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A new fractional subequation method is proposed for finding exact solutions for fractional partial differential equations (FPDEs).
The fractional derivative is defined in the sense ofmodified Riemann-Liouville derivative. As applications, abundant exact solutions
including solitary wave solutions as well as periodic wave solutions for the space-time fractional generalized Hirota-Satsuma
coupled KdV equations are obtained by using this method.

1. Introduction

Fractional differential equations are generalizations of classi-
cal differential equations of integer order. Recently, fractional
differential equations have been the focus of many studies
due to their frequent appearance in various applications
in physics, biology, engineering, signal processing, systems
identification, control theory, finance, and fractional dynam-
ics. Among the investigations for fractional differential equa-
tions, research for seeking exact solutions and approximate
solutions of fractional differential equations is a hot topic.
New exact solutions for fractional differential equations
may help to understand better corresponding nonlinear
wave phenomena they describe. Some powerful methods
have been proposed so far (e.g., see [1–12]). Using these
methods, a variety of fractional differential equations have
been investigated.

In this paper, we propose a new fractional subequation
method to establish exact solutions for fractional partial dif-
ferential equations (FPDEs), which is based on the following
fractional ordinary differential equation:

𝐷
2𝛼

𝜉
𝐺 (𝜉) + 𝜆𝐷

𝛼

𝜉
𝐺 (𝜉) + 𝜇𝐺 (𝜉) = 0, 0 < 𝛼 ≤ 1, (1)

where 𝐷𝛼
𝜉
𝐺(𝜉) denotes the modified Riemann-Liouville

derivative of order 𝛼 for 𝐺(𝜉) with respect to 𝜉.

The definition and some important properties for
Jumarie’s modified Riemann-Liouville derivative of
order 𝛼 are listed as follows (see [13–16]):
𝐷
𝛼

𝑡
𝑓 (𝑡)
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{{{{
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, 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 ≥ 1,

(2)
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𝑡
𝑡
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𝐷
𝛼

𝑡
(𝑓 (𝑡) 𝑔 (𝑡)) = 𝑔 (𝑡)𝐷

𝛼

𝑡
𝑓 (𝑡) + 𝑓 (𝑡)𝐷

𝛼

𝑡
𝑔 (𝑡) , (4)

𝐷
𝛼

𝑡
𝑓 [𝑔 (𝑡)] = 𝑓

󸀠

𝑔
[𝑔 (𝑡)]𝐷

𝛼

𝑡
𝑔 (𝑡) = 𝐷

𝛼

𝑔
𝑓 [𝑔 (𝑡)] (𝑔

󸀠
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𝛼

.

(5)

We organize this paper as follows. In Section 2, we derive
the expression for 𝐷𝛼

𝜉
𝐺(𝜉)/𝐺(𝜉) related to (1). In Section 3,

we give the description of the fractional subequation method
for solving FPDEs. Then in Section 4 we apply this method
to establish exact solutions for the space-time fractional
generalized Hirota-Satsuma coupled KdV equations. Some
conclusions are presented at the end of the paper.
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2. The General Expression for 𝐷𝛼
𝜉
𝐺(𝜉)/𝐺(𝜉)

In order to obtain the general solutions for (1), we
suppose 𝐺(𝜉) = 𝐻(𝜂) and a nonlinear fractional complex
transformation 𝜂 = 𝜉

𝛼
/Γ(1 + 𝛼). Then, by (3) and the first

equality in (5), (1) can be turned into the following second
ordinary differential equation:

𝐻
󸀠󸀠
(𝜂) + 𝜆𝐻

󸀠
(𝜂) + 𝜇𝐻 (𝜂) = 0. (6)

By the general solutions of (6), we have

𝐻
󸀠
(𝜂)

𝐻 (𝜂)
=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{
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𝜆
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1
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1
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) , 𝜆
2
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−
𝜆

2
+

𝐶
2

𝐶
1
+ 𝐶
2
𝜂
, 𝜆

2
− 4𝜇 = 0,

(7)

where 𝐶
1
and 𝐶

2
are arbitrary constants. Since 𝐷𝛼

𝜉
𝐺(𝜉) = 𝐷

𝛼

𝜉
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󸀠
(𝜂)𝐷
𝛼

𝜉
𝜂 = 𝐻

󸀠
(𝜂), we

obtain

𝐷
𝛼

𝜉
𝐺 (𝜉)

𝐺 (𝜉)
=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

−
𝜆

2
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𝐶
1
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2
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𝐶
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𝐶
1
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2
sin(√4𝜇 − 𝜆2/2Γ (1 + 𝛼)) 𝜉𝛼

), 𝜆
2
− 4𝜇 < 0,

−
𝜆

2
+

𝐶
2
Γ (1 + 𝛼)

𝐶
1
Γ (1 + 𝛼) + 𝐶

2
𝜉𝛼
, 𝜆

2
− 4𝜇 = 0.

(8)

3. Description of the Fractional
Subequation Method

In this section, we give the main steps of the fractional
subequation method for finding exact solutions for FPDEs.

Suppose that an FPDE, say in the independent vari-
ables 𝑡, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, is given by

𝑃 (𝑢
1
, . . . , 𝑢

𝑘
, 𝐷
𝛼

𝑡
𝑢
1
, . . . , 𝐷

𝛼

𝑡
𝑢
𝑘
, 𝐷
𝛼

𝑥
1

𝑢
1
, . . . ,

𝐷
𝛼

𝑥
1

𝑢
𝑘
, . . . , 𝐷

𝛼

𝑥
𝑛

𝑢
1
, . . . , 𝐷

𝛼

𝑥
𝑛

𝑢
𝑘
, 𝐷
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𝑢
1
, . . . ,

𝐷
2𝛼

𝑡
𝑢
𝑘
, 𝐷
2𝛼

𝑥
1

𝑢
1
, . . .) = 0,

(9)

where 𝑢
𝑖
= 𝑢
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑖 = 1, . . . , 𝑘, are unknown

functions and𝑃 is a polynomial in 𝑢
𝑖
and their various partial

derivatives including fractional derivatives.

Step 1. Suppose that

𝑢
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑈
𝑖
(𝜉) ,

𝜉 = 𝑐𝑡 + 𝑘
1
𝑥
1
+ 𝑘
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑛
𝑥
𝑛
+ 𝜉
0
.

(10)

Then, by the second equality in (5), (9) can be turned into
the following fractional ordinary differential equation with
respect to the variable 𝜉:
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, . . . , 𝑈
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𝛼
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, . . . , 𝑘

𝛼

1
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𝛼

𝑛
𝐷
𝛼

𝜉
𝑈
1
, . . . ,

𝑘
𝛼

𝑛
𝐷
𝛼

𝜉
𝑈
𝑘
, 𝑐
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𝐷
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𝜉
𝑈
1
, . . . ,

𝑐
2𝛼
𝐷
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𝜉
𝑈
𝑘
, 𝑘
2𝛼

1
𝐷
2𝛼

𝜉
𝑈
1
, . . .) = 0.

(11)
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Step 2. Suppose that the solution of (11) can be expressed by
a polynomial in (𝐷𝛼

𝜉
𝐺/𝐺) as follows:

𝑈
𝑗
(𝜉)

= 𝑎
𝑗,0
+

𝑚
𝑗

∑

𝑖=1

[𝑎
𝑗,𝑖
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

𝑖

+ 𝑏
𝑗,𝑖
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

𝑖−1

√𝜎(1 +
1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

)
]
]

]

,

𝑗 = 1, 2, . . . , 𝑘,

(12)

where 𝐺 = 𝐺(𝜉) satisfies (1), 𝜎 is a constant, and 𝑎
𝑗,𝑖
, 𝑖 =

0, 1, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑘, are constants to be determined
later. The positive integer 𝑚 can be determined by consid-
ering the homogeneous balance between the highest-order
derivatives and nonlinear terms appearing in (11).

Step 3. Substituting (12) into (11), using (1), and
collecting all terms with the same order of (𝐷𝛼

𝜉
𝐺/

𝐺)√𝜎(1 + (1/𝜇)(𝐷
𝛼

𝜉
𝐺/𝐺)
2
) together, the left-hand side

of (11) is converted into another polynomial in (𝐷𝛼
𝜉
𝐺/𝐺).

Equating each coefficient of this polynomial to zero yields
a set of algebraic equations for 𝑎

𝑗0
, 𝑎
𝑗,𝑖
, 𝑏
𝑗,𝑖
, 𝑖 = 1, . . . , 𝑚,

𝑗 = 1, 2, . . . , 𝑘.

Step 4. Solving the equations in Step 3 and using (8), we can
construct a variety of exact solutions for (9).

4. Application of
the Method to Space-Time Fractional
Generalized Hirota-Satsuma Coupled
KdV Equations

In this section, we will apply the described method in
Section 3 to solve the space-time fractional generalized
Hirota-Satsuma coupled KdV equations [15, 16]:

𝐷
𝛼

𝑡
𝑢 −

1

2
𝐷
3𝛼

𝑥
𝑢 + 3𝑢𝐷

𝛼

𝑥
𝑢 − 3𝐷

𝛼

𝑥
(V𝑤) = 0,

𝐷
𝛼

𝑡
V + 𝐷3𝛼

𝑥
V − 3𝑢𝐷𝛼

𝑥
V = 0,

𝐷
𝛼

𝑡
𝑤 + 𝐷

3𝛼

𝑥
𝑤 − 3𝑢𝐷

𝛼

𝑥
𝑤 = 0,

0 < 𝛼 ≤ 1.

(13)

Equations (13) can be used to describe the interaction of two
long waves with different dispersion relations [17]. In [15],
the authors solved equations (13) by a proposed fractional
subequationmethod based on the fractional Riccati equation,
while in [16], (13) are solved by the known (𝐺󸀠/𝐺)-expansion
method. Now we apply the described method in Section 3 to
solve (13). To beginwith, suppose that𝑢(𝑥, 𝑡) = 𝑈(𝜉), V(𝑥, 𝑡) =
𝑉(𝜉), 𝑤(𝑥, 𝑡) = 𝑊(𝜉), where 𝜉 = 𝑘𝑥 + 𝑐𝑡 + 𝜉

0
, 𝑘, 𝑐, 𝜉

0
are all

constants with 𝑘, 𝑐 ̸= 0.Then, by usinge the second equality in
(4), we obtain

𝐷
𝛼

𝑥
𝑢 = 𝐷

𝛼

𝑥
𝑈 (𝜉) = (𝐷

𝛼

𝜉
𝑈) (𝜉
󸀠

𝑥
)
𝛼

= 𝑘
𝛼
𝐷
𝛼

𝜉
𝑈,

𝐷
𝛼

𝑡
𝑢 = 𝐷

𝛼

𝑡
𝑈 (𝜉) = (𝐷

𝛼

𝜉
𝑈) (𝜉
󸀠

𝑡
)
𝛼

= 𝑐
𝛼
𝐷
𝛼

𝜉
𝑈,

(14)

and similarly we have

𝐷
𝛼

𝑥
V = 𝑘𝛼𝐷𝛼

𝜉
𝑉, 𝐷

𝛼

𝑡
V = 𝑐𝛼𝐷𝛼

𝜉
𝑉,

𝐷
𝛼

𝑥
𝑤 = 𝑘

𝛼
𝐷
𝛼

𝜉
𝑊, 𝐷

𝛼

𝑡
𝑤 = 𝑐

𝛼
𝐷
𝛼

𝜉
𝑊;

(15)

then (11) can be turned into the following fractional ordinary
differential equations with respect to the variable 𝜉:

𝑐
𝛼
𝐷
𝛼

𝜉
𝑈 −

1

2
𝑘
3𝛼
𝐷
3𝛼

𝜉
𝑈 + 3𝑘

𝛼
𝑈𝐷
𝛼

𝜉
𝑈 − 3𝑘

𝛼
𝐷
𝛼

𝜉
(𝑉𝑊) = 0,

𝑐
𝛼
𝐷
𝛼

𝜉
𝑉 + 𝑘

3𝛼
𝐷
3𝛼

𝜉
𝑉 − 3𝑘

𝛼
𝑈𝐷
𝛼

𝜉
𝑉 = 0,

𝑐
𝛼
𝐷
𝛼

𝜉
𝑊+ 𝑘

3𝛼
𝐷
3𝛼

𝜉
𝑊− 3𝑘

𝛼
𝑈𝐷
𝛼

𝜉
𝑊 = 0.

(16)

Suppose that the solutions of (16) can be expressed by

𝑈 (𝜉) = 𝑎
0
+

𝑚
1

∑

𝑖=1

[𝑎
𝑖
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

𝑖

+ 𝑏
𝑖
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

𝑖−1

√𝜎(1 +
1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

)
]
]

]

,

𝑉 (𝜉) = 𝑐
0
+

𝑚
2

∑

𝑖=1

[𝑐
𝑖
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

𝑖

+ 𝑑
𝑖
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

𝑖−1

√𝜎(1 +
1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

)
]
]

]

,

𝑊 (𝜉) = 𝑒
0
+

𝑚
3

∑

𝑖=1

[𝑒
𝑖
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

𝑖

+ 𝑓
𝑖
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

𝑖−1

√𝜎(1 +
1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

)
]
]

]

.

(17)

Balancing the order of𝐷3𝛼
𝜉
𝑈 and𝐷𝛼

𝜉
(𝑉𝑊),𝐷3𝛼

𝜉
𝑉 and𝑈𝐷𝛼

𝜉
𝑉,

and 𝐷3𝛼
𝜉
𝑊 and 𝑈𝐷𝛼

𝜉
𝑊 in (16), we have 𝑚

1
= 𝑚
2
= 𝑚
3
= 2.

So

𝑈 (𝜉) = 𝑎
0
+ 𝑎
1
(

𝐷
𝛼

𝜉
𝐺

𝐺
) + 𝑎
2
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

+ 𝑏
1
√𝜎(1 +

1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

)

+ 𝑏
2
(

𝐷
𝛼

𝜉
𝐺

𝐺
)√𝜎(1 +

1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

),
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𝑉 (𝜉) = 𝑐
0
+ 𝑐
1
(

𝐷
𝛼

𝜉
𝐺

𝐺
) + 𝑐
2
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

+ 𝑑
1
√𝜎(1 +

1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

)

+ 𝑑
2
(

𝐷
𝛼

𝜉
𝐺

𝐺
)√𝜎(1 +

1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

),

𝑊 (𝜉) = 𝑒
0
+ 𝑒
1
(

𝐷
𝛼

𝜉
𝐺

𝐺
) + 𝑒
2
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

+ 𝑓
1
√𝜎(1 +

1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

)

+ 𝑓
2
(

𝐷
𝛼

𝜉
𝐺

𝐺
)√𝜎(1 +

1

𝜇
(

𝐷
𝛼

𝜉
𝐺

𝐺
)

2

).

(18)

Substituting (18) into (16), using (1), and collecting
all the terms with the same power of (𝐷𝛼

𝜉
𝐺/𝐺)

√𝜎(1 + (1/𝜇)(𝐷
𝛼

𝜉
𝐺/𝐺)
2
) together, equating each coefficient

to zero yields a set of algebraic equations. Solving these
equations, with the aid of the mathematical software Maple,
yields the following seven groups of values.

Case 1. One has

𝜇 =
1

4
𝑘
−4𝛼
𝜎𝑏
2

2
, 𝜆 = 0, 𝑎

0
=
1

3
𝑘
−𝛼
𝑐
𝛼
+
5

12
𝑘
−2𝛼
𝜎𝑏
2

2
,

𝑎
1
= 0, 𝑎

2
= 2𝑘
2𝛼
, 𝑏

1
= 0, 𝑏

2
= 𝑏
2
,

𝑐
0
=
1

24

𝑏
2
(16𝑘
−𝛼
𝑐
𝛼
𝑓
2
+ 5𝑘
−2𝛼
𝑓
2
𝜎𝑏
2

2
− 6𝑒
0
𝑏
2
)

𝑓
2

2

, 𝑐
1
= 0,

𝑐
2
=
𝑘
2𝛼
𝑏
2

2𝑓
2

, 𝑑
1
= 0, 𝑑

2
=
𝑏
2

2

4𝑓
2

, 𝑒
0
= 𝑒
0
,

𝑒
1
= 0, 𝑒

2
=
2𝑘
2𝛼
𝑓
2

𝑏
2

, 𝑓
1
= 0, 𝑓

2
= 𝑓
2
.

(19)

Case 2. One has

𝜇 = 𝜇, 𝜆 =
1

4
𝑘
−2𝛼
𝑎
1
,

𝑎
0
=
1

48
𝑘
−2𝛼
𝑎
2

1
+
8

3
𝑘
2𝛼
𝜇 +

1

3
𝑘
−𝛼
𝑐
𝛼
,

𝑎
1
= 𝑎
1
, 𝑎

2
= 4𝑘
2𝛼
, 𝑏

1
= 0, 𝑏

2
= 0,

𝑐
0
=
1

96
𝑐
2
(𝑘
−4𝛼
𝑎
2

1
+ 128𝜇 + 64𝑐

𝛼
𝑘
−3𝛼

− 24𝑘
−4𝛼
𝑐
2
𝑒
0
) ,

𝑐
1
=
1

4
𝑐
2
𝑘
−2𝛼
𝑎
1
, 𝑐

2
= 𝑐
2
, 𝑑

1
= 0,

𝑑
2
= 0, 𝑒

0
= 𝑒
0
, 𝑒

1
=
𝑘
2𝛼
𝑎
1

𝑐
2

,

𝑒
2
=
4𝑘
4𝛼

𝑐
2

, 𝑓
1
= 0, 𝑓

2
= 0.

(20)

Case 3. One has

𝜇 =
1

16
𝑘
−4𝛼
𝑎
2

1
+ 𝑐
𝛼
𝑘
−3𝛼

−
3

4
𝑘
−4𝛼
𝑐
1
𝑒
1
,

𝜆 =
1

2
𝑘
−2𝛼
𝑎
1
,

𝑎
0
=
1

8
𝑘
−2𝛼
𝑎
2

1
+ 𝑘
−𝛼
𝑐
𝛼
−
1

2
𝑘
−2𝛼
𝑐
1
𝑒
1
,

𝑎
1
= 𝑎
1
, 𝑎

2
= 2𝑘
2𝛼
, 𝑏

1
= 0,

𝑏
2
= 0, 𝑐

0
= 𝑐
0
, 𝑐

1
= 𝑐
1
,

𝑐
2
= 0, 𝑑

1
= 0, 𝑑

2
= 0,

𝑒
0
=

𝑒
1
(𝑘
−2𝛼
𝑎
1
𝑐
1
− 2𝑐
0
)

2𝑐
1

, 𝑒
1
= 𝑒
1
,

𝑒
2
= 0, 𝑓

1
= 0, 𝑓

2
= 0.

(21)

Case 4. One has

𝜇 = 𝑘
−4𝛼
𝜎𝑏
2

2
, 𝜆 = 0,

𝑎
0
=
2

3
𝑘
−2𝛼
𝜎𝑏
2

2
+
1

3
𝑘
−𝛼
𝑐
𝛼
, 𝑎

1
= 0,

𝑎
2
= 𝑘
2𝛼
, 𝑏

1
= 0, 𝑏

2
= 𝑏
2
,

𝑐
0
= 𝑐
0
, 𝑐

1
=
𝑘
2𝛼
𝑑
1

𝑏
2

, 𝑐
2
= 0,

𝑑
1
= 𝑑
1
, 𝑑

2
= 0,

𝑒
0
=

𝑐
0
𝑏
2

2
(𝑘
−4𝛼
𝜎𝑏
2

2
− 4𝑐
𝛼
𝑘
−3𝛼
)

12𝑑
2

1

,

𝑒
1
=

𝑏
2
(−𝑘
−2𝛼
𝜎𝑏
2

2
+ 4𝑘
−𝛼
𝑐
𝛼
)

12𝑑
1

, 𝑒
2
= 0,

𝑓
1
= −

𝑏
2

2
(𝑘
−4𝛼
𝜎𝑏
2

2
− 4𝑐
𝛼
𝑘
−3𝛼
)

12𝑑
1

, 𝑓
2
= 0.

(22)

Case 5. One has

𝜇 = 4𝑐
𝛼
𝑘
−3𝛼
, 𝜆 = 0, 𝑎

0
= 3𝑘
−𝛼
𝑐
𝛼
,

𝑎
1
= 0, 𝑎

2
= 𝑘
2𝛼
, 𝑏

1
= 0,
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𝑏
2
= ±𝑘
−𝛼√

𝑐
𝛼
𝑘
3𝛼

𝜎
, 𝑐

0
= 0, 𝑐

1
= 0,

𝑐
2
= 0, 𝑑

1
= 0, 𝑑

2
= 0, 𝑒

0
= 𝑒
0
,

𝑒
1
= ±

𝑘
3𝛼
𝑓
1

2
√

𝜎

𝑐𝛼𝑘3𝛼
, 𝑒

2
= 0,

𝑓
1
= 𝑓
1
, 𝑓

2
= 0.

(23)

Case 6. One has

𝜇 = 𝜇, 𝜆 = 0, 𝑎
0
=
2

3
𝑘
2𝛼
𝜇 +

1

3
𝑘
−𝛼
𝑐
𝛼
,

𝑎
1
= 0, 𝑎

2
= 2𝑘
2𝛼
, 𝑏

1
= 0,

𝑏
2
= 0, 𝑐

0
= 𝑐
0
, 𝑐

1
= 𝑐
1
,

𝑐
2
= 0, 𝑑

1
= 0, 𝑑

2
= 0,

𝑒
0
= −

4𝑐
0
(−𝑘
4𝛼
𝜇 + 𝑘
𝛼
𝑐
𝛼
)

3𝑐
2

1

,

𝑒
1
=

4 (−𝑘
4𝛼
𝜇 + 𝑘
𝛼
𝑐
𝛼
)

3𝑐
1

,

𝑒
2
= 0, 𝑓

1
= 0, 𝑓

2
= 0.

(24)

Case 7. One has

𝜇 = 𝜇, 𝜆 = 0, 𝑎
0
=
5

3
𝑘
2𝛼
𝜇 +

1

3
𝑘
−𝛼
𝑐
𝛼
,

𝑎
1
= 0, 𝑎

2
= 2𝑘
2𝛼
, 𝑏

1
= 0,

𝑏
2
= 0, 𝑐

0
= 𝑐
0
, 𝑐

1
= 0,

𝑐
2
= 0, 𝑑

1
= 𝑑
1
, 𝑑

2
= 0,

𝑒
0
= −

2𝑐
0
𝜇 (𝑘
4𝛼
𝜇 + 2𝑘

𝛼
𝑐
𝛼
)

3𝜎𝑑
2

1

,

𝑒
1
= 0, 𝑒

2
= 0,

𝑓
1
=

2𝜇 (𝑘
4𝛼
𝜇 + 2𝑘

𝛼
𝑐
𝛼
)

3 (𝜎𝑑
1
)

, 𝑓
2
= 0.

(25)

Substituting the previous results into (18) and combining
with (8), we can obtain a series of exact solutions for (13).

From Case 1, we obtain the following exact solutions.
When 𝜇 < 0,

𝑈
1
(𝜉) =

1

3
𝑘
−𝛼
𝑐
𝛼
+
5

12
𝑘
−2𝛼
𝜎𝑏
2

2
− 2𝑘
2𝛼
𝜇

× [(𝐶
1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+ 𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+ 𝐶
2
sinh ( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

2

+ 𝑏
2
√−𝜇[(𝐶

1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+ 𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+ 𝐶
2
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

× (𝜎

{

{

{

1 − [(𝐶
1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+ 𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+ 𝐶
2
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

2

}

}

}

)

1/2

,

(26)

𝑉
1
(𝜉) =

1

24

𝑏
2
(16𝑘
−𝛼
𝑐
𝛼
𝑓
2
+ 5𝑘
−2𝛼
𝑓
2
𝜎𝑏
2

2
− 6𝑒
0
𝑏
2
)

𝑓
2

2

−
𝑘
2𝛼
𝑏
2

2𝑓
2

𝜇[(𝐶
1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

2

+
𝑏
2

2

4𝑓
2

√−𝜇[(𝐶
1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+ 𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)



6 Journal of Applied Mathematics

+𝐶
2
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

× (𝜎

{

{

{

1 − [(𝐶
1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

2

}

}

}

)

1/2

,

(27)

𝑊
1
(𝜉) = 𝑒

0
−
2𝑘
2𝛼
𝑓
2

𝑏
2

𝜇[(𝐶
1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+ 𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

2

+ 𝑓
2
√−𝜇[(𝐶

1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

× (𝜎

{

{

{

1 − [(𝐶
1
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

× (𝐶
1
cosh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)

+𝐶
2
sinh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
))

−1

]

2

}

}

}

)

1/2

,

(28)

where 𝜉 = 𝑘𝑥 + 𝑐𝑡 + 𝜉
0
, 𝜇 = (1/4)𝑘

−4𝛼
𝜎𝑏
2

2
.

When 𝜇 > 0,

𝑈
2
(𝜉) =

1

3
𝑘
−𝛼
𝑐
𝛼
+
5

12
𝑘
−2𝛼
𝜎𝑏
2

2
+ 2𝑘
2𝛼
𝜇

× [(−𝐶
1
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

2

+ 𝑏
2√𝜇[(−𝐶1 sin(

√𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

× (𝜎

{

{

{

1 + [(−𝐶
1
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

2

})

1/2

,

(29)

𝑉
2
(𝜉) =

1

24

𝑏
2
(16𝑘
−𝛼
𝑐
𝛼
𝑓
2
+ 5𝑘
−2𝛼
𝑓
2
𝜎𝑏
2

2
− 6𝑒
0
𝑏
2
)

𝑓
2

2

+
𝑘
2𝛼
𝑏
2

2𝑓
2

𝜇[(−𝐶
1
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

2

+
𝑏
2

2

4𝑓
2

√𝜇[(−𝐶1 sin(
√𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
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+𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

× (𝜎{1 + [(−𝐶
1
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

2

})

1/2

,

(30)

𝑊
2
(𝜉) = 𝑒

0
+
2𝑘
2𝛼
𝑓
2

𝑏
2

𝜇

× [(−𝐶
1
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

2

+ 𝑓
2√𝜇[(−𝐶1 sin(

√𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

× (𝜎{1 + [(−𝐶
1
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+ 𝐶
2
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

× (𝐶
1
cos( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼

+𝐶
2
sin( √𝜇

Γ (1 + 𝛼)
) 𝜉
𝛼
)

−1

]

2

})

1/2

,

(31)

where 𝜉 = 𝑘𝑥 + 𝑐𝑡 + 𝜉
0
and 𝜇 = (1/4)𝑘−4𝛼𝜎𝑏2

2
.

In particular, if we let 𝐶
2
= 0 in (26)–(28), thenwe obtain

the following solitary wave solutions, which are shown in
Figures 1, 2, and 3:

𝑈
3
(𝜉) =

1

3
𝑘
−𝛼
𝑐
𝛼
+
5

12
𝑘
−2𝛼
𝜎𝑏
2

2

− 2𝑘
2𝛼
𝜇[tanh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)]

2

+ 𝑏
2
√−𝜇[tanh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)]

× √𝜎{1 − [tanh( √−𝜇𝜉
𝛼

Γ (1 + 𝛼)
)]

2

},

(32)

𝑉
3
(𝜉) =

1

24

𝑏
2
(16𝑘
−𝛼
𝑐
𝛼
𝑓
2
+ 5𝑘
−2𝛼
𝑓
2
𝜎𝑏
2

2
− 6𝑒
0
𝑏
2
)

𝑓
2

2

−
𝑘
2𝛼
𝑏
2

2𝑓
2

𝜇[tanh( √−𝜇𝜉
𝛼

Γ (1 + 𝛼)
)]

2

+
𝑏
2

2

4𝑓
2

√−𝜇[tanh( √−𝜇𝜉
𝛼

Γ (1 + 𝛼)
)]

× √𝜎{1 − [tanh( √−𝜇𝜉
𝛼

Γ (1 + 𝛼)
)]

2

},

(33)

𝑊
3
(𝜉) = 𝑒

0
−
2𝑘
2𝛼
𝑓
2

𝑏
2

𝜇[tanh( √−𝜇𝜉
𝛼

Γ (1 + 𝛼)
)]

2

+ 𝑓
2
√−𝜇[tanh( √−𝜇𝜉

𝛼

Γ (1 + 𝛼)
)]

× √𝜎{1 − [tanh( √−𝜇𝜉
𝛼

Γ (1 + 𝛼)
)]

2

}.

(34)

If we let 𝐶
2
= 0 in (29)–(31), thenwe obtain the following

periodic wave solutions, which are shown in Figures 4, 5, and
6:

𝑈
4
(𝜉) =

1

3
𝑘
−𝛼
𝑐
𝛼
+
5

12
𝑘
−2𝛼
𝜎𝑏
2

2

+ 2𝑘
2𝛼
𝜇[tan √𝜇

Γ (1 + 𝛼)
𝜉
𝛼
]

2
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Figure 1: The solution 𝑈
3
in (32) with 𝛾 = 4/5, 𝑘 = 𝑐 = 𝜎 = 𝑏

2
= 1,

𝜇 = −1, 𝜉
0
= 0.

− 𝑏
2√𝜇[tan

√𝜇

Γ (1 + 𝛼)
𝜉
𝛼
]

× √𝜎{1 + [tan √𝜇

Γ (1 + 𝛼)
𝜉𝛼]

2

},

(35)

𝑉
4
(𝜉) =

1

24

𝑏
2
(16𝑘
−𝛼
𝑐
𝛼
𝑓
2
+ 5𝑘
−2𝛼
𝑓
2
𝜎𝑏
2

2
− 6𝑒
0
𝑏
2
)

𝑓
2

2

+
𝑘
2𝛼
𝑏
2

2𝑓
2

𝜇[tan √𝜇

Γ (1 + 𝛼)
𝜉
𝛼
]

2

−
𝑏
2

2

4𝑓
2

√𝜇[tan
√𝜇

Γ (1 + 𝛼)
𝜉
𝛼
]

× √𝜎{1 + [tan √𝜇

Γ (1 + 𝛼)
𝜉𝛼]

2

},

(36)

𝑊
4
(𝜉) = 𝑒

0
+
2𝑘
2𝛼
𝑓
2

𝑏
2

𝜇[tan √𝜇

Γ (1 + 𝛼)
𝜉
𝛼
]

2

− 𝑓
2√𝜇[tan

√𝜇

Γ (1 + 𝛼)
𝜉
𝛼
]

× √𝜎{1 + [tan √𝜇

Γ (1 + 𝛼)
𝜉𝛼]

2

}.

(37)

Similar to the established solutions from Case 1, we can
construct corresponding exact solutions to (13) from Cases
2–7, which are omitted here.
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Figure 2: The solution 𝑉
3
in (33) with 𝛾 = 4/5, 𝑘 = 𝑐 = 𝜎 = 𝑏
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0
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Figure 3: The solution𝑊
3
in (34) with 𝛾 = 4/5, 𝑘 = 𝑐 = 𝜎 = 𝑏

2
=

𝑓
2
= 1, 𝜇 = −1, 𝜉

0
= 0, 𝑒

0
= 1.

Remark 1. Wenote that the solutions obtained here are of new
forms compared with the solutions obtained in [15, 16] since
a fully new method is used here.

5. Conclusions

Based on the concept of the modified Riemann-Liouville
derivative and a variable transformation 𝜉 = 𝑐𝑡 + 𝑘

1
𝑥
1
+

𝑘
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑛
𝑥
𝑛
+ 𝜉
0
, we have proposed a new fractional

subequation method for solving fractional partial differential
equations (FPDEs). By using this method, the space-time
fractional generalized Hirota-Satsuma coupled KdV equa-
tions are solved successfully, and, as a result, some exact
solutions are established, which may help to understand
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Figure 4: The solution 𝑈
4
in (35) with 𝛾 = 4/5, 𝑘 = 𝑐 = 𝜎 = 𝑏
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Figure 5: The solution 𝑉
4
in (36) with 𝛾 = 4/5, 𝑘 = 𝑐 = 𝜎 = 𝑏
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Figure 6: The solution𝑊
4
in (37) with 𝛾 = 4/5, 𝑘 = 𝑐 = 𝜎 = 𝑏
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better the nonlinear wave phenomena. It is supposed that this
method can be further applied to solve other FPDEs.
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