
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 470139, 12 pages
http://dx.doi.org/10.1155/2013/470139

Research Article
Formal Modeling and Verification for MVB

Mo Xia, Kueiming Lo, Shuangjia Shao, and Mian Sun

School of Software, Tsinghua National Laboratory for Information Science and Technology,
Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Mo Xia; tabris17th@gmail.com

Received 7 February 2013; Accepted 19 March 2013

Academic Editor: Xiaoyu Song

Copyright © 2013 Mo Xia et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multifunction Vehicle Bus (MVB) is a critical component in the Train Communication Network (TCN), which is widely used in
most of the modern train techniques of the transportation system. How to ensure security of MVB has become an important issue.
Traditional testing could not ensure the system correctness.TheMVB systemmodeling and verification are concerned in this paper.
Petri Net and model checking methods are used to verify the MVB system. A Hierarchy Colored Petri Net (HCPN) approach is
presented to model and simulate the Master Transfer protocol of MVB. Synchronous and asynchronous methods are proposed to
describe the entities and communication environment. Automata model of the Master Transfer protocol is designed. Based on our
model checking platformM3C, theMaster Transfer protocol of theMVB is verified and some system logic critical errors are found.
Experimental results show the efficiency of our methods.

1. Introduction

Multifunction Vehicle Bus (MVB) is a crucial component in
the Train Communication Network (TCN) which is widely
used in most of the modern train control techniques of the
transportation system. How to ensure security of MVB has
become an important issue.

The traditional method to verify MVB usually uses
simulation technique or testing approach. A simulation tool
based on the model of Slave devices and a Master Frames
Generator is presented in [1]. It accomplishes the verification
flow for interchanging message data among MVB devices.
Using an error-tolerance decode algorithm, the transmitted
data of the Bus are sampled in [2], where the compatibility
and dependability of data transmission among devices are
analyzed via protocol analysis application.

Model checking is a method for automatically verifying
finite state systems [3, 4]. The procedure uses an exhaustive
search of the state space of a system model to determine
whether a specification is satisfied or violated. Although
model checking has been applied in many fields, such as
circuit and critical software verification in [5–7], it is hardly
used for verification of the MVB or TCN. Hierarchy Colored
Petri Net (HCPN) is a behavioral modeling language [8].
It can be used for modeling the validation of concurrent

systems. This paper presents a modeling approach for MVB
based on HCPN. Two modeling approaches based on model
checking method for the MVB are given in this paper too.

The remainder of this paper is organized as follows. The
following section gives the details of the MVB and Master
Transfer. Section 3 proposes a modeling method with HCPN
and shows the modeling of the Master Transfer. Section 4
shows two modeling methods based on model checking and
also explains how to model the Master Transfer. Section 5
introduces the tools we use for verification and reports the
experimental results. Section 6 concludes the paper.

2. MVB and Master Transfer

In this section, first we introduce the MVB and then present
a protocol Master Transfer of MVB and its token passing
algorithm.

2.1. MVB. The on-board train communication system has
been widely demanded formodern railways [9, 10].TheMVB
is a component of the TCN which is used in most of the
modern train control systems. The TCN has been defined by
the IEC (International Electrotechnical Commission) [11, 12];
it is the Vehicle Bus specified to connect standard equipment.

2 Journal of Applied Mathematics

MVB
Train
Bus

Driver
cab

Simple
sensors/actors

Programmable
controllers

Figure 1: Multifunction Vehicle Bus in a locomotive.

It provides both the interconnection of programmable equip-
ment pieces amongst themselves and the interconnection of
this equipment with its sensors and actors. It can also be
used as a Train Bus in trains which are not separated during
normal operation. An application of theMVB in a locomotive
is shown in Figure 1.

The MVB defines two types of devices: Master and Slave.
Each Vehicle Bus and Train Bus has one Master node and
several Slave ones. The Master sends information, the
Master Frame, to a number of Slave devices. The Slave
receives information from the Bus and sends information,
the Slave Frame, in response to the Master. A Master Frame
and the corresponding Slave Frame form a telegram, which is
shown in Figure 2. All devices decode theMaster Frame.The
addressed source device then replies with its Slave Frame,
which may be received by several other devices.

2.2. Master Transfer. Since a single Master presents a single
point of failure, mastership may be assumed by several Bus
Administrators (BAs), one at a time. To increase availability,
mastership can be shared by two or more BAs, which both
exercise mastership for the duration of a turn. Mastership
is transferred from BusAdmin to BusAdmin within a few
milliseconds in case of failure. To exercise redundancy,
mastership is transferred every few seconds by a token frame.
To this effect, all BAs are organized in a logical ring as shown
in Figure 3. A token passingmechanism ensures that only one
BusAdmin becomes Master.

In the IEC 61375-1 international standard [11], Mastership
Transfer states is depicted in a SDL graph as shown in
Figure 4.

Mastership Transfer describes the protocol which selects
a Master from one of several BAs and ensures Mastership
Transfer at the end of a turn or upon the occurrence of
a failure. A token passing algorithm is defined in the IEC
standard [11] to ensure a round-robin access of all BAs to the
Bus:

(i) after the loss of theMaster, staggering of the time-outs
ensures that only one of the BAs becomes Master;

(ii) a Master exercises mastership for the duration of one
turn;

(iii) After its turn, theMaster looks for the next BusAdmin
and reads its Device Status, which indicates if this
device is a configured BusAdmin;

(iv) a Master may only pass mastership to a configured
and actualized BusAdmin;

(v) if the device is not a configured and actualized
BusAdmin, the Master looks for the next BusAdmin
after the next turn;

(vi) if the device is a configured and actualized BuA, the
Master offersmastership to it by sending aMastership
Transfer Request;

(vii) if the device accepts mastership in its Mastership
Transfer Response, or if no answer comes, the Master
retires to become a standby Master and monitors the
Bus traffic for mastership offer or Bus silence;

(viii) if the other device rejects mastership, the current
Master retains mastership for one more turn, after
which the Master tries the next device in its BAs list;

(ix) a standby BusAdmin becomes Master if it accepts a
Mastership Transfer Request or if it detects no Bus
activity during a time greater than a defined time-out.

LTL (Linear-time Temporal Logic) is a temporal logic, it
is suitable for presentation of some temporal properties. The
definition of LTL is given as follows.

Definition 1 (Linear Temporal Logic). Linear Temporal Logic
(LTL [13]) has the following syntax given in Backus Naur
form:

𝜙 ::= ⊥ |⊤| 𝑝
(¬𝜙)

 (𝜙 ∧ 𝜙)
(𝜙 ∨ 𝜙)

 (𝜙 → 𝜙)

(𝑋𝜙)
 (𝐹𝜙)

(𝐺𝜙)
 (𝜙𝑈𝜙)

(𝜙𝑊𝜙)
 (𝜙𝑅𝜙) ,

(1)

where 𝑝 is any propositional atom from some set of atoms.
𝑋means next state, 𝐹means some future state, and 𝐺means
all future states.The next three,𝑈, 𝑅, and𝑊, are called Until,
Release, and Weak-until, respectively.

According to the requirement specified in the standard,
the Mastership Transfer must satisfy the following properties
(suppose that there are 𝑛 BAs altogether):

(1) there cannot be more than one Master at one time; it
is written in the LTL as shown in

G¬ (BA Master
𝑖
∧ BA Master

𝑗
) , 𝑖, 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛, 𝑖 ̸= 𝑗, (2)

(2) there cannot be no Master at one time; it is written in
the LTL as shown in

G¬(
𝑛

⋀
𝑖=1

BA Standby
𝑖
) . (3)

3. HCPN Modeling

3.1. HCPN. The Colored Petri Net (CPN [14]) preserves
useful properties of Petri Nets and it has better structuring
facilities such as types and modules. The CPN can be defined
as follows.

Definition 2 (Colored Petri Net). A Colored Petri Net CPN is
a tuple (𝑃, 𝑇, 𝐹, Σ, 𝐶, 𝐸, 𝐺, 𝐼), where

Journal of Applied Mathematics 3

MSD Fc Address CS
E
D

SSD Data CS
E
D

4 12 8 9 8 Time

Telegram

9 bits

22 𝜇s

Master Frame Slave Frame

+ CS

MSD: Master Start Delimiter
ED: End Delimiter

SSD: Slave Start Delimiter
CS: Check Sequence

22, 33, 54, 102, or 198𝜇s2 · · · 43𝜇s

16 · · · 256

Figure 2: Telegram of MVB.

Slave
device

Slave
device

Slave
device

Slave
device

Slave
device

Slave
device

Slave
device

Bus
Administrator

1
Bus

Administrator
3

Bus
Administrator

2

Token passing

MVB

Figure 3: Mastership Transfer with multiple Masters.

(1) 𝑃 is a finite set of places;
(2) 𝑇 is a finite set of transitions, and𝑃∩𝑇 = ⌀, 𝑃∪𝑇 ̸=⌀;
(3) 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of directed arcs;
(4) Σ is a set of color sets defined within the CPN model;

this set contains all possible colors, operations, and
functions used within CPN;

(5) 𝐶 : 𝑃 → Σ is a color function; it maps places into
colors in Σ;

(6) 𝐸 : 𝐹 → Σ is an arc expression function; it maps each
arc 𝑓 ∈ 𝐹 into an expression 𝑒 ∈ Σ;

(7) 𝐺 : 𝑇 → Σ is a guard function; it maps each
transition 𝑡 ∈ 𝑇 into a guard expression 𝑔 ∈ Σ;

(8) 𝐼 is an initialization function.

TheHCPN extends CPN, and it can simplify the structure
of CPN and is easier for modification. The definition of
HCPN is given as follows.

Definition 3 (Hierarchy Colored Petri Net). Hierarchy Col-
ored Petri Net is extended fromCPN,which adds two types of
transitions and places. An HCPN is a tuple (𝑁, 𝐼𝑂, 𝑆), where

(1) 𝑁 is a Colored Petri Net;
(2) 𝐼𝑂 ⊆ 𝑃, where for all 𝑖 ∈ 𝐼𝑂, 𝑖 is attached with a type

of IN or OUT;

Table 1: Color sets.

Color set Declaration Description

FID colset FID = with
MTRQ|MTRP|DSRQ|DSRP|TM Signal types

ADDR colset ADDR = int with 0⋅ ⋅ ⋅ 1 Device address
DATA colset DATA = int with 0⋅ ⋅ ⋅ 2 Frame data

FRAME colset FRAME = product FID ×
ADDR × DATA Frame

TINT colset TINT = int timed Timed int type
TBOOL colset TBOOL = bool timed Timed bool type

(3) 𝑆 ⊆ 𝑇, where for all 𝑠 ∈ 𝑆, 𝑠 is a substation transition,
which is substituted by a page.

The distinction between tokens can strongly express data
transferred in a communication channel. In the following
part, we use HCPN to model all the components shown in
Figure 4.

3.2. Color Sets. In the CPN model, color sets are used to
distinguish tokens.There are six kinds of color sets defined in
our HCPNmodel, whose name, declaration, and description
are demonstrated in Table 1. Color set FID is used to present
signal types, with any value in the finite set MTRQ, MTRP,
DSRQ, TM. And color set FRAME is a compound color set,
that is, an ordered triple, that stands for the frame transferred
in the communication channel.

3.3. Translation Rules. The Mastership Transfer state shown
in Figure 4 is translated into a CPN model according to the
rules as follows:

(1) use a place element to represent a state, such as
STANDBY MASTER and FIND NEXT;

(2) use a place element to represent a process, ignoring
the execution time of the process;

(3) use a transition element to represent a task;

4 Journal of Applied Mathematics

INIT

STANDBY MASTER

Valid Master Frame

Am I configured
(ACT = 1)?

Mastership accept

Status request
to me?to me? No

No

No

No

No

Yes

Yes

Yes

Yes

T standby

Mastership reject

status (AX, MAS, ACT)

REGULAR MASTER
Master collision

or resign
End of turn

Yes

No

Token passing

Inquire status

FIND NEXT

Status response T find next

Valid next Master?

Mastership offer

INTERIM MASTER

Mastership response T interim

Remote accept? Report error

Master list or basic
period exhausted?

Get next Administrator
in BAs list

Mastership offered

(entering this state resets
T standby)

Figure 4: Mastership Transfer states.

(4) use an arc expression to represent a decision;

(5) input and output signals are divided into three types:
MastershipTransfer telegram,Device Status telegram,
and Time-out signals. These signals are distinguished
by the FID field as shown in Table 2.

3.4. HCPN Model. The HCPN model of the Mastership
Transfer consists of fourmodules (assume there are two BAs),
and the details of them are given as follows.

3.4.1. TopModule. Assume there are two BAs, that is, BusAd-
min1 and BusAdmin2, as shown in Figure 5. They share one
Bus and exercise mastership for the duration of a turn. In
addition, transitions BusAdmin1, BusAdmin2, and Channel
are substitution transitions, which will be substituted by
subpages BusAdmin1, BusAdmin2, and Channel, respectively.
Places in the Top module are described in Table 3.

3.4.2. Channel Module. Data collected from the output
buffers of BAs will be sent to the communication channel.

Journal of Applied Mathematics 5

BusAdmin2
BusAdmin2

Channel Channel

BusAdmin1
BusAdmin1

SR2
1

INT
SR1

0

INT

OutB2
FRAME

InB2
FRAME

OutB1
FRAME

InB1
FRAME

BusAdmin1

Channel

BusAdmin2

Figure 5: Top module.

frameframe

frame

frameframe

frameframe

Trans

Put2Put1

PutBuffer
FRAME

FRAMEFRAME

FRAME FRAME
InB1

OutOut
InB2

OutOut

OutB1
InIn

OutB2
InIn

Figure 6: Channel module.

Then the channel broadcasts the data to inform each device
on the network, as shown in Figure 6.

3.4.3. BusAdmin1 Module. This module implements the
token passing algorithm mentioned in Section 2. The details
of this module are given in Figure 7.

3.4.4. BusAdmin2 Module. The BusAdmin2 module is simi-
lar to BusAdmin1.

4. Synchronous and Asynchronous Modeling

Model checking is a formalization verification method for
automatically verifying finite state systems. The procedure
uses an exhaustive search of the state space of a systemmodel
to determine whether a specification is satisfied or violated.

Table 2: Input and output signals corresponding with its FID.

Signal FID Signal type
Mastership offer MTRQ Mastership transfer telegram
Mastership response MTRP Mastership transfer telegram
Inquire status DSRQ Device status telegram
Status response DSRP Device status telegram
T standby, T find next,
T interim TM Time-out signals

Table 3: Places and their descriptions in the top module.

Place ID Description
SR1 Address of BusAdmin1, default 0
SR2 Address of BusAdmin2, default 1
InB1 Input buffer of BusAdmin1
InB2 Input buffer of BusAdmin2
OutB1 Output buffer of BusAdmin1
OutB2 Output buffer of BusAdmin2

The process of model checking mainly includes three parts:
modeling, specification, and verification. Modeling is to
establish a model, which must essentially describe the behav-
ior of the system. Requirement specification, which is usually
given in some logical formalism, such as temporal logic, is to
specify the properties that themodelmust satisfy. Verification
is completely automated using model checking tools. Given
a model and a specification, a model checking tool can
determine whether the model satisfies the specification. If
the model does not satisfy the specification, a model checker
will give a counterexample execution of the model which
demonstrates how the specification is violated.

A modeling and verification method for modeling exter-
nal environments and temporal features is proposed in [15]
for PLC (Programmable Logic Controller [16]) system. The
idea is also suitable for MVB, but the method cannot be
applied in MVB due to the differences between the PLC and
MVB. In this section, we first propose a model of the BusAd-
min and the Bus and then present twomodelingmethods, the
synchronous and asynchronous modeling, including how to
translate in the PROMELA codes of the model checker SPIN
[17].

4.1. Bus Administrator, Bus, and Communication Model. A
BusAdmin is a device that could be aMaster device to control
the Slave devices. There are several BAs in the MVB usually,
but only one can be the Master at one time. The definition of
a BusAdmin is given as follows.

Definition 4 (Bus Administrator). A BusAdmin 𝐴 is a tuple
(𝑆, 𝑡, 𝑅, 𝑖, 𝑜), where

(1) 𝑆 is a finite set of states;
(2) 𝑡 is an initial state, 𝑡 ∈ 𝑆;
(3) 𝑅 is a transition relation, 𝑅 ⊆ 𝑆 × 𝑆 such that 𝑅 is left

total, that is, for all 𝑠 ∈ 𝑆, ∃𝑠 ∈ 𝑆 such that (𝑠, 𝑠) ∈ 𝑅;

6 Journal of Applied Mathematics

true

if source = addr
andalso fid = MS

else empty

true

(MS, 1, 1)

true

true

true

true

truetrue

true

true

true

true

truetrue

true

true

true

true

true

true

true

true

true

true

if source = addr
andalso fid = MTRP
andalso data = 0

else empty

if source = addr
andalso fid = DSRP
andalso data = 1

else empty

true

true

true

true

if source = addr
andalso fid = DSRQ

else empty

frame

(MTRP, 1, 0)

true

if act = 1

else
act

if act = 1

else empty

frame

REGULAR

INTERIM

REGULAR2

STANDBY

SendMTRQ

InquireS

GetNext

Send

Reject
DISCON

GETFID

input (frame);
output (fid, addr, data);
action
(#1(frame), #2(frame), #3(frame));

TMP
BOOL

BOOL

BOOL

BOOL

timeout_TF
BOOL

REGULAR
BOOL

BOOL

BOOL

BOOL

BOOL

ValidNM

BOOL

BOOL

FIND_NEXT
BOOL

SearchBA
TBOOL

StatusR
BOOL

FRAME

NCON
BOOL

INT

CON
BOOL

INT

STANDBY
BOOL

OutB1
OutOut

@+1

true

TINT

FRAME

PRIORITY

SendBuffer
frame

(MTRP, 1, 1)

true

Accept CONDITION

T_standby

t_standby

timeout_TS

LIMIT
BOOL

true

true

true
ACT

true

true

COLLISIONCOLLISION

(MTRQ, 1, 1)
if source = addr
andalso fid = MTRQ

else empty

(DSRQ, 1, 1)

SR1
I/OI/O

InB1
InIn

FRAME

if source = addr
andalso fid = MTRP
andalso data = 1

else empty

RACCEPT RemoteAccept

ERROR ERROR ReportError

T_interim

timeout_TI

true

true

SendStatus

(DSRP, 1, 1)

true

source INTERIM ReportError

[𝑝
𝑝

= 1]

then 1 true

then 1 true
then 1 true

then 1 true then 1 true

then 1 true

then 1 true

1 true
then empty

Figure 7: BusAdmin1 module.

(4) 𝑖 is an input channel, which is used to receivemessages
from the Bus;

(5) 𝑜 is an output channel, which is used to sendmessages
to the Bus.

Each BusAdmin has a unique time-out T standby,
address, and rank. The behavior of a BusAdmin is mainly
decided by the topological relation of its states and transition
relation as shown in Figure 8. And part of the PROMELA
codes of a BusAdmin is given in Listing 1.

The Bus is the medium through which a BusAdmin can
send and receive frames with the others. The definition of a
Bus is given as follows.

Definition 5 (Bus). A Bus 𝐵 is a tuple (𝑆, 𝑡, 𝑅, 𝐼, 𝑂), where

(1) 𝑆 is a finite set of states;

(2) 𝑡 is an initial state, 𝑡 ∈ 𝑆;

(3) 𝑅 is a transition relation, 𝑅 ⊆ 𝑆 × 𝑆 such that 𝑅 is left-
total, that is, for all 𝑠 ∈ 𝑆, ∃𝑠 ∈ 𝑆 such that (𝑠, 𝑠) ∈ 𝑅;

(4) 𝑖 is a set of input channels, which is used to receive
messages from the BAs;

(5) 𝑜 is a set of output channels, which is used to send
messages to the BAs.

The definition of the Bus is almost the same as the BusAd-
min.Themain difference between them is their behaviors: the
behavior of the Bus is mainly broadcasting the frame sent by
a BusAdmin to all the other BAs, and the frame in the Bus
could be lost or be changed.

The communication model is the model of the MVB we
want to verify. The definition of a communication model is
given as follows.

Definition 6 (communication model). A communication
model 𝐶 is a tuple (𝐴, 𝑏), where

(1) 𝐴 is a set of BAs;

(2) 𝑏 is a Bus, for all 𝑎 ∈ 𝐴, 𝑏 is connected with 𝑎.

Journal of Applied Mathematics 7

active proctype Bus Administrator 1 () {
. . .
BA 1 STANDBY MASTER: /∗State Standby Master∗/
atomic {

BA 1. curState = STANDBY MASTER;
BA 1. in count > 0; /∗wait until BA 1. in count>0∗/
BA 1. input ? frame; /∗receive a frame∗/
BA 1. in count−−;
if
:: frame.type == LOST->

. . . /∗frame loss∗/
:: (frame. type == MASTERSHIP OFFERED && frame.recv == BA 1. rank) ->

. . . /∗Mastership offered to me∗/
:: (frame. type == STATUS REQUEST && frame.recv == BA 1. rank) ->

. . . /∗request status of me∗/
:: (frame. type == REGULAR) ->

. . . /∗Master Frame∗/
:: else -> . . .
fi;

}
. . .

}

Listing 1: PROMELA codes of a BA.

Master collision
resign

Last period

Master list exhausted
Basic period exhausted

Null
report error

NEXT

?T find next
!inquire status

!status
!mastership reject

MASTER MASTER

MASTER

?status response
!mastership offer

!regular frame
?regular frame

?T standby

END OF
TURN

STANDBY INTERIM

FIND

REGULAR

Figure 8: States and transitions of a BA.

Every BusAdmin is connected to the Bus, they do not
send frames to the others directly, and all the frames are
transmitted through the Bus. If a BusAdmin sends a frame,
the Bus will receive the frame and send it to all the other BAs.
So the number of the input channels of the Bus is the sum of
all the BAs, and it is similar for the output channels.

4.2. Synchronous Modeling. The communication process of
MVB depends on the Bus, by which all the devices exchange
their messages periodically. To model periodical message
transformation, an independent process is used to represent
the Bus; it is defined as a finite state entity with input and
output channels. Every BusAdmin in the communication
model is defined as a state machine, while every state of each
BusAdmin as an atomic step.The transition of BusAdminwill
fire on the moment when the communication is taking place
via the Bus. If there is no information exchange, the state of
the BusAdmin will not detect the changes of itself or other
BAs. Thus the state is a basic unit, within every basic period
of the Bus communication, it experiences one and only one
state.

The message transformation is taken place periodically
with a transition fires of each BusAdmin synchronized.
We cannot separate the communication process from time
elapsing. So the communication phase and the synchronized
states of each BusAdmin are activated alternately. So the basic
period is viewed as a tick tomodel time. Time is split into end-
to-end time zones, and the split lines are the same for different
BAs. In every time zone, all the BAs stay in one and only one
state. When it enters the next time zone, the state can change,
and every BusAdmin can feel other BAs’ changes expressed
by the message transferred via the Bus. The communication
mechanism is shown in Figure 9.

In the synchronous approach all the states of BAs are
represented as automata transfer synchronously; that is, if
a transition of some BusAdmin fires, it needs to wait for
entering the next state until all the transitions of other BAs
take place. So synchronous barriers are set where the transi-
tion lays between two states. The mechanism of synchronous

8 Journal of Applied Mathematics

active proctype Synchronous Bus () {
atomic {

if
/∗BA 0 as the Regular Master∗/
:: (BA 0. cur == REGULAR MASTER && BA 1. cur != REGULAR MASTER) ->

BA 0. output ? frame; BA 0. input ! frame;
master type = frame. type;
/∗Master Frame from BA 0 to BA 1∗/
if

:: true -> frame. type = LOST;
:: true -> frame. type = master type;

fi;
BA 1. input ! frame;
/∗Slave Frame from BA 1 to BA 0∗/
if

:: frame. recv == 1 -> . . . /∗Answer the Master Frame∗/
:: else -> skip;

fi;
. . . /∗ BA 1 as the Regular Master ∗/
:: (BA 0. cur!=REGULAR MASTER && BA 1. cur!=REGULAR MASTER) ->

frame. type = LOST; /∗No Regular Master∗/
BA 0. input ! frame; BA 1. input ! frame;

:: else -> . . . /∗Receive data from output channel of BAs in Regular Mastership∗/
fi;
. . .

}

Listing 2: PROMELA codes of the synchronous bus.

BA2

BA3

Bus

A period

BA1

Figure 9: Timing diagram of the synchronous model.

barriers is that the channel of size zero in PROMELA is used,
as shown in Listing 2. Channels are established between BAs
and the Bus, and the communication is immediate without
any buffer. When a BusAdmin is leaving an old state, it
performs as the sender and the Bus performs as the receiver;
conversely before it enters a new state, the Bus performs as the
sender and it performs as the receiver. Two-way information
exchanges between BAs and the Bus take place before and
after the transitions take place synchronously.

As the communication through Bus performs period-
ically, the synchronous transitions are used to model the
time elapse. Time in the synchronous approach is divided
into small pieces, called the time spans, and the time spans
appear one after another. For some BAs, a time appearance is

associated with one and only one state. In the time span, no
information exchange happens, so all the BAs do not know
any state changes of the other BAs. When a time span is
exhausted, the BAs leave the old state and tell all the other
BAs through the Bus what changes the BAs which have left
the old states hasmade.When entering the next time span, all
the BAs get the information through the Bus, and get to know
what they should do by the received messages, so certain
transitions fire leading to proper state to work for certain
purpose. If some time span is trivial, states also transfer along
with its elapsing, but the pack in the channel transmission is
label with Type SKIP, which implies the time does not elapse
at this moment. The role of the Bus is not only to forward
information from one end to another, but also to be potential
to change the content of the information. For instance, the
Bus can simulate the information losing though changing the
information type to LOSE.

4.3. Asynchronous Modeling. The structures of the asyn-
chronous and the synchronous models are alike. The main
difference is that a BusAdmin can send a frame freely without
waiting for the other BAs in the asynchronous model. So the
sequence of the BAs’ actions is not synchronous; it could be
random as shown in Figure 10. And the channels are different
too; each BusAdmin uses two channels whose size is not
ZERO to communicate with the other BAs through the Bus,
and the Bus broadcasts the frames sent by one BusAdmin to
the other BAs with the channels.

Journal of Applied Mathematics 9

BA1

BA2

BA3

Bus

Figure 10: Timing diagram of the asynchronous model.

1 0

2 0 STANDBY @ (1:BusAdmin2)

3 0 REGULAR @ (1:BusAdmin2)

4 0 GetNext @ (1:BusAdmin2)

5 0 REGULAR @ (1:BusAdmin1)

6 0 Send @ (1:BusAdmin2)

7 0 Put2 @ (1:Channel)

8 0 Send @ (1:BusAdmin1)

9 0 Trans @ (1:Channel)

10 0 GETFID @ (1:BusAdmin2)

11 0 GetNext @ (1:BusAdmin1)

12 0 GETFID @ (1:BusAdmin1)

13 0 Put1 @ (1:Channel)

14 0 Trans @ (1:Channel)

15 0 GETFID @ (1:BusAdmin2)

16 0 GETFID @ (1:BusAdmin1)

17 1 COLLISION @ (1:BusAdmin1)

18 1 COLLISION @ (1:BusAdmin2)

19 1 STANDBY @ (1:BusAdmin2)

20 1 STANDBY @ (1:BusAdmin1)

T standby @ (1:BusAdmin2)

Figure 11: Simulation report for HCPN model.

Every BusAdmin uses two variables, an input count and
an output count, to count the number of elements in
the stack of the input and output channel separately. If a
BusAdmin sends a frame, the variable output count of it will
be increased by one, and if a BusAdmin receives a frame,
the variable input count of it will be decreased by one. If
any BusAdmin sends some frames, the Bus will receive the
frame by checking whether the value of the output count of
the BusAdmin is zero andwill send the received frames to the
other BAs. When the Bus receives a frame from a BusAdmin,
the variable output count of the BusAdmin will be decreased
by one, and when the Bus sends a frame to a BusAdmin, the
variable input count of the BusAdmin will be increased by
one similarly.

The behavior of the Bus is mainly to receive and send
frames; PROMELA codes of the Bus by the asynchronous

method is shown in Listing 3. Firstly, the Bus checks the value
of the variable output count of each BusAdmin to decide
whether to receive frames; if all the values are zero, the Bus
will do nothing but waiting for the next frame or send a
LOST frame to all the BAs to simulate the frame loss. If the
value of the variable output count of a BusAdmin is greater
than zero, then the Bus will receive a frame from its output
channel and send the frame to the other BAs. To simulate the
real environment, any frame transmitted on the Bus could
be changed or lost, so the frame send by the Bus could be
changed or replaced by the LOST frame.When the Bus sends
the frames, it will return to the beginning to receive and send
frames.

5. Verification

In this section, the simulation of HCPN is presented firstly,
then a tool M3C is introduced, at last, the experimental
results of verification of the Master Transfer are given, and
the counter-examples is analyzed.

5.1. Qualitative Analysis of HCPN. We use the CPN Tools
to do qualitative analysis. CPN Tools is a tool for editing,
simulating, and analyzing untimed and timed Hierarchical
Colored Petri Nets. In Section 2, two properties that ought
to be satisfied are specified:

(1) Property 1: there cannot be more than one Master at
one time;

(2) Property 2: there cannot be no Master at one time.

In the HCPN model, these properties are verified by
analyzing simulation reports. A simulation report generated
by CPN Tools is a sequence of transitions. In the simulation
report, if the COLLISION transition appears, Property 1
is violated; if the STANDBY transition of BusAdmin1 is
followed by the STANDBY transition of BusAdmin2, or vice
versa, Property 2 is violated. Different initial markings are
assigned to simulate our HCPNmodel depicted in Section 3.

Violations of both Property 1 and Property 2 are found
when the initial condition is that BusAdmin1 is at its
REGULAR state, BusAdmin2 is at its STANDBY state, and
T standby time-out of BusAdmin2 occurs. Assume that when
Property 2 is dissatisfied, simulation will stop. Simulation
results show that simulation will stop at the 20th step. A
Simulation report with the counterexample is shown in
Figure 11.

5.2. M3C. Module Modeling and Model Checking (M3C) is
a tool we developed, it integrates the modeling and model
checking. The modeling process uses modules, so that users
could use mouse to drag and drop modules, such as state,
to establish a model, like SIMULINK or VISIO. When the
modeling process is done, it will translate the model into the
PROMELA codes which is either of the PROMELA models
mentioned in Section 4. After the user inputs the properties
to be checked, it could invoke SPIN to execute the model
checking and get the results of it, and then it will show the

10 Journal of Applied Mathematics

active proctype Asynchronous Bus () {
atomic {
if

:: BA 0. out count > 0 -> . . . /∗receive a frame from BA 0∗/
:: else ->skip;

fi;
if

:: !recv0 && !recv1 && !recv2 ->skip;
:: !recv0 && !recv1 && !recv2 -> . . . /∗frame loss∗/
:: else -> skip;

fi;
if

:: recv0 == true; /∗receive a frame from BA 0∗/
if
:: true -> . . ./∗change the frame∗/
:: true -> . . . /∗frame loss∗/
:: true -> skip;
fi;
. . . /∗broadcast the frame∗/

fi;
. . .

}

Listing 3: PROMELA codes of the asynchronous bus.

Figure 12: Model of a BusAdmin constructed in M3C.

performance results and the counter-examples in a visual
way.Themodel of a BusAdmin constructed in M3C is shown
in Figure 12.

5.3. Performance. TheLTL formula (2) and formula (3) given
in Section 2 are translated into PROMELA codes as follows
(assume that there are three BAs and a Bus):

𝑝1: [] ! is master collision

𝑝2: [] ! (BA 0.curState == STANDBY MASTER &&
BA 1.curState == STANDBY MASTER && BA 2.
curState == STANDBY MASTER),

where the is master collision is a boolean variable that
becomes true when a BusAdmin detects a Master Frame
that is not sent by itself. We configure the model checking
process that it would stop at the first error and using
both the depth-first and width-first search strategies. The
experimental results of both properties by two models are
given in Tables 4 and 5.

As shown in the results, violations of the both LTL
formulae 𝑝1 and 𝑝2 can be found in both models. In the
DFS mode, the asynchronous model’s performance of states,
transitions, time, and the counter-example path length is
better than that of the synchronous model in most cases.
When the number of BAs connected with the Bus gets to five,

Journal of Applied Mathematics 11

Table 4: Experimental results of property p1.

Model BA DFS BFS
States Transitions Time (sec.) Path length (step) States Transitions Time (sec.) Path length (step)

Sync

2 121 121 0.001 280 1218 1728 0.003 159
3 160 160 0.002 378 14369 24771 0.024 215
4 199 199 0.002 476 192186 373760 0.438 271
5 238 238 0.003 574 2764002 5787788 7.730 327

Async

2 32 47 0.001 132 22983 24373 0.029 72
3 70 121 0.001 179 347201 375343 0.576 85
4 168 379 0.003 231 OOM OOM NaN NaN
5 448 1313 0.004 354 OOM OOM NaN NaN

Table 5: Experimental results of property p2.

Model BA DFS BFS
States Transitions Time (sec.) Path length (step) States Transitions Time (sec.) Path length (step)

Sync

2 133 133 0.002 305 1297 1842 0.003 166
3 180 180 0.002 421 15241 26048 0.026 222
4 227 227 0.002 537 203129 392149 0.462 278
5 274 274 0.003 653 2908091 6068997 8.130 334

Async

2 40 57 0.001 193 60960 65385 0.078 89
3 84 136 0.001 276 1063505 1163843 1.790 102
4 190 401 0.002 364 OOM OOM NaN NaN
5 495 1361 0.005 645 OOM OOM NaN NaN

the performance of the asynchronous model becomes worse
in states, transitions, and time than that of the synchronous
one, but the impact of the state explosion problem is still not
too much significant. While in the BFS mode, the space and
time cost is much bigger than that in the DFS mode, but on
the contrary the path length is the shortest. The synchronous
model performs better than the asynchronous one except for
the path length in this mode.

The asynchronous model uses two variables to count the
number of elements in the channels for each BusAdmin,
while the synchronous model uses the channel whose size
is zero and no need to count its content. So along with the
increase of BAs, the state space of the asynchronous model
grows faster than the synchronous model, and it implies the
cost of space is lower for complex systems in the synchronous
model. But when no BusAdmin sends and receives frames
in a period, the Bus of the synchronous model would send
SKIP frames to all BAs. It onlymeans no BusAdmin takes any
actions in last period and all BAs can enter the next period.
The asynchronous model does not need to keep the period
with all devices, so the counter-example path is shorter, and
it implies it is easier to locate the error in the asynchronous
model.

5.4. Counterexample Analysis. Both model checking based
models can find the same violations. We trailed the coun-
terexamples generated from bothmodels and discovered that
the violations they found are similar. The difference between
them is mainly the path length; the synchronous model did
some useless actions and transmitted some SKIP frames only

to skip to the next period. If we ignore the useless actions and
SKIP frames, the counter-example paths are almost the same.

The counter-example paths show that the violations could
happen in these conditions.

(1) There are more than one Master at one time: ini-
tially, assume there is only one BusAdmin in state
“REGULAR MASTER,” and the other BAs are in
state “STANDBY MASTER”. If a BusAdmin in state
“STANDBY MASTER” receives no Master Frames
during a time-out T standby, maybe because the
frames are lost, then it will go to state “REGULAR
MASTER.” Eventually, there will be two Masters at
one time.

There is no Master at one time: initially, assume there is
only one BusAdmin in state “REGULAR MASTER”, and the
other BAs are in state “STANDBY MASTER”. If a BusAdmin
in state “STANDBY MASTER” receives no Master Frames
during a time-out T standby, maybe because the frames are
lost, then it will go to state “REGULARMASTER”. Now, there
are two BAs in state “REGULAR MASTER”. If they both
receive Master Frames that are not sent by themselves, and
they assume a master collision, then they both return to state
“STANDBYMASTER”. Eventually, there will be no Master at
one time.

As the analysis of the counter-examples shows, although
the probability of the violation is very low, it is critical for the
security of the control system. The Master Transfer protocol
has some solution of the accidents, but it does not prevent the
happening of these accidents.

12 Journal of Applied Mathematics

6. Conclusions

In this paper, we presented two systematic approaches to
model and verify the MVB. We gave two methods based on
model checking and a method based on HCPN.We use these
methods to model and verify the Master Transfer protocol
of MVB, and they can all work properly. The synchronous
model needs less states and transitions, and it is suitable
for the periodical system; the asynchronous model costs less
verification time and the path of counter-example is shorter;
it is suitable for the periodical system. We also integrated
them into our Modeling and Model Checking tool M3C, so
that they can be easy to use. Experimental results showed the
efficiency and power of our approaches. The impact of the
state explosion problem is not as significant as the general
method periodic model.

Acknowledgment

This work is supported by the Funds NSFC61171121,
NSFC60973049, the Science Foundation of ChineseMinistry
of Education—China Mobile 2012.

References

[1] J. Jiménez, I. Hoyos, C. Cuadrado, J. Andreu, and A. Zuloaga,
“Simulation ofmessage data in a testbench for themultifunction
vehicle bus,” in Proceedings of the 32nd IEEE Annual Conference
on Industrial Electronics (IECON ’06), pp. 4666–4671, 2006.

[2] H. Zhiwu, Z. Sheng, G. Weihua, and L. Jianfeng, “Research and
design of protocol analyzer for multifunction vehicle bus,” in
Proceedings of the 7th IEEEWorld Congress on Intelligent Control
and Automation (WCICA ’08), pp. 8358–8361, 2008.

[3] E. M. Clarke and E. A. Emerson, “Design and synthesis
of synchronization skeletons using branching time temporal
logic,” in Logics of Programs, vol. 131, pp. 52–71, Springer, Berlin,
Germany, 1982.

[4] J. P. Queille and J. Sifakis, “Specification and verification of
concurrent systems in CESAR,” in International Symposium on
Programming, vol. 137, pp. 337–351, Springer, Berlin, Germany,
1982.

[5] C. Baier and J.-P. Katoen, Principles of Model Checking, MIT
Press, Cambridge, Mass, USA, 2008.

[6] R. Jhala and R. Majumdar, “Software model checking,” ACM
Computing Surveys, vol. 41, no. 4, p. 21, 2009.

[7] G. Frey and L. Litz, “Formal methods in PLC programming,”
in Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, vol. 4, pp. 2431–2436, 2000.

[8] P. Huber, K. Jensen, and R.M. Shapiro, “Hierarchies in coloured
Petri nets,” in Advances in Petri Nets 1990, vol. 483 of Lecture
Notes in Computer Science, pp. 313–341, Springer, Berlin, Ger-
many, 1991.

[9] G. Fadin, H. Kirrmann, and P. Umiliacchi, “Rosin, railway
open system interconnection network. Web technologies for
railways,” in Proceedings of Automation in Transportation, 1998.

[10] P. Umiliacchi, “The role of european research in the railways
modernisation process: the rosin project,” in Proceedings of the
World Congress on Railway Research, pp. 63–68, 1997.

[11] I. E. Commission et al., “IEC 61375-1,” TrainCommunication
Network, 1999.

[12] H. Kirrmann and P. Zuber, “The IEC/IEEE train communica-
tion network,” IEEE Micro, vol. 21, no. 2, pp. 81–92, 2001.

[13] M.Huth andM. Ryan, Logic in Computer Science:Modelling and
Reasoning about Systems, vol. 2, Cambridge University Press,
Cambridge, Mass, USA, 2nd edition, 2004.

[14] K. Jensen, “Coloured Petri nets,” in Petri Nets: Central Models
and Their Properties, vol. 254, pp. 248–299, Springer, Berlin,
Germany, 1987.

[15] P. Liu, G. Luo, M. Xia, and M. He, “Automatic verification of
event-driven control programs: a case study,” in Proceedings of
the 4th IEEE International Workshop on Advanced Computa-
tional Intelligence (IWACI ’11), pp. 249–256, 2011.

[16] K. John and M. Tiegelkamp, IEC 61131-3: Programming
Industrial Automation Systems: Concepts and Programming
Languages, Requirements for Programming Systems, Decision-
Making Aids, Springer, 2010.

[17] G. Holzmann, “The model checker spin,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

