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Erythrocyte aggregation and dissociation play an important role in the determination of hemodynamical properties of blood flow
inmicrocirculation.This paper intends to investigate the adhesion and dissociation kinetics of erythrocytes through computational
modeling.The technique of immersed boundary-fictitious domain method has been applied to the study of erythrocyte aggregates
traversing modeled stenotic microchannels. The effects of stenosis geometry, cell membrane stiffness, and intercellular interaction
strength on aggregate hemodynamics including transit velocity are studied. It is found that the width of the stenosis throat and
shape of stenosis have a significant influence on the dissociation of the aggregates. Moreover, horizontally orientated erythrocyte
aggregates are observed to dissociate much easier than their vertical counterparts under the same simulation conditions. Results
from this study contribute to the fundamental understanding and knowledge on the biophysical characteristics of erythrocyte
aggregates in microscopic blood flow, which will provide pathological insights into some human diseases, such as malaria.

1. Introduction

Erythrocyte (red blood cell or RBC) aggregation and disso-
ciation are a common and complex biophysical process in
vivo [1, 2].The tendency of erythrocytes to aggregate increases
significantly in a number of human diseases, such as malaria,
cancer, and some hemorheological disorders [3–7] due to
the alternations in cell membrane mechanical and adhesive
properties. For example, when people are infected by malaria
in which erythrocytes are parasitized by Plasmodium falci-
parum, erythrocytes tend to form aggregates in the shape
of stack of coin because the surface of the cell becomes stiff
and adhesive after infection. In fact, The malaria-infected
erythrocytes could be more than ten times rigid [8–10] and
adhesive [11, 12] in comparison with healthy ones. These
rouleaux structures break into smaller aggregates or even
become individually dispersed as the shear stress in blood
increases. This aggregation phenomenon of erythrocytes can
lead to drastically altered blood flow dynamics and is also
responsible for the non-Newtonian behavior of blood, which
is of great scientifical and clinical interest [13–15].

Arterioles are the primary location of blood flow in
microcirculations where erythrocytes are the essential con-
stituents. Due to their relatively small size in diameter (20–
50𝜇m), the effect of vessel wall thickening and luminal
narrowing on the blood flow in arterioles may be significant.
Evidence shows that retinal arteriolar stenosis is closely
related to coronary heart disease inwoman [16]. Recently, sig-
nificant advances have beenmade on experimental design for
microfluidic systems. For example, micropipette aspiration,
optical tweezers, and microchannel are recently developed
techniques that have been applied to the study of the behavior
of vesicles and erythrocytes. Due to the development in fabri-
cation of novel microfluidic device for separating andmanip-
ulating erythrocytes, there has been a growing interest in
investigation of blood flow dynamics at microscale [17–20].
Experimental in vitro studies of individual cancer cell [21] and
erythrocyte [19, 22] have been done in microfluidic devices,
to name a few. In particular, single erythrocyte dynamics has
been studied in flow along sinusoidal patterned microchan-
nels [22], and both orientational angle and shape oscillations
have been observed.
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However, blood flow exhibits a complex and rich behavior
due to the cell-cell, cell-structure, and cell-fluid interactions
inmicrocirculation, and the current experimental techniques
have several limitations for this topic, especially when the
aggregation of erythrocytes is involved. For example, it is
difficult to obtain three-dimensional flow information using
these methods. Moreover, microvasculature in human body
consists of very complex network of circular channels which
is impossible to be fabricated by today’s technology. On the
other hand, it is critical to understand the underlying bio-
physical mechanisms of physiological and pathological phe-
nomena for the design of advanced microfluidic devices.
Numerical simulation is an alternative to overcome these
problems and hasmade remarkable success. Fenech et al. [23]
managed to simulate erythrocyte aggregation phenomena
with a large number of cells by a particle dynamic model.
In their model, the erythrocytes were designed as spheres
instead of biconcave, deformable objects. Recent numerical
studies on the erythrocyte aggregation have taken into
account the rheological aspect and dynamic motion of the
cells in blood flow [24–27]. It has been shown numerically
that aggregability is an important determinant factor of the
hemodynamics and rheological behavior of blood in micro-
circulation [28, 29]. Studies also showed that erythrocyte
aggregability was closely related to the cell deformability
and cell-cell interactions [30]. However, these numerical
simulations have been conducted in regular straight channels
or tubes. There have not been many microscopic simulations
performed with geometrically irregular boundaries, which is
a common situation in human cardiovascular system.

The present study aimed to investigate the dynamics of
erythrocytes aggregates in microchannel with stenoses by an
immersed boundary-fictitious domain scheme. The goal of
this study focused on the structure-induced aggregate disso-
ciation taking place in the irregular-shaped vessel. To achieve
this, a previously developed membrane model [30, 31] was
used to simulate the dynamics of erythrocytes; that is, the
erythrocytes weremodeled asmembrane particles connected
by springs with stretch/compression resistance and bending
rigidity. By varying the stretch/compression and bending
constants, healthy and malaria-infected erythrocytes were
modeled.The immersed boundary method has been coupled
with the fictitious domain method to deal with the complex
flow behavior in this irregular domain geometry. The effect
of geometry of the channel, mechanical property of the cell
membrane, intercellular strength, and initial aggregate orien-
tation were also analyzed.

2. Mathematical Formulation and
Numerical Method

The blood flow region is a two-dimensional microchannel
with two symmetrically formed stenoses, and erythrocyte
aggregates move in the stenotic channel under the influence
of hydrodynamical force.Thefluid (blood plasma) is assumed
to be incompressible, Newtonian with constant density and
constant viscosity so that the Navier-Stokes equations can be
applied. The flow region is expressed as Ω𝑓. In order to solve

the fluid flow and the fluid-cell interactions in this irregular-
shaped domain, the fictitious domain method (FDM) was
combined with the immersed boundary method (IBM).

2.1. Immersed Boundary-Fictitious Domain Scheme. The fic-
titious domain method (FDM) and its applications to fluid
flow problems have been discussed elsewhere [32, 33]. To
employ the FDM, the flow region Ω𝑓 is embedded in the
smallest rectangular domain, which is denoted by Ω. Then
the fluid flow containing erythrocytes is solved in the bigger
domain Ω, and the no-flow condition in the solid region is
treated as constrains. Through this method, the irregular-
shaped domain is extended to regular shaped so that a simple
structured computation grid instead of unstructured mesh
can be used, which substantially reduces computational
complexity of the algorithm. The method can be described
by the following extended Navier-Stokes equations:

𝜌 [
𝜕u
𝜕𝑡

+ u ⋅ ∇u] = −∇𝑝 + 𝜇Δu + f , in Ω𝑓, (1)

∇ ⋅ u = 0, in Ω𝑓,

u = 0, in Ω \ Ω𝑓,

(2)

where u(x, 𝑡) and 𝑝 are the fluid velocity and pressure
anywhere in the flow; 𝜌 is the fluid density; and 𝜇 is the fluid
viscosity.The body force term f(x, 𝑡) is introduced to account
for the force acting on the fluid/cell interface. The boundary
conditions are such that on 𝜕Ω𝑓 no-slip condition is applied
and at the inlet and outlet of the channel, periodic flow
condition is enforced. A detailed description of the solution
method of (1) and (2) can be found in [32, 33].

In this study, the fluid-cell interaction dealt with the
immersed boundary method (IBM) developed by Peskin
[34]. Based on this method, the boundary of the deformable
object is easily calculated by the following scheme: first, the
force located at the immersed boundary node X = {𝑋1, 𝑋2}

affects the nearby fluid mesh nodes x = {𝑥1, 𝑥2} through a
discrete 𝛿 function:

F (x) = ∑

x
F (X) 𝐷ℎ (X − x) , for |X − x| ≤ ℎ, (3)

where ℎ is the uniform finite element mesh size and

𝐷ℎ (X − x) = 𝛿ℎ (𝑋1 − 𝑥1) 𝛿ℎ (𝑋2 − 𝑥2) , (4)

with the 1D discrete 𝛿-functions being

𝛿ℎ (𝑧) =

{{

{{

{

1

4ℎ
(1 + cos(𝜋 ⋅ 𝑧

2ℎ
)) for |𝑧| ≤ 2ℎ,

0 for |𝑧| > 2ℎ.

(5)

The force generated by the deformation of the membrane is
then substituted into the external force term of (1) only for
membrane particles; next, the movement of the immersed
boundary node is affected by all the nearby fluid mesh nodes
through the same discrete 𝛿-function:

U (X) = ∑ℎ
2u (x) ⋅ 𝐷ℎ (X − x) , for |X − x| ≤ 2ℎ. (6)
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Finally, after each time step Δ𝑡, the position of the immersed
boundary node is updated by

X𝑡+Δ𝑡 = X𝑡 + Δ𝑡U (X𝑡) . (7)

2.2. Erythrocyte Model. In this paper, we adopted the spring
model introduced in [31] andmodeled individual erythrocyte
as cytoplasm enclosed by a membrane, which is represented
by the two-dimensional network consisting of finite number
of membrane particles connected by springs. The springs
can change length with respect to its reference length 𝑙0 and
rotatewith respect to neighboring springs. By doing so, elastic
energy is stored in the spring, and the shape of the enclosed
area changes. The total energy of the erythrocyte membrane
stored,𝐸 = 𝐸𝑙+𝐸𝑏+Γ𝑠, is the sumof the total elastic energy for
stretch/compression 𝐸𝑙, the total elastic energy for bending
𝐸𝑏, and the penalty function for area Γ𝑠:

𝐸𝑙 =
𝑘𝑙

2

𝑁

∑

𝑖=1

(
𝑙𝑖 − 𝑙0

𝑙0

)

2

,

𝐸𝑏 =
𝑘𝑏

2

𝑁

∑

𝑖=1

tan2 (
𝜃𝑖

2
) ,

Γ𝑠 =
𝑘𝑠

2
(
𝑠 − 𝑠𝑒

𝑠𝑒

)

2

.

(8)

In the above equations, 𝑙 is the length of the spring; 𝜃 is
the angle between two neighboring springs; 𝑁 is the total
number of the spring elements; 𝑘𝑙 and 𝑘𝑏 are spring constants
for changes in length and bending angle, respectively; and 𝑘𝑠
is the constant for area reduction. The equilibrium enclosed
area is denoted by 𝑠𝑒, while 𝑠 is the time-dependent area of
the erythrocyte.

Based on the principle of virtual work, the elastic spring
force acting on the membrane particle 𝑖 is then

F𝑖 = −
𝜕𝐸

𝜕r𝑖
(9)

with r𝑖 being the position of the ith membrane particle.
The force generated by the deformation of the membrane is
substituted into the external force term of (1).

Then the shape of the erythrocyte is obtained using the
elastic spring model based on minimum energy principle.
Initially, the cell is assumed to be a circle with radius 𝑟0

formed by the springs. When the area of the circle is reduced,
each membrane particle moves according to the following
equation of motion:

𝑚 ̈r𝑖 + 𝛾 ̇r𝑖 = F𝑖. (10)

Here, ̇() denotes the time derivative and 𝑚 and 𝛾 represent
the mass and the viscosity of the membrane. The position r𝑖
of the 𝑖th membrane particle is solved by a discrete analogue
of (10) via a second-order finite difference method. The total
elastic energy stored in the membrane decreases as the time
elapses. The final shape of the erythrocyte is obtained when
the total elastic energy is minimized.

Table 1: Parameters used for the simulations.

Parameter Symbol Value
Blood plasma density 𝜌 1.0 g/cm3

Blood plasma viscosity 𝜇 1.2 cp
Radius of the circle in
erythrocyte model 𝑟0 2.8 𝜇m

Number of springs in
erythrocyte model 𝑁 76

Membrane mass in
erythrocyte model 𝑚 2.0 × 10

−4 g

Membrane viscosity in
erythrocyte model 𝛾 8.8 × 10

−7Ns/m

Spring constants for
erythrocyte membrane 𝑘𝑙 and 𝑘𝑏 1.0 × 10

−13–3.0 × 10
−12Nm

Length of computational
domain 𝐿 100 𝜇m

Radius of inlet (outlet) 𝑅 10𝜇m
Width of stenosis throat 𝑤 8, 12𝜇m
Intercellular strength
constant 𝐷𝑒 1.0 × 10

−2
𝜇J/m2, 1.0 𝜇J/m2

Grid size for space ℎ 1/72 𝜇m
Step size for time Δ𝑡 1 × 10

−5ms

It is important to note that the bending constant is closely
related to the rigidity of the membrane. The higher the value
of the bending constants, the more rigid the cell membrane.
Based on this property, the malaria-infected cell and the
normal healthy cell can be modeled by changing the values
of the bending constants in the spring model.

2.3. Cell-Cell Interactions. The intercellular energy 𝜙 is mod-
eled by the Morse potential function [26] as follows:

𝜙 (𝑟) = 𝐷𝑒 [𝑒
2𝛽(𝑟0−𝑟) − 𝑒

𝛽(𝑟0−𝑟)] , (11)

where 𝑟 is the distance between the cell surface; 𝑟0 is the
equilibriumdistance at zero force, which is set to be 0.049𝜇m;
𝐷𝑒 is the intercellular interaction strength; and 𝛽 = 80/𝜇m is
the scaling factor. Thus, the intercellular force 𝑓 = −𝜕𝜙/𝜕𝑟

has the form

𝑓 (𝑟) = 2𝐷𝑒𝛽 [𝑒
2𝛽(𝑟0−𝑟) − 𝑒

𝛽(𝑟0−𝑟)] . (12)

It is important to note that this simple model does not
illustrate the underlying intercellular interaction mechanism
which still remains unclear nowadays.

3. Numerical Results and Discussion

The simulation parameters are listed in Table 1. A constant
pressure gradient was imposed at the inlet and the outlet of
the channel so that a fluid flow is established from left to
right. We have chosen the pressure gradient based on the
velocity profile for tube flow Δ𝑝/𝐿 = 4V𝑚𝜇/𝑅

2, although our
simulations have been done in two-dimensional channels.
Themaximumflowvelocity V𝑚 for the tube flowwas 12.5 cm/s
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(a) (b) (c)

(d) (e) (f)

Figure 1: Equilibrium configuration of four-cell rouleau obtained under no-flow conditionwith different intercellular strength andmembrane
deformability. The cells are placed at the center of a 15 𝜇m by 15𝜇m square domain filled with blood plasma. The parameters used are (a)
𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 1.0 × 10

−13 Nm; (b) 𝐷𝑒 = 1.0 𝜇J/m2, 𝑘𝑏 = 1.0 × 10
−13Nm; (c) 𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm; (d)
𝐷𝑒 = 1.0 𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm; (e)𝐷𝑒 = 1.0 × 10
−2
𝜇J/m2, 𝑘𝑏 = 3.0 × 10

−12Nm; and (f)𝐷𝑒 = 1.0 𝜇J/m2, 𝑘𝑏 = 3.0 × 10
−12 Nm.

unless otherwise stated. In addition, periodic boundary con-
ditions were assumed at the left and right boundaries of the
domain.

The shape of erythrocytes has been chosen as 𝑠𝑒/𝑠 = 0.55

in the simulations, which represents the typical biconcave
shape of the erythrocyte cell observed in human blood. In
particular, the length of the cell with 𝑠𝑒/𝑠 = 0.55 is about
7.6𝜇m and the thickness is about 2.1 𝜇m.

3.1. Formation of Aggregates. The erythrocyte model was ver-
ified by forming four-cell aggregates under no-flow condition
prior to introducing the cells in the vessel. The simulations
have been done in a 15 𝜇m × 15 𝜇m rectangular domain. The
distance between the centers of the two neighboring cells is
3 𝜇m so that the intercellular force is only attractive initially.
As time elapses, erythrocytes attract and move toward each
other until the balance of the attractive force and the repul-
sive force is achieved and the equilibrium configuration is
obtained. The results are demonstrated in Figure 1 for the
equilibrium configuration. It can be seen that, at equilibrium
position, the cells deform themselves to form a loose or
compact aggregate that depends on the strength of the inter-
cellular force and the deformability of the cell membrane.
The rouleaux formed under strong intercellular interaction

for the more deformable cells (Figure 1(b)) are more compact
with the biconcave shape of the twomiddle cells being totally
lost. The obtained results have been compared with previous
simulation results [27, 30] and good agreement has been
found.

3.2. Dissociation of Aggregates. Erythrocyte motions and
dissociation in stenotic microvessels were analyzed in this
section. Two types of channels were used in the simulations,
namely, the nonstenotic channels and the stenotic channels.
For both types, the total length of the channel is fixed at
100 𝜇m to ensure the fully development of the flow. For
the microchannels with two trapezoidal-shaped stenoses, the
stenoses formed at the location so that the length of the
stenosis throat is 12𝜇m for all cases. The aggregates formed
in Figure 1 are placed near the left outlet initially and then
move with the fluid when the flow starts. The effect of several
important factors, such as severity of the stenosis, membrane
stiffness, intercellular strength, initial aggregate orientation,
and shape of stenosis, is studied in this section.The aggregate
orientation is defined based on the orientation of the erythro-
cyte cells assembly in the aggregate. The aggregate is defined
as horizontally orientated if the cells are horizontal, and the
aggregate is called vertical if the cells are vertically located.
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(d2)

(d)

Figure 2: Motion and dissociation of a four-cell erythrocyte aggregate in a straight channel at time instants (a) 𝑡 = 0.28ms; (b) 𝑡 = 0.42ms;
(c) 𝑡 = 0.55ms; and (d) 𝑡 = 0.66ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s) (a2-d2) are presented. The initial
configuration for the aggregate is shown in Figure 1(c), and the aggregate is horizontally placed in the channel initially. The parameters used
are𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm.
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(d2)

(d)

Figure 3: Motion and dissociation of a four-cell erythrocyte aggregate in a 12 𝜇m stenotic channel at time instants (a) 𝑡 = 0.33ms; (b) 𝑡 =
0.54ms; (c) 𝑡 = 0.74ms; and (d) 𝑡 = 0.92ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s) (a2-d2) are presented.The
initial configuration for the aggregate is shown in Figure 1(c), and the aggregate is horizontally placed in the channel initially.The parameters
used are𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm.

3.2.1. Nonstenotic and Stenotic Channels. The first case con-
sidered was that of a four-cell aggregate horizontally located
in the channel with the cell center coaxial with the channel.
Snapshots of the numerical simulations for the aggregate
traversing a microchannel without or with stenosis are
presented in Figures 2, 3, and 4. In these figures, four time

instances are presented with both velocity vector field and
axial velocity magnitude shown in pairs.

The results in Figure 2 show that, in a nonstenotic chan-
nel, the aggregate flows with the blood plasma. The cells
deformunder the hydrodynamic forcewith the velocity of the
cells being slower than the velocity of the plasma. The two
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Figure 4: Motion and dissociation of a four-cell erythrocyte aggregate in a 8𝜇m stenotic channel at time instants (a) 𝑡 = 0.50ms; (b) 𝑡 =
0.99ms; (c) 𝑡 = 1.45ms; and (d) 𝑡 = 1.90ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s) (a2-d2) are presented.The
initial configuration for the aggregate is shown in Figure 1(c), and the aggregate is horizontally placed in the channel initially.The parameters
used are𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm.

outside cells in the aggregate are being peeled off along the
flow process while the two middle ones still form an aggre-
gate. At some stage, the two outside cells are dissociated
almost completely. The flow field around the cells is not
parabolic any more but of some distortion. The distortion
becomes larger when the aggregate becomes more dispersed.

To investigate the effect of stenosis severity to the dis-
sociation of the aggregates in the simulation channel, we
have also performed the same simulations with width of
stenosis throat 𝑤 = 12 and 8𝜇m. It can been seen from
Figure 3 that when the channel is constricted the flow field
altered from parabolic profile. At the throat of the channel,
the velocity of the blood plasma is much higher. When the
aggregate enters the constriction, the flow field is disturbed.
Again the velocity of the cells is slower than that of pure
plasma. It can also be observed that the two outside cells have
been peeled off earlier than in the straight channel and the
two middle cells are more deformed upon exiting the first
constriction. After the second constriction, the two peeled off
cells are lagging further behind. At the same time, the two
middle cells are driven further apart by the flow. The results
for the channel with 8𝜇m stenosis are shown in Figure 4.
The flow is more blocked and the maximum velocity at the
stenosis throat decreases sharply. Moreover, the aggregate is
totally dissociated to individual cells after traversing the two
constrictions. Similarly, disturbance of velocity magnitude
contour has been observed around erythrocyte cells.

3.2.2. Membrane Stiffness. The effect of the stiffness of the
cell membrane was investigated by changing the mem-
brane constants. The snapshots of the aggregate formed in
Figure 1(e) traversing through a 12 𝜇m stenosis are illustrated

in Figure 5. This figure indicates that when the cells are more
rigid the cells experience less deformation. The increasing
membrane stiffness prevents the cells from large deformation
and formation of sharp edges. Therefore, normal biconcave
shape of erythrocytes is more conserved as the cells become
less deformable. Similar to Figure 3, the two outside cells
are peeled off by the viscous force and the two middle cells
remain a smaller aggregate by the intercellular force.

3.2.3. Intercellular Strength. In this simulation, the effect of
intercellular strength was studied. The simulation pressure
gradient was decreased by a factor of five compared to the
previous simulations. The intercellular strength in Figure 7
was hundred times greater than that in Figure 6. It can be
noticed from the slight discrepancies between these two
figures that the stronger the intercellular strength, the more
difficult to dissociate the aggregates.

Another noticeable point is that for all the previous simu-
lations the two individual cells move away from the aggregate
after the first stenosis because of the divergent characteristic
of the streamline. It is also observed in this section that
when the cells approach and traverse the stenosis, the velocity
magnitude contours are completely disturbed. The standard
symmetric velocity profile is recovered some time after the
cells passing through the stenosis.

3.2.4. Initial Aggregate Orientation. In this section, we con-
ducted the simulations of a four-cell aggregate traversing a
stenotic channel while the cells were placed vertically with
the centers of the erythrocytes at the axis of the channel. The
results are presented in Figures 8, 9, 10, and 11 which corre-
spond to the configurations in Figures 1(c)–1(f), respectively,
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Figure 5: Motion and dissociation of a four-cell erythrocyte aggregate in a 12 𝜇m stenotic channel at time instants (a) 𝑡 = 0.33ms; (b) 𝑡 =
0.55ms; (c) 𝑡 = 0.75ms; and (d) 𝑡 = 0.93ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s) (a2-d2) are presented.The
initial configuration for the aggregate is shown in Figure 1(e), and the aggregate is horizontally placed in the channel initially.The parameters
used are𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 3.0 × 10

−12 Nm.

(a1)

(a2)

(a)

(b1)

(b2)

(b)

(c1)

(c2)

(c)

(d1)

(d2)

(d)

Figure 6: Motion and dissociation of a four-cell erythrocyte aggregate in a 12 𝜇m stenotic channel at time instants (a) 𝑡 = 1.08ms; (b) 𝑡 =
2.08ms; (c) 𝑡 = 3.03ms; and (d) 𝑡 = 3.93ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s) (a2-d2) are presented.The
initial configuration for the aggregate is shown in Figure 1(c), and the aggregate is horizontally placed in the channel initially.The parameters
used are𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm.

for different membrane stiffness and intercellular strength.
Comparing these figure with the previous ones, different
behaviors have been observed for the entire period of sim-
ulations. In summary, when the cells are vertically located
initially, the aggregates are not completely dissociated by the
fluid viscous force after passing through the two constrictions

in a 8𝜇m stenotic channel. The cells deform themselves into
nonsymmetric slipper-like shapes (Figure 9) or symmetric
parachute-like shapes (Figures 10 and 11) at the throat of the
channel. Due to the higher fluid velocity and deformation,
the aggregates in fact become more disperse in the stenotic
part while forming a compact one upon exiting the stenosis.
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Figure 7: Motion and dissociation of a four-cell erythrocyte aggregate in a 12 𝜇m stenotic channel at time instants (a) 𝑡 = 1.06ms; (b) 𝑡 =
2.04ms; (c) 𝑡 = 2.97ms; and (d) 𝑡 = 3.89ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s) (a2-d2) are presented.The
initial configuration for the aggregate is shown in Figure 1(d), and the aggregate is horizontally placed in the channel initially.The parameters
used are𝐷𝑒 = 1.0 𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13Nm.
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Figure 8: Motion and dissociation of a four-cell erythrocyte aggregate in a 8𝜇m stenotic channel at time instants (a) 𝑡 = 0.48ms; (b) 𝑡 =
0.91ms; (c) 𝑡 = 1.30ms; and (d) 𝑡 = 1.72ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s) (a2-d2) are presented.The
initial configuration for the aggregate is shown in Figure 1(c), and the aggregate is vertically placed in the channel initially. The parameters
used are𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm.

The cells exhibit a periodic shape transition from stretched
to deformed shapes as they flow with the blood plasma.
Another noticeable point in these simulations is that although
complete breakage did not happen for the aggregates, they
become less compact compared to the initial configurations,

especially for the case of strong intercellular strength and less
rigid cells.

In addition, velocity plots show that the velocity magni-
tude of the fluid flow is smaller at the erythrocyte vicinity. It
can be seen from the velocity vector plots that the velocity
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Figure 9: Motion and dissociation of a four-cell erythrocyte aggregate which is vertically placed in a 8 𝜇m stenotic channel at time instants
(a) 𝑡 = 0.48ms; (b) 𝑡 = 0.91ms; (c) 𝑡 = 1.32ms; and (d) 𝑡 = 1.75ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s)
(a2-d2) are presented. The initial configuration for the aggregate is shown in Figure 1(d), and the aggregate is vertically placed in the channel
initially. The parameters used are𝐷𝑒 = 1.0 𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm.
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Figure 10: Motion and dissociation of a four-cell erythrocyte aggregate which is vertically placed in a 8𝜇m stenotic channel at time instants
(a) 𝑡 = 0.46ms; (b) 𝑡 = 0.86ms; (c) 𝑡 = 1.23ms; and (d) 𝑡 = 1.62ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s)
(a2-d2) are presented. The initial configuration for the aggregate is shown in Figure 1(e), and the aggregate is vertically placed in the channel
initially. The parameters used are𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 3.0 × 10

−12Nm.

profile changes from parabolic to a blunt form. This result
is also observed in previous numerical studies conducted in
straight channels [35].

3.2.5. Shape of Stenosis. The effect of the shape of stenosis
on the dissociation of the erythrocyte aggregates has been

studied. We considered stenosis with radial symmetrically
sinusoidal shape instead of trapezoidal shape in this section.
The length of the base and the maximum of the height of the
sinusoidal-shaped stenosis have been chosen the same as in
Figure 4 which are 24𝜇m and 6𝜇m, respectively. Compared
with Figures 4 and 8, a similar dissociation process is



10 Journal of Applied Mathematics

(a1)

(a2)

(a)

(b1)

(b2)

(b)

(c1)

(c2)

(c)

(d1)

(d2)

(d)

Figure 11: Motion and dissociation of a four-cell erythrocyte aggregate which is vertically placed in a 8 𝜇m stenotic channel at time instants
(a) 𝑡 = 0.47ms; (b) 𝑡 = 0.86ms; (c) 𝑡 = 1.25ms; and (d) 𝑡 = 1.64ms. Velocity vectors (a1-d1) and axial velocity magnitude contours (cm/s)
(a2-d2) are presented. The initial configuration for the aggregate is shown in Figure 1(f), and the aggregate is vertically placed in the channel
initially. The parameters used are𝐷𝑒 = 1.0 𝜇J/m2, 𝑘𝑏 = 3.0 × 10

−12 Nm.

observed in sinusoidal-shaped stenosis (Figures 12 and 13).
However, the profile of velocity is less disturbed and the veloc-
ity of the flow in sinusoidal shaped stenosis is much higher
than in trapezoidal-shaped one.

3.3. Transit Velocity. It is important to note that the transit
time of erythrocytes in the microvessel depends on both the
cell deformability and the friction encountered by the cell
during its entry into the microchannel. Hence, we define the
transit velocity of a single cell being the average velocity of
the cell as it passes through the microchannel and travels the
same distance. Similarly, the transit velocity of an aggregate
is defined as the averaged transit velocity of all cells in the
aggregate. Transit velocities of erythrocyte aggregates in the
modeled stenotic channel were calculated and analyzed in
this section for various cases, and the results are presented
in Figure 14.

First of all, the effect of severity of the stenosis on the
transit velocity was considered by varying the width of the
throat of the vessel𝑤 for the erythrocyte aggregates. Figure 14
shows a scatter plot of transit velocity against stenosis severity,
which is defined as the percentage of the channel that is
blocked by the stenosis; for example, the stenosis severity of
a 12 𝜇m stenosis is 40% by the definition.

From the graph, it can be seen that the transit velocity
decreases relatively slowly when the severity increases from
0% to 40% and sharply when the severity increases from
40% to 60% for the same simulation parameters chosen. The
reason for this is that since the pressure difference at the inlet
and the outlet remains the same, when the vessel is severely
stenotic, the flow is more blocked, which slows down the
transit velocity of the aggregates.

The effect of intercellular strength is demonstrated by
comparing Figure 14(a) with Figure 14(b) for horizontal
aggregates. The small discrepancy between the two plots
indicates that the effect of intercellular strength on the transit
velocity is less significant. The plots in Figures 14(c) and
14(d) show that when the aggregate is vertically orientated the
transit velocity again follows the same trend as the horizontal
case; however the transit velocities have a significant increase
for all the simulations. The aggregates consist of more rigid
cells, and the transit velocity decreases slightly compared
to the more deformable one for all the stenosis severity.
It has been observed experimentally [9] that for individual
erythrocyte the transit velocity decreases with the increase
of the membrane stiffness. Our results show that erythrocyte
aggregates have the similar behavior as nonaggregated cells.

Figures 14(e) and 14(f) reveal the transit velocity of
aggregates in sinusoidal stenotic channels. Because the length
of the stenosis throat is significantly shorter, the flow is less
blocked and the transit velocities are much higher for the
sinusoidal-shaped stenotic channel than for the trapezoidal-
shaped one.

4. Conclusions

We have applied the immersed boundary-fictitious domain
method to the erythrocyte aggregates in microscale blood
flow through modeled stenotic arterioles. A spring model
was adopted to describe the deformability of the erythrocyte
membrane.The intercellular interaction between the cells was
characterized by the Morse potential function. We focused
on the effect of the stenotic structure on the dissociation
of the aggregates. We also investigated the dependence of
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Figure 12: Motion and dissociation of a four-cell erythrocyte aggregate which is vertically placed in a 8𝜇m sinusoidal shaped stenosis at time
instants (a) 𝑡 = 0.42ms; (b) 𝑡 = 0.78ms; (c) 𝑡 = 1.13ms; and (d) 𝑡 = 1.46ms. Velocity vectors (a1-d1) and axial velocity magnitude contours
(cm/s) (a2-d2) are presented. The initial configuration for the aggregate is shown in Figure 1(c), and the aggregate is horizontally placed in
the channel initially. The parameters used are 𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm.
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Figure 13: Motion and dissociation of a four-cell erythrocyte aggregate which is vertically placed in a 8 𝜇m sinusoidal shaped stenosis at time
instants (a) 𝑡 = 0.40ms; (b) 𝑡 = 0.69ms; (c) 𝑡 = 0.98ms; and (d) 𝑡 = 1.27ms. Velocity vectors (a1-d1) and axial velocity magnitude contours
(cm/s) (a2-d2) are presented. The initial configuration for the aggregate is shown in Figure 1(c), and the aggregate is vertically placed in the
channel initially. The parameters used are𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13Nm.

the dissociation on the cell membrane stiffness, intercellular
strength, and initial orientation of the cell aggregates. The
transit velocity of the erythrocyte aggregates traversing the
stenotic channel was also studied in this paper.

The results demonstrate that the velocity of the blood flow
in stenotic channel is decreased by the stenosis. The velocity

at the stenosis throat is significantly higher than that at the
nonstenotic part of the channel. At vicinity of the aggregates,
the parabolic profile of the flow is disturbed and flattened
by the existence of the cells. At stenosis throat, the cells
undergo larger deformation than at the nonstenotic part.
The aggregates may be dissociated completely by increasing
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Figure 14: The effect of stenosis severity on the transit velocity
of the aggregates for various simulation conditions: (a) the initial
configuration for the aggregate is shown in Figure 1(c), and the
aggregate is horizontally placed in the trapezoidal stenotic channel
initially, 𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm; (b) the initial
configuration for the aggregate is shown in Figure 1(d), and the
aggregate is horizontally placed in the trapezoidal stenotic channel
initially, 𝐷𝑒 = 1.0 𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13Nm; (c) the initial
configuration for the aggregate is shown in Figure 1(c), and the
aggregate is vertically placed in the trapezoidal stenotic channel
initially, 𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13Nm; (d) the
initial configuration for the aggregate is shown in Figure 1(e), and
the aggregate is vertically placed in the trapezoidal stenotic channel
initially, 𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 3.0 × 10

−12Nm; (e) the initial
configuration for the aggregate is shown in Figure 1(c), and the
aggregate is horizontally placed in the sinusoidal stenotic channel
initially, 𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13 Nm; (f) the initial
configuration for the aggregate is shown in Figure 1(c), and the
aggregate is vertically placed in the sinusoidal stenotic channel
initially,𝐷𝑒 = 1.0 × 10

−2
𝜇J/m2, 𝑘𝑏 = 5.0 × 10

−13Nm.

the severity of the stenosis; that is, increasing shear rate at
the narrow part of the vessel facilitates the dissociation of
aggregates. Moreover, the initial orientation prior to entering
the stenosis has great influence on the dissociation of the
erythrocyte aggregates. Horizontally orientated aggregates
have a tendency to be dissociated easily by the fluid viscous
force and the cell-structure interactive force than vertically
orientated aggregates. We also simulated with erythrocytes
of various stiffness and intercellular interactive strength to
mimic the healthy and the abnormal cells, and the obtained
results agree well with previous simulation findings. In addi-
tion, we have explored the dependence of the transit velocity
of the aggregates in the stenotic channel on simulation
parameters, and the results are presented in this paper.

The study shows that the structure of the vessel has a sig-
nificant effect on the rheological behavior of erythrocyte

aggregates. It is of medical interest since the erythro-
cyte aggregation critically affects blood hemodynamics in
microvessels and is therefore a nonnegligible factor for cap-
illary blockage and other serious malfunctions of microcir-
culation. Although the simulations are performed in two
dimensions, some similar behavior is expected for the more
realistic three-dimensional situations. However, it should be
noted that there is crucial difference between two-dimen-
sional and three-dimensional cases. The simulations on the
three-dimensionalmicroscale blood flow are undertaken and
will be presented in the future studies. Furthermore, the
simulation technique will be applied to address many impor-
tant questions, such as erythrocyte aggregates in a bifurcated
channel or in compliant blood vessels.
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