥‖ ≤ 𝐾
1
(









𝜑
0










+









𝜓
0










+












𝜓


0












) 𝑒
−𝜆𝑡

+ 𝐾
2





𝑢
[0,𝑡)





. (25)

Thus, (25) and the inequality





𝑦




− ‖ℎ‖ ≤





(𝑦 − ℎ) (𝑡)





≤ (𝛼
2
)
−1/2

𝑊
1/2 (26)

imply that





𝑦




≤ ‖ℎ‖ + (𝛼

2
)
−1/2

𝑊
1/2

≤ 2𝑐
2
(𝐾
1
(









𝜑
0










+









𝜓
0










+












𝜓


0












) 𝑒
−𝜆(𝑡−𝜏)

+ 𝐾
2





𝑢
[0,𝑡)





)

+ 𝑐
2





𝑢
[0,𝑡)





+ (𝛼
2
)
−1/2

𝑊
1/2

≤ (2𝑐
2
+ √

𝛼
1

𝛼
2

)𝐾
1
(









𝜑
0










+









𝜓
0










+












𝜓


0












) 𝑒
−𝜆(𝑡−𝜏)

+ ((2𝑐
2
+ √

𝛼
1

𝛼
2

)𝐾
2
+ 𝑐
2
)




𝑢
[0,𝑡)






= 𝐾
∗

1
(









𝜑
0










+









𝜓
0










+












𝜓


0












) 𝑒
−𝜆(𝑡−𝜏)

+ 𝐾
∗

2





𝑢
[0,𝑡)





,

(27)

where 𝐾∗
1
= (2𝑐
2
+ √𝛼
1
/𝛼
2
)𝐾
1
, 𝐾∗
2
= (2𝑐
2
+ √𝛼
1
/𝛼
2
)𝐾
2
+ 𝑐
2
.

The proof is complete.

4. Nonlinear Systems

In this section, we are concerned with ISS of the following
nonlinear delay singularly perturbed control systems as a
special class of (9):

𝑥

= 𝐴 (𝑡) 𝑥 + 𝑓 (𝑡, 𝑥, 𝑥

𝑡
, 𝑦, 𝑦
𝑡
, 𝑢) , 𝑡 ≥ 0,

𝜖𝑦

= 𝐵 (𝑡) 𝑦 + 𝑔 (𝑡, 𝑥, 𝑥

𝑡
, 𝑢) , 0 < 𝜖 ≪ 1,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑦 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(28)

where 𝐴(𝑡) ∈ 𝑅
𝑚×𝑚, 𝐵(𝑡) ∈ 𝑅

𝑛×𝑛, 𝑓(𝑡, 0, 0, 0, 0, 0) = 0, and
𝑔(𝑡, 0, 0, 0) = 0. Assume that (28) has a unique equilibrium at
the origin and the functions 𝑓 and 𝑔 are smooth enough and
the derivative of 𝜓 exists.

Assumption 9. There exist positive constants 𝑐
1
, 𝑐
2
for all 𝑡 ∈ 𝐽

such that

Re 𝜆 (𝐴 (𝑡)) ≤ −𝑐
1
, ‖𝐴 (𝑡)‖ ≤ 𝑐

2
,






𝐴

(𝑡)






≤ 𝑐
2
,

Re 𝜆 (𝐵 (𝑡)) ≤ −𝑐
1
, ‖𝐵 (𝑡)‖ ≤ 𝑐

2
,






𝐵

(𝑡)






≤ 𝑐
2
.

(29)

If Assumption 9 holds, then there exist the differentiable
positive-definite matrices 𝑃

1
(𝑡) and 𝑃

2
(𝑡) such that

𝐴
𝑇
(𝑡) 𝑃
1
(𝑡) + 𝑃

1
(𝑡) 𝐴 (𝑡) = −𝐼

𝑚
,

𝐵
𝑇
(𝑡) 𝑃
2
(𝑡) + 𝑃

2
(𝑡) 𝐵 (𝑡) = −𝐼

𝑛
,

(30)

where 𝐼
𝑚
, 𝐼
𝑛
are 𝑚 × 𝑚, 𝑛 × 𝑛 identity matrices, respec-

tively. It follows from the boundness and the positive-
definiteness of 𝑃

1
(𝑡) and 𝑃

2
(𝑡) that there exist positive con-

stants𝑀
𝑖
, 𝛼
𝑖
, and 𝛽

𝑖
(𝑖 = 1, 2) such that

𝑀
1
≤




𝑃
𝑖
(𝑡)




≤ 𝑀
2
, 𝑖 = 1, 2,

𝛼
1
‖𝑥‖
2
≤ 𝑥
𝑇
𝑃
1
(𝑡) 𝑥 ≤ 𝛽

1
‖𝑥‖
2
,

𝛼
2





𝑦





2

≤ 𝑦
𝑇
𝑃
2
(𝑡) 𝑦 ≤ 𝛽

2





𝑦





2

.

(31)

Assumption 10. There exist bounded functions 𝑎
𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡),

and 𝑐
𝑖
(𝑡) (𝑖, 𝑗 = 1, 2) such that

2𝑥
𝑇
𝑃
1
(𝑡) 𝑓 (𝑡, 𝑥, 𝑥

𝑡
, 𝑦, 𝑦
𝑡
, 𝑢) + 𝑥

𝑇
𝑃


1
(𝑡) 𝑥

≤ 𝑐
1
(𝑡) ‖𝑢‖

2
+ 𝑎
11
(𝑡) ‖𝑥‖

2
+ 𝑎
12
(𝑡)










𝑥
𝑡











2

+ 𝑏
11
(𝑡)





𝑦 − ℎ






2

+ 𝑏
11
(𝑡)










(𝑦 − ℎ)

𝑡











2

,

− 2(𝑦 − ℎ)
𝑇

𝑃
2
(𝑡) ℎ

+ (𝑦 − ℎ)

𝑇

𝑃


2
(𝑡) (𝑦 − ℎ)

≤ 𝑐
2
(𝑡) ‖𝑢‖

2
+ 𝑎
21
(𝑡) ‖𝑥‖

2
+ 𝑎
22
(𝑡)










𝑥
𝑡











2

+ 𝑏
21
(𝑡)





𝑦 − ℎ






2

+ 𝑏
21
(𝑡)










(𝑦 − ℎ)

𝑡











2

,

(32)
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where

ℎ = {

−𝐵
−1
(𝑡) 𝑔 (𝑡, 𝑥, 𝑥

𝑡
, 𝑢 (𝑡)) , 𝑡 ≥ 0

𝜓 (𝑡) − 𝜖𝐵
−1
(𝑡) 𝜓

(𝑡) , 𝑡 ∈ [−𝜏, 0] .

(33)

Assumption 11. (1) There exist a positive number 𝜖
0
such that

−𝐴(𝑡) is an𝑀-matrix;

(2) 𝜆
𝑖
(𝐴(𝑡) + 𝐴

𝑇
(𝑡)) ≤ −𝑎(𝑡) < 0 (𝑖 = 1, 2);

(3) −𝑞𝑎(𝑡) + (1 + 𝑞)‖𝐵(𝑡)‖ + 𝑞 ≤ 0 with 0 ≤ 𝑞 < 1;

(4) 𝑎(𝑡) − ‖𝐵(𝑡)‖ − 1 ≥ 𝑎
∗

0
> 0,

where

𝐴 (𝑡) = (

−

1 − 𝑎
11
(𝑡)

𝛽
1

𝑏
11
(𝑡)

𝛼
2

𝑎
21
(𝑡)

𝛼
1

−

1 − 𝜖
0
𝑏
21
(𝑡)

𝜖
0
𝛽
2

),

𝐵 (𝑡) = (

𝑎
12
(𝑡)

𝛼
1

𝑏
12
(𝑡)

𝛼
2

𝑎
22
(𝑡)

𝛼
1

𝑏
22
(𝑡)

𝛼
2

).

(34)

Theorem 12. If Assumptions 9–11 hold, then the delay singu-
larly perturbed control system (28) is input-to-state stable for
𝜖 ∈ (0, 𝜖

0
].

Proof. Let𝑉(𝑡, 𝑥) = 𝑥
𝑇
𝑃
1
(𝑡)𝑥,𝑊(𝑡, 𝑥, 𝑦) = (𝑦−ℎ)

𝑇
𝑃
2
(𝑡)(𝑦−

ℎ). For the derivative of 𝑉(𝑡, 𝑥) along the trajectory of (28),
we have

𝑉

(𝑡, 𝑥)

= [𝐴 (𝑡) 𝑥 + 𝑓 (𝑡, 𝑥, 𝑥
𝑡
, 𝑦, 𝑦
𝑡
, 𝑢)]
𝑇

𝑃
1
(𝑡) 𝑥

+ 𝑥
𝑇
𝑃
1
(𝑡) [𝐴 (𝑡) 𝑥 + 𝑓 (𝑡, 𝑥, 𝑥

𝑡
, 𝑦, 𝑦
𝑡
, 𝑢)] + 𝑥

𝑇
𝑃


1
(𝑡) 𝑥

= 𝑥
𝑇
(𝐴
𝑇
(𝑡) 𝑃
1
(𝑡) + 𝑃

1
(𝑡) 𝐴 (𝑡)) 𝑥

+ 2𝑥
𝑇
𝑃
1
(𝑡) 𝑓 (𝑡, 𝑥, 𝑥

𝑡
, 𝑦, 𝑦
𝑡
, 𝑢) + 𝑥

𝑇
𝑃


1
(𝑡) 𝑥

≤ − (1 − 𝑎
11
(𝑡)) ‖𝑥‖

2
+ 𝑎
12
(𝑡)










𝑥
𝑡











2

+ 𝑏
11
(𝑡)





𝑦 − ℎ






2

+ 𝑏
12
(𝑡)










(𝑦 − ℎ)

𝑡











2

+ 𝑐
1
(𝑡) ‖𝑢‖

2
.

(35)

For the derivative of 𝑊(𝑡, 𝑥, 𝑦) along the trajectory of (28),
we have

𝑊

(𝑡, 𝑥, 𝑦)

= [

1

𝜖

(𝐵 (𝑡) 𝑦 + 𝑔 (𝑡, 𝑥, 𝑥
𝑡
, 𝑢)) − ℎ


]

𝑇

𝑃
2
(𝑡) (𝑦 − ℎ)

+ (𝑦 − ℎ)
𝑇

𝑃
2
(𝑡) [

1

𝜖

(𝐵 (𝑡) 𝑦 + 𝑔 (𝑡, 𝑥, 𝑥
𝑡
, 𝑢)) − ℎ


]

+ (𝑦 − ℎ)
𝑇

𝑃


2
(𝑡) (𝑦 − ℎ)

=

1

𝜖

(𝑦 − ℎ)
𝑇

[𝐵
𝑇
(𝑡) 𝑃
2
(𝑡) + 𝑃

2
(𝑡) 𝐵 (𝑡)]

𝑇

(𝑦 − ℎ)

− 2(𝑦 − ℎ)
𝑇

𝑃
2
(𝑡) ℎ

+ (𝑦 − ℎ)

𝑇

𝑃


2
(𝑡) (𝑦 − ℎ)

≤ −

1

𝜖

(1 − 𝜖𝑏
21
(𝑡))





𝑦 − ℎ






2

+ 𝑎
21
(𝑡) ‖𝑥‖

2
+ 𝑎
22
(𝑡)










𝑥
𝑡











2

+ 𝑏
22
(𝑡)










(𝑦 − ℎ)

𝑡











2

+ 𝑐
2
(𝑡) ‖𝑢‖

2
.

(36)

From (1) of Assumption 11, we can derive (1 − 𝜖
0
𝑏
21
(𝑡))/

𝜖
0
𝛽
2
> 0 and the following inequalities for 𝜖 ∈ (0, 𝜖

0
]:

𝑉

≤ −

1 − 𝑎
11
(𝑡)

𝛽
1

𝑉 +

𝑏
11
(𝑡)

𝛼
2

𝑊+

𝑎
12
(𝑡)

𝛼
1










𝑉
𝑡











+

𝑏
12
(𝑡)

𝛼
2










𝑊
𝑡










+ 𝑐
1
(𝑡) ‖𝑢‖

2
,

𝑊

≤

𝑎
21
(𝑡)

𝛼
1

𝑉 −

1 − 𝜖𝑏
21
(𝑡)

𝜖𝛽
2

𝑊+

𝑎
22
(𝑡)

𝛼
1










𝑉
𝑡











+

𝑏
22
(𝑡)

𝛼
2










𝑊
𝑡










+ 𝑐
2
(𝑡) ‖𝑢‖

2

≤

𝑎
21
(𝑡)

𝛼
1

𝑉 −

1 − 𝜖
0
𝑏
21
(𝑡)

𝜖
0
𝛽
2

𝑊+

𝑎
22
(𝑡)

𝛼
1










𝑉
𝑡











+

𝑏
22
(𝑡)

𝛼
2










𝑊
𝑡










+ 𝑐
2
(𝑡) ‖𝑢‖

2
.

(37)

It follows from Lemma 3 that there exist positive constants
𝜆, 𝑎
∗

0
, and 𝑐

∗

0
such that

𝑉 ≤ (












𝑉
𝑡
0












+












𝑊
𝑡
0












) 𝑒
−2𝜆𝑡

+

𝑐
∗

0





𝑢
[0,𝑡)






2

√(1 − 𝑞) 𝑎
∗

0

,

𝑊 ≤ (












𝑉
𝑡
0












+












𝑊
𝑡
0












) 𝑒
−2𝜆𝑡

+

𝑐
∗

0





𝑢
[0,𝑡)






2

√(1 − 𝑞) 𝑎
∗

0

,

(38)

where ‖(𝑐
1
(𝑡), 𝑐
2
(𝑡))
𝑇
‖ ≤ 𝑐
∗

0
and 𝜆 is defined as in (23).
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By the definitions of 𝑉(𝑡, 𝑥), 𝑊(𝑡, 𝑥, 𝑦), the positive-
definiteness of 𝑃

1
(𝑡), 𝑃
2
(𝑡), and the similar proof process to

that of Theorem 8, we can obtain

‖𝑥‖ ≤ 𝐾
1
(









𝜑
0










+









𝜓
0










+












𝜓


0












) 𝑒
−𝜆𝑡

+ 𝐾
2





𝑢
[0,𝑡)





,





𝑦




≤ 𝐾
∗

1
(









𝜑
0










+









𝜓
0










+












𝜓


0












) 𝑒
−𝜆(𝑡−𝜏)

+ 𝐾
∗

2





𝑢
[0,𝑡)





,

(39)

where 𝐾
1

= √max{𝛽
1
/𝛼
1
, 2𝛽
2
/𝛼
1
, 𝛽
2
𝜖
2

0
𝑐
2

2
/𝛼
1
}, 𝐾
2

=

√𝑐
∗

0
/√(1 − 𝑞)𝑎

∗

0
𝛼
1
, 𝐾∗
1

= (2𝑐
2
+ √𝛼

1
/𝛼
2
)𝐾
1
and 𝐾

∗

2
=

(2𝑐
2
+ √𝛼
1
/𝛼
2
)𝐾
2
+ 𝑐
2
. The proof is complete.

5. Examples

Example 1. Consider the following linear delay system as an
application of Theorem 8:

𝑥

(𝑡) = −5𝑥 (𝑡) + 𝑦 (𝑡 − 𝜏) + 𝑢 (𝑡) ,

𝜖𝑦

(𝑡) = 3𝑥 (𝑡) − 5𝑦 (𝑡) .

(40)

Let 𝑉 = 𝑥
2
/10,𝑊 = (𝑦 − ℎ)

2
/10, ℎ = 3𝑥(𝑡)/5. Then

𝑉

(𝑡, 𝑥) =

1

5

𝑥 (−5𝑥 + 𝑦
𝑡
+ 𝑢)

≤ −

37

5

𝑉 +

3

5










𝑉
𝑡










+









𝑊
𝑡










+

1

5

‖𝑢‖
2
,

(41)

𝑊

(𝑡, 𝑥, 𝑦) =

1

5

(𝑦 − ℎ) (

1

𝜖

(3𝑥 − 5𝑦) −

3

5

(−5𝑥 + 𝑦
𝑡
+ 𝑢))

≤ 3𝑉 + (−

10

𝜖

+

114

25

)𝑊

+

9

25










𝑉
𝑡











3

5










𝑊
𝑡










+

3

50

‖𝑢‖
2
.

(42)

So we obtain the matrices

𝐴 (𝑡) = (

−

37

5

0

3 −

10

𝜖

+

114

25

) ,

𝐵 (𝑡) = (

3

5

1

9

25

3

5

) .

(43)

If we require that the constant 𝜖
0
satisfies −10/𝜖

0
+ 114/25 ≤

−37/5; that is, 𝜖
0
≤ 250/299, then, we can take 𝜖

0
= 250/299

such that it is easy to show that the conditions inAssumptions
5–7 will be satisfied for any 𝜖 ∈ (0, 𝜖

0
]. Moreover, by

Theorem 8, the system (40) is ISS for 𝜖 ∈ (0, 𝜖
0
].

Example 2. Consider the following nonlinear delay system as
an application of Theorem 12:

𝑥

(𝑡)=−15𝑥 (𝑡)+5 ln (1+𝑥2 (𝑡 − 𝜏))+sin (𝑦 (𝑡))+𝑢 (𝑡) ,

𝜖𝑦

(𝑡) = 2𝑥 (𝑡 − 𝜏) − 6𝑦 (𝑡) .

(44)

Let 𝑉 = 𝑥
2
/30,𝑊 = (𝑦 − ℎ)

2
/12, and ℎ = 𝑥(𝑡 − 𝜏)/3. Then

𝑉

(𝑡, 𝑥) =

1

15

𝑥 (−15𝑥 + 5 ln (1 + 𝑥2
𝑡
) + sin𝑦 + 𝑢)

≤

−68

3

𝑉 +

2

5

𝑊 +

16

3










𝑉
𝑡










+

1

30

‖𝑢‖
2
,

𝑊

(𝑡, 𝑥, 𝑦) =

1

6

(𝑦 − ℎ) (

1

𝜖

(2𝑥
𝑡
− 6𝑦) − ℎ


)

≤ (−

12

𝜖

+

67

9

)𝑊 +

61

9










𝑉
𝑡











+

1

3










𝑊
𝑡










+

1

36

‖𝑢‖
2
.

(45)

So we obtain the matrices

𝐴 (𝑡) = (

−

68

3

2

5

0 −

12

𝜖

+

67

9

) ,

𝐵 (𝑡) = (

16

3

0

61

9

1

3

) .

(46)

If we require that the constant 𝜖
0
satisfies −12/𝜖 + 67/9 ≤

−68/3; that is, 𝜖
0
≤ 108/271, then, we can take 𝜖

0
= 108/271

such that it is easy to show that the conditions inAssumptions
9–11 will be satisfied for any 𝜖 ∈ (0, 𝜖

0
]. Moreover, by

Theorem 12, the system (44) is ISS for 𝜖 ∈ (0, 𝜖
0
].

6. Conclusion

In this paper, we have studied the input-to-state stability of
two classes of the linear and nonlinear delay singularly per-
turbed control systems. The generalized Halanay inequality
and the Lyapunov function play important roles in obtaining
the stability results.The sufficient conditions of input-to-state
stability for delay singularly perturbed control systems are
given.
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