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Practical optimum design of structures often involves parameters with uncertainties. There have been several ways to deal with
such optimisation problems, and one of the approaches is an antioptimisation process. The task is to find the optimum solution of
common design variables while simultaneously searching for the worst case scenario of those parameters with uncertainties. This
paper proposed a metaheuristic based on population-based incremental learning (PBIL) for solving antioptimisation of trusses.
The new algorithm is called two-level PBIL which consists of outer and inner loops. Five antioptimisation problems are posed to
test the optimiser performance. The numerical results show that the concept of using PBIL probability vectors for handling the
antioptimisation of truss is powerful and effective.The two-level PBIL can be considered a powerful optimiser for antioptimisation
of trusses.

1. Introduction

A truss structure is one of the most widely used engineering
structures due to its simplicity and low cost for construction
and design. Such a structure can be used inmany engineering
applications such as bridges, roofs, and towers. Throughout
its history, a great deal of research work on truss design opti-
misation has been investigated, for example, [1–6].Thedesign
process can be categorised as topology, shape, and sizing
optimisation. The optimisers used for tackling truss design
problems could be the methods with and without using
function derivatives. Some of the most popular optimisers
are evolutionary algorithms (EAs), which can deal with truss
design having single or multiple objective functions. Using
EAs, although having low convergence rate and lacking of
search consistency, is popular and advantageous since they
are simple to use and robust and can deal with any kind of
design problems particularly truss designwith discrete design
variables.

Nevertheless, practical design of trusses and other struc-
tures often has inevitable difficulties when uncertainties
are involved. For example, it is always difficult to define

certain applied loads on structures and material proper-
ties. This implies that the real world design problem of
trusses will include parameters with uncertainties and it
becomes reliability-based optimisation. The simplest way to
handle this is by adding the factor of safety to structural
constraints. Alternatively, multiobjective design problems
which minimise cost and maximise a parameter indicating
structural reliability (e.g., structural compliance and natural
frequency) are posed and solved for a set of the Pareto
optimum structures [6–8]. The more popular approach is
the use of reliability-based optimisation techniques, which
involve probabilistic design constraints. For example, the use
of gradient-based optimisers [9] and evolutionary algorithms
[10] for this design process has been reported.

Apart from the aforementioned approaches, a simple but
effective way to deal with optimisation with uncertainties is
to use the so-called antioptimisation [11]. In the antioptimi-
sation process, there are two sets of design variables, common
design variables and ones with uncertainties predefined in
certain intervals. One optimisation run has two simultaneous
tasks. The first task is to find the solution for the interval
variables giving the worst case scenario for the structure,
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Figure 1: Probability vectors and their corresponding populations.

Initialisation 𝑃
𝑖
= 0.5, 𝑘 = 0, b = {⋅}

Main procedure
(1) Generate a binary population B according to 𝑃

𝑖
.

(2) Perform function evaluations 𝑓(B) and find the best
solution b from B ∪ b.
(3) Update 𝑃

𝑖
using (5).

(4) Set 𝑃
𝑖
to [0.1, 0.9] in cases that it is out of the interval.

(5) If the termination condition is met, stop the procedure;
otherwise, set 𝑘 = 𝑘 + 1 and go to (1).

Algorithm 1: Population-based incremental learning.

while the second task is finding the optimum solution for the
common design variables. Optimisers for this propose have
been developed, for example, two-species genetic algorithm
(GA) [12], and hybrid genetic algorithm (HybridGA) [13].
From the literature, it is found that using such evolutionary
algorithms for solving an antioptimisation problem is some-
what time-consuming.

This paper is concerned with developing a metaheuristic
(MH) for tackling antioptimisation of trusses. The work
focuses on the metaheuristic because it can deal with discrete
design variables which are usually employed in real-world
truss design. Population-based incremental learning (PBIL)
is chosen and adapted to deal with truss antioptimisation
leading to five variants of PBIL. The five methods and
HybridGA are then implemented on five antioptimisation
problems of 2D trusses. Optimum results show that PBIL
is a powerful optimiser for truss antioptimisation and it is
superior to HybridGA.

2. Antioptimisation Problem

A typical single-objective truss optimisation is mass minimi-
sation subject to structural design constraints, which can be
expressed as

minx 𝑓 (x) ,

subject to 𝑔
𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚,

(1)

where x is a vector sized 𝑛
1
× 1 of common design variables,

𝑓 is structural mass, and 𝑔
𝑖
are inequality constraints for

safety requirements. When variables with uncertainties are
included, the problem can be written as

minx 𝑓 (x, y) ,

subject to 𝑔
𝑖
(x, y) ≤ 0, 𝑖 = 1, . . . , 𝑚,

(2)

where y ∈ [y
𝑙
, y
𝑢
] is a vector sized 𝑛

2
× 1 of variables with

uncertainty having lower and upper bounds as y
𝑙
and y

𝑢
,

respectively.
For truss antioptimisation, the problem (2) is separated

into two subproblems as the design problem (1) for searching
for optimum design variables x and the design problem for
finding the worst case y of a structure written as

max
y

𝐹 (y) , y ∈ [y
𝑙
, y
𝑢
] , (3)

where 𝐹 is a function indicating the maximum violation of
structural constraints. For simplicity, 𝐹 can be defined as

𝐹 (y) = max (𝑔
𝑖
(x, y)) (4)

with the design point x being unchanged.
A traditional strategy for solving an antioptimisation

problem is to use a two-level approach. The search process
starts with initial solutions for x and y. In one iteration, the
method searches for the optimum solution of x based on the
problem (1) by fixing the value of y. Then, use the updated
values of x for finding the worst solution of y based on the
problem (3). The process is repeated until the termination
conditions are fulfilled.

3. PBIL for Antioptimisation

Over the years, there have been a significant number of
metaheuristic algorithms developed for a wide variety of real-
world applications, for example, [14–18]. PBIL is chosen for
this work because it is a simple but powerful MH and suits
well with the concept of antioptimisation. PBIL was first
proposed by Baluja in 1994 [19]. The method is based upon a
simple estimation of distribution algorithm and searches for
an optimum using binary strings. Unlike GA which keeps a
set of binary design solutions (better known as a population),
PBIL uses the so-called probability vector to represent a
binary population. Figure 1 shows some probability row
vectors which will be used to produce binary population
matrices where one row of the matrix represents a binary
design solution. The element 𝑃

𝑖
of the vector determines the

probability of having the string “1” on the 𝑖th column of
the binary population. From the figure, it can be seen that
one probability vector can produce various binary popula-
tions. As the optimisation proceeds, the probability vector is
updated iteratively leading to an optimum solution. A typical
computational procedure of PBIL is given in Algorithm 1.
Initially, the probability vector is set as 𝑃

𝑖
= 0.5. Then, the

corresponding population is generated where the best binary
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Initialisation 𝑃
𝑥,𝑖

= 0.5, 𝑃
𝑦,𝑖

= 0.5, and find b = {b𝑥 b
𝑦} and w = {w𝑥 w

𝑦} from an initial population.
Main procedure
(1) For 𝑘 = 1 to𝑁

𝑂
(outer loop)

(2) Generate a binary population B
𝑥
according to 𝑃

𝑥,𝑖
and assign w

𝑦
as the second part of every solution in B

𝑥
. The population is

B = [B w
𝑦].

(3) Perform function evaluations 𝑓(B).
(4) Find the new best solution b from B ∪ b based on the objective function in (1).
(5) Update 𝑃

𝑥,𝑖
with b

𝑥
using (5).

(6) Set 𝑃
𝑥,𝑖

to [0.1, 0.9] in cases that it is out of the interval.
(7) For 𝑗 = 1 to𝑁

𝐼
(inner loop)

(8) Generate a binary populationW
𝑦
according to 𝑃

𝑦,𝑖
and assign w

𝑥
as the first part of every solution inW

𝑦
. The population

isW = [w𝑥 W
𝑦].

(9) Perform function evaluations 𝑓(W)

(10) Find the new worst solution w fromW ∪ w based on the objective function in (3).
(11) Update 𝑃

𝑦,𝑖
with w

𝑦
using (5).

(12) Set 𝑃
𝑦,𝑖

to [0.1, 0.9] in cases that it is out of the interval.
(13) Next 𝑗
(14) Next 𝑘

Algorithm 2: Population-based incremental learning for antioptimisation.

solution b is found. The probability vector is then updated
based upon the best solution as

𝑃
new
𝑖

= (1 − 𝐿
𝑅
) 𝑃

old
𝑖

+ 𝐿
𝑅
𝑏
𝑖
, (5)

where 𝑃
old
𝑖

is the 𝑖th element of the probability vector from
the previous iteration, 𝑃new

𝑖
is the updated 𝑖th element of the

probability vector, and 𝑏
𝑖
is the 𝑖th element of the best binary

solution. 𝐿
𝑅
is called a learning rate which herein is set to be a

uniform random number in the range of [0.4, 0.6] generated
anew when the probability vector update takes place. In this
work, mutation is not used to modify the probability vector,
but the value of 𝑃

𝑖
after being updated will be set to the range

of [0.1, 0.9] (if the updated value of 𝑃
𝑖
is lower than 0.1 or

higher than 0.9, it will be set as 0.1 and 0.9, resp.) in order
to prevent a premature convergence.

When dealing with an antioptimisation problem, the
method is modified as shown in Algorithm 2. As it involves
two levels of optimisation search, the developed PBIL will
be named two-level population-based incremental learning.
The algorithm starts with generating an initial binary popu-
lation where each binary solution contains strings for design
variables x and variables with uncertainties y. Then, the best
binary solution b containing two parts as b

𝑥
for x and b

𝑦
for y

is found based on the design problem (1). On the other hand,
the worst binary solution w = {w

𝑥
w
𝑦
} is obtained based

on the problem (3). The method uses two probability vectors
as P
𝑥
and P

𝑦
for representing binary populations of x and y,

respectively. Afterwards, a set of binary design solutions for x
(denoted as B

𝑥
) are created based on P

𝑥
, while each solution

in the population has its second part of a binary string for y
as w
𝑦
. The new best solution b is obtained from sorting the

current population and the best solution from the previous
iteration. The probability vector P

𝑥
is updated using the first

part of the new best solution b
𝑥
. This is the first level of the

process which is said to be outer loops.

For inner loops (steps (7)–(13)) which are the search
for the worst case scenario, a set of binary solutions for y
(denoted asW

𝑦
) is generated from the probability vector P

𝑦

where each solution has the first part of a binary string for x
asw
𝑥
which is the first part of the current worst solution.The

new worst solution w is then obtained based on the problem
(3) by sorting the current population and the previous worst
solution. The probability P

𝑦
is updated by using w

𝑦
, the

second part of w. The inner loop procedure is stopped after
𝑁
𝐼
loops. Similarly, the outer loop search is terminated after

𝑁
𝑂
loops. This implies that if the population size for both

inner and outer loops is 𝑁
𝑃
, the total number of function

evaluations for each simulation run is 𝑁
𝑂
(𝑁
𝐼
+ 1)𝑁

𝑃
. It

should be noted that we use the worst solution for finding
the worst case structures because it is expected to give the
worst objective function values which may help accelerate
PBIL to the worst case. In the case studies, we will examine
the use of best and worst solutions for searching the worst
case scenario.

4. Truss Design Case Studies

Five antioptimisation problems (AOPs) of three truss struc-
tures will be used to test the proposed algorithms. The first
truss is called a 2-bar truss shown in Figure 2. The structure
is subject to a vertical load 𝐹 with uncertainty at node 3.
The second structure is named a 10-bar truss [20] shown in
Figure 3. The structure consists of 6 nodes and 10 bars where
nodes 1 and 2 are fixed and nodes 4 and 6 are subject to
external forces 𝐹

1
and 𝐹

2
, respectively. The third structure is

called a 25-bar truss as displayed in Figure 3. The truss has
12 nodes and 25 bars where nodes 1 and 12 are fixed. The
structure is applied by loads 𝐹

1
, 𝐹
2
, 𝐹
3
, 𝐹
2
, and 𝐹

1
at nodes

2, 4, 6, 8, and 10, respectively. The design problems can be
detailed as follows.
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Figure 2: 2-bar truss.
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Figure 3: 10-bar truss.

AOP1: Optimisation of the 2-Bar Truss. The design problem
can be written as:

minx 𝑓 (x, y) , max
y

𝐹 (x, y)

Subject to 𝜎max (x, y) − 𝜎yt ≤ 0, N/m2,

𝑃
𝑖
− 𝑃cr ≤ 0, N,

𝑥
1
∈ [0.5, 1.5] , m,

𝑥
2
= 𝐴
1
= 𝐴
2
∈ [0.001, 0.01] , m,

200 ≤ 𝑦
1
= 𝐹 ≤ 600, N,

(6)

where 𝐴
𝑖
is the cross-sectional area of the 𝑖th bar element.

𝜎max is the maximum stress on truss elements. 𝑃
𝑖
is the

axial load acting on the 𝑖th element, while 𝑃cr is the critical
buckling load for the element. The structures for all 5 test
problems are made up of material with the Young modulus

𝐸 = 200 × 10
9N/m2, yield stress 𝜎yt = 235 × 10

6N/m2,
and density 𝜌 = 7800 kg/m3. The common design variables
are shape and sizing variables. The external force 𝐹 is
set to be variables with uncertainties. The task is to find
the external force that gives the worst case scenario for
the structure while simultaneously trying to perform mass
minimisation.

AOP2: Sizing Optimisation of the 10-Bar Truss. The second
design problem can be written as:

minx 𝑓 (x, y) , max
y

𝐹 (x, y) ,

subject to 𝜎max (x, y) − 𝜎yt ≤ 0, N/m2,

𝑃
𝑖
− 𝑃cr ≤ 0, N,

𝑈max − 0.005 ≤ 0, m,

𝑥
𝑖
= 𝑑
𝑖
∈ {0.04, 0.05, 0.06, 0.07, 0.08, 0.09,

0.10, 0.20} , m,

{75, 150}
𝑇
≤ y = {𝐹

1
, 𝐹
2
}
𝑇
≤ {80, 175}

𝑇
, N,

(7)

where 𝑑
𝑖
is the diameter of the 𝑖th bar element. 𝑈max is the

maximum 𝑦-direction displacement of the structure. The
common design variables are set to be discrete so that it is
close to a practical truss design process. The external forces
𝐹
1
and 𝐹

2
are set to be variables with uncertainties. The task

is to find the external forces that give the worst case scenario
for the structure while, at the same time, trying to perform
mass minimisation with sizing design variables.

AOP3: Sizing Optimisation of the 25-Bar Truss. The design
problem can be written as:

minx 𝑓 (x, y) , max
y

𝐹 (x, y) ,

subject to 𝜎max (x, y) − 𝜎yt ≤ 0, N/m2,

𝑃
𝑖
− 𝑃cr ≤ 0, N,

𝑈max − 0.005 ≤ 0, m,

𝑥
𝑖
∈ {0.06, 0.07, 0.08, 0.09, 0.10, 0.15,

0.20, 0.25} m; 𝑖 = 1, . . . , 13,

{150, 150, 150, 199.00 × 10
9
}
𝑇

≤ y = {𝐹
1
, 𝐹
2
, 𝐹
3
, 𝐸}
𝑇

≤ {300, 300, 300, 201.00 × 109}
𝑇
.

(8)
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Figure 4: 25-bar truss.

Table 1: Optimum results of AOP1.

MHs HybridGA PBILb5 PBILw5 PBILw5m PBILw1 PBILw10
Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev

𝑥
1

0.5048 0.0242 0.5613 0.1011 0.6247 0.1176 0.6333 0.1587 0.6344 0.1558 0.5914 0.1302
𝑥
2

0.0029 0.0001 0.0038 0.0003 0.0037 0.0004 0.0038 0.0005 0.0038 0.0004 0.0038 0.0004
𝑦
1

200.0000 0.0000 399.1398 130.0818 370.3226 142.7784 400.8602 164.3949 405.1613 157.4620 424.0860 151.7861
𝑓(x, y) 49.9355 1.6789 67.2216 4.8174 68.2111 5.5543 70.2185 5.9409 69.9382 4.6033 69.4287 5.3346
max𝑔

𝑖
−0.0018 0.0024 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000

In this case, there are uncertainties in applied loads and
material property. The sizing design variables are set to have
a symmetric structure. Thus, we have

(i) 𝑥
1
for 𝑑
1
,

(ii) 𝑥
2
for 𝑑
2
and 𝑑

3
,

(iii) 𝑥
3
for 𝑑
4
and 𝑑

5
,

(iv) 𝑥
4
for 𝑑
6
and 𝑑

7
,

(v) 𝑥
5
for 𝑑
8
and 𝑑

9
,

(vi) 𝑥
6
for 𝑑
10
and 𝑑

11
,

(vii) 𝑥
7
for 𝑑
12
and 𝑑

13
,

(viii) 𝑥
8
for 𝑑
14
and 𝑑

15
,

(ix) 𝑥
9
for 𝑑
16
and 𝑑

17
,

(x) 𝑥
10
for 𝑑
18
and 𝑑

19
,

(xi) 𝑥
11
for 𝑑
20
and 𝑑

21
,

(xii) 𝑥
12
for 𝑑
22
and 𝑑

23
,

(xiii) 𝑥
13
for 𝑑
24
and 𝑑

25
.

AOP4: Shape and Sizing Optimisation of the 10-Bar Truss.
The fourth design problem is the same problem as AOP2
with additional 4 shape design variables for x. The shape
variables determine the positions of nodes 3 and 5 in both
𝑥 and 𝑦 directions. The design variables are used to modify
the original positions (shown in Figure 3) of nodes 3 and 5.
The bound constraints are set as −0.75m ≤ 𝑥

𝑖
≤ 0.75m for

𝑖 = 11, . . . , 14.

AOP5: Shape and Sizing Optimisation of the 25-Bar Truss.
The fifth design problem is the same problem as AOP2 with
additional 3 shape design variables for x. The shape variables
determine the 𝑦-direction positions of nodes 3, 5, 7, 9, and

11, where 𝑥
14
is set for the positions of nodes 3 and 11, 𝑥

15
is

set for the positions of nodes 5 and 9, and 𝑥
16

is set for the
positions of node 7. The design variables are used to modify
the original positions (shown in Figure 4) of those nodes.The
bound constraints are set as −3.00m ≤ 𝑥

𝑖
≤ 3.00m for

𝑖 = 14, . . . , 16.
By defining a few set of design parameter settings, various

versions of PBIL can be obtained as follows.

(i) PBILb5: this optimiser uses b
𝑥
from the best solution

b instead of w
𝑥
from the worst solution w in step (8)

of Algorithm 2.𝑁
𝐼
is set to be 5.

(ii) PBILw5: this is PBIL detailed in Algorithm 2, where
𝑁
𝐼
is set to be 5.

(iii) PBILw5m: this is PBILw5 with GA mutation. Having
generated binary populations in steps (2) and (8),The
GA mutation is applied to the populations, where
each solution has the probability of being mutated as
0.25.

(iv) PBILw1: this is PBIL detailed in Algorithm 2, where
𝑁
𝐼
is set to be 1.

(v) PBILw10: this is PBIL detailed in Algorithm 2, where
𝑁
𝐼
is set to be 10.

For AOP1, the population size is set to be 40, whereas the
total number of function evaluations for stopping the search
procedure is 2,400. For other design problems, the population
size is set to be 100, whereas the total number of function
evaluations for stopping the search procedure is 15,000. PBIL
with various𝑁

𝐼
values is set to examine the effect of the inner

and outer loops on the search performance.TheGAmutation
is employed under the assumption that it may help improving
PBIL convergence rate. Each optimiser is used to solve
the antioptimisation problems 30 runs. Since PBIL cannot
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Table 2: Optimum results of AOP2.

MHs HybridGA PBILb5 PBILw5 PBILw5m PBILw1 PBILw10
Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev

𝑥
1

0.0453 0.0073 0.0500 0.0000 0.0500 0.0000 0.0500 0.0000 0.0500 0.0000 0.0503 0.0018
𝑥
2

0.0463 0.0096 0.0493 0.0025 0.0500 0.0026 0.0497 0.0032 0.0477 0.0043 0.0543 0.0063
𝑥
3

0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0807 0.0025
𝑥
4

0.0610 0.0040 0.0603 0.0018 0.0600 0.0000 0.0603 0.0018 0.0600 0.0000 0.0650 0.0068
𝑥
5

0.0500 0.0087 0.0493 0.0025 0.0500 0.0026 0.0500 0.0000 0.0477 0.0043 0.0520 0.0041
𝑥
6

0.0607 0.0025 0.0613 0.0051 0.0610 0.0040 0.0607 0.0025 0.0600 0.0000 0.0627 0.0064
𝑥
7

0.0810 0.0031 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0803 0.0018
𝑥
8

0.0517 0.0099 0.0503 0.0018 0.0500 0.0000 0.0500 0.0000 0.0500 0.0000 0.0517 0.0038
𝑥
9

0.0427 0.0052 0.0493 0.0025 0.0500 0.0000 0.0500 0.0000 0.0483 0.0038 0.0493 0.0025
𝑥
10

0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0803 0.0018
𝑦
1

74.7849 1.1783 77.5938 1.1768 80.0000 0.0000 80.0000 0.0000 80.0000 0.0000 80.0000 0.0000
𝑦
2

171.5082 13.5158 165.3552 7.5152 175.0000 0.0000 175.0000 0.0000 174.9984 0.0089 175.0000 0.0000
𝑓(x, y) 558.7238 30.9474 567.8900 9.9080 568.7844 7.3917 568.2535 6.2552 559.2016 7.1018 594.2857 20.6724
max𝑔

𝑖
−0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000
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Figure 5: Optimum of AOP1.

deal with design constraints directly, the penalty function
technique based on the fuzzy set theory [21] is employed.
It should be noted that we have tested using several penalty
function techniques earlier, and the fuzzy set theory gives the
best results.Themetaheuristics employed do not have reliable
termination criterion, therefore, their search will be stopped
based on the maximum number of function evaluations.

Furthermore, in order to verify the performance of the
proposed algorithms, an existing evolutionary algorithm for
antioptimisation called a hybrid genetic algorithm [13] will
be employed to solve the test problems and compared with
the various PBILs. For this performance test, HybridGA uses
real codes for design variables. The method of Hooke and
Jeeves is used for searching the worst case. The number of

good solutions taken for mutation is set to be 10.The roulette
wheel selection method is used to select design solutions for
crossover operation. The optimiser is terminated when the
maximum number of function evaluations set for PBILs in
the previous paragraph is reached.

5. Optimum Results

The optimum results of AOP1 are given in Table 1. Figure 5
displays the contour of the objective function and the bound-
aries of buckling constraints with 𝐹 = 200N, 400N, and
600N. It should be noted that the stress constraints do not
affect the feasible region for this design case. From the figure,
it is seen that the buckling constraint where 𝐹 = 600N
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Table 4: Optimum results of AOP4.

MHs HybridGA PBILb5 PBILw5 PBILw5m PBILw1 PBILw10
Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev Avrg Stdev

𝑥
1

0.0467 0.0084 0.0517 0.0053 0.0520 0.0041 0.0513 0.0043 0.0490 0.0031 0.0533 0.0084
𝑥
2

0.0477 0.0107 0.0510 0.0040 0.0503 0.0018 0.0513 0.0035 0.0507 0.0045 0.0543 0.0082
𝑥
3

0.0833 0.0048 0.0867 0.0055 0.0863 0.0067 0.0867 0.0048 0.0860 0.0050 0.0873 0.0069
𝑥
4

0.0603 0.0049 0.0577 0.0082 0.0607 0.0098 0.0577 0.0068 0.0563 0.0076 0.0610 0.0099
𝑥
5

0.0570 0.0070 0.0543 0.0068 0.0590 0.0092 0.0533 0.0071 0.0553 0.0078 0.0583 0.0105
𝑥
6

0.0613 0.0043 0.0603 0.0072 0.0617 0.0079 0.0603 0.0093 0.0577 0.0043 0.0653 0.0107
𝑥
7

0.0720 0.0130 0.0783 0.0046 0.0773 0.0058 0.0797 0.0056 0.0760 0.0081 0.0793 0.0087
𝑥
8

0.0457 0.0082 0.0507 0.0037 0.0500 0.0037 0.0507 0.0037 0.0490 0.0031 0.0523 0.0082
𝑥
9

0.0440 0.0056 0.0510 0.0031 0.0507 0.0025 0.0497 0.0032 0.0483 0.0038 0.0507 0.0045
𝑥
10

0.0787 0.0035 0.0787 0.0051 0.0797 0.0041 0.0770 0.0047 0.0780 0.0048 0.0810 0.0055
𝑥
11

0.0518 0.1773 0.3132 0.2705 0.1478 0.3773 0.3319 0.3448 0.2337 0.3527 0.2345 0.4409
𝑥
12

0.5991 0.1766 0.5610 0.1850 0.6211 0.1079 0.5072 0.2017 0.6345 0.1444 0.5174 0.1896
𝑥
13

−0.6919 0.1381 −0.5828 0.1442 −0.5369 0.2001 −0.4271 0.2176 −0.6712 0.1039 −0.4691 0.2160
𝑥
14

0.6804 0.1490 0.5697 0.1723 0.5550 0.1935 0.5924 0.1489 0.6494 0.1410 0.5549 0.1754
𝑦
1

75.3793 1.2182 78.1703 1.5065 80.0000 0.0000 80.0000 0.0000 80.0000 0.0000 80.0000 0.0000
𝑦
2

170.9637 7.2167 166.1746 7.4693 175.0000 0.0000 175.0000 0.0000 175.0000 0.0000 175.0000 0.0000
𝑓(x, y) 479.4000 34.7275 529.8728 21.6285 535.8320 21.6881 534.5283 22.3252 501.9159 11.7035 574.2029 37.1328
max𝑔

𝑖
−0.0047 0.0009 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000 −0.0050 0.0000

gives the most narrow feasible region and therefore leads
to the worst case results. The optimum for the worst case
scenario is x = {0.5, 0.0041}

𝑇 and 𝑦 = 600N. According to
the results obtained from the various optimisers, HybridGA
cannot capture the worst case for all runs, while PBILs can
find the worst case for some optimisation runs. The best
solutions obtained by using five versions of PBIL are the same,
that is, x = {0.5, 0.0042}

𝑇 and 𝑦 = 600N, which can be
classified as a near optimum of the design problem. Based on
theworst cases being explored, PBILw10 gives the best results,
while the second best is PBILw1.

The optimum results of AOP2 obtained from the various
optimisers are given in Table 2. For this design problem, it
is obvious that the worst possible case for the 10-bar truss
is when {𝐹

1
, 𝐹
2
}
𝑇

= {80, 175}
𝑇N. From the results, it can

be seen that HybridGA and PBILb5 fail to explore the worst
case, while other optimiser which are based on using w

𝑥
in

step (8) of Algorithm 2 can find the worst case for almost
every optimisation run. According to the mean value of
objective function from30 runs, PBILw1 gives the best results.
However, it is found that PBILw1 cannot find the worst case
for all 30 runs, although the values are not significant. This
is due to the lower number of inner loops used to explore the
worst case. In contrast, PBILw10 gives theworst results among
PBILw variants because it spends less time in searching
for the optimum mass. By comparing between PBILw5 and
PBILw5m, the GAmutation gives insignificant improvement
for PBIL.

The optimum results of AOP3 obtained from the various
PBILs are given in Table 3.The worst case is {𝐹

1
, 𝐹
2
, 𝐹
3
, 𝐸}
𝑇
=

{1000, 1000, 1000, 199.0 × 10
9
}
𝑇. Similar conclusions as with

the AOP2 case can be drawn except that PBILw5 is slightly

better than PBILw5m. Table 4 shows the results of AOP4.
Similar to the first two cases, HybridGA and PBILb5 fail to
explore the worst case scenario, while, for this case, all the
versions of PBILw can capture the worst case for all runs.
PBILw1 gives the best results, while the worst among PBILw
versions is PBILw10. For the fifth design case as shown in
Table 5, PBILw optimisers can capture theworst case scenario
for almost 30 runs, while PBILb5 and HybridGA fail to find
out the worst case solutions. The best optimiser is PBILw1
whereas PBILw5m is slightly better than PBILw5.

Based on the standard deviation, the variants of PBILw
are rather consistent. From the constraint violation values in
Tables 1–5, it can be said that the fuzzy set theory is efficient
and effective for constrained truss design. Table 6 shows the
total number of worst cases captured by the optimisers having
solved the design problems for 30 runs. It can be seen that
PBILw is effective for exploring the worst case scenarios for
AOP2-5. PBILw10 fails to capture the worst case once for
AOP3 and AOP5, although it spends more time to search
for the worst case scenario. This can possibly be due to a
premature convergence of the algorithm. For the first design
problem, all the optimisers have more difficulty to search for
the worst case.

The best structures obtained from running PBILw5,
PBILw5m, PBILw1, and PBILw10 for AOP2, AOP3, AOP4,
and AOP5 are illustrated in Figures 6, 7, 8, and 9, respectively.
The structures obtained from the 4 optimisers for each design
case are rather similar in size and shape to each other. In
cases of the design problems AOP2-5, with 15,000 function
evaluations and population size of 100, PBILw1 has a number
of outer loops as𝑁

𝑂
= 75 loops, while PBILw5 and PBILw10

have only 25 and 14 loops, respectively. In the test problems,
the number of inner loops 𝑁

𝐼
= 1 is adequate to search
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Figure 6: Optimum structures of AOP2 from various optimisers.
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Figure 7: Optimum structures of AOP3 from various optimisers.

for the worst cases for all design cases; thus, PBILw1 which
spends more time to search for the optimum solution of x
gives the best results for all design cases. In order to use
the proposed PBIL for antioptimisation of other engineering
systems, predefining the proper value of𝑁

𝐼
is important since

it can affect the search performance. This relies on several
factors such as the size of variables x and y.The hybrid genetic
algorithm, on the other hand, is not efficient for the truss
design problems. However, optimisation parameter settings
can affect its search performance.
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Figure 8: Optimum structures of AOP4 from various optimisers.
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Figure 9: Optimum structures of AOP5 from various optimisers.

6. Conclusions and Discussion

Ametaheuristic based onPBIL for antioptimisation of trusses
is developed, and it is termed two-level PBIL. The method
consists of two levels for two searching tasks. The first level
is an outer loop used to explore the optimum of common
design variables, while the inner loop is used to find the

worst case scenario of the variables with uncertainties. It is
shown that when searching for the worst case, the function
evaluation based on the current worst solution gives better
search results than using the current best solution. The GA
mutation applied to a binary population of PBIL does not
have significantly impact on PBILw search performance. The
results show that the proposed PBILw is an efficient optimiser
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Table 6: Number of worst cases found by the optimisers.

MHs AOP1 AOP2 AOP3 AOP4 AOP5
HybridGA 0 0 0 0 0
PBILb5 1 0 0 0 0
PBILw5 5 30 29 30 30
PBILw5m 8 30 27 30 30
PBILw1 8 29 24 30 30
PBILw10 9 30 29 30 29

for tackling a truss antioptimisation problem. Moreover, it
is superior to the hybridGA. The performance of PBILw,
to a great extent, relies on the predefined number of inner
loops for searching the worst case. It can be concluded
that the concept of using probability vectors to represent
binary populations in PBIL is powerful for dealing with
antioptimisation. For future work, the hybrid approach of
PBIL will be studied. Also, the applications of the two-
level PBIL will be employed to tackle other antioptimisation
problems.
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