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We propose a new class of mathematical structures called (𝑚, 𝑛)-semirings (which generalize the usual semirings) and describe
their basic properties. We define partial ordering and generalize the concepts of congruence, homomorphism, and so forth, for
(𝑚, 𝑛)-semirings. Following earlier work by Rao (2008), we consider systems made up of several components whose failures may
cause them to fail and represent the set of such systems algebraically as an (𝑚, 𝑛)-semiring. Based on the characteristics of these
components, we present a formalism to compare the fault-tolerance behavior of two systems using our framework of a partially
ordered (𝑚, 𝑛)-semiring.

1. Introduction

Fault tolerance is the property of a system to be functional
even if some of its components fail. It is a very critical
issue in the design of the systems as in Air Traffic Control
Systems [1, 2], real-time embedded systems [3], robotics [4,
5], automation systems [6, 7], medical systems [8], mission
critical systems [9], and a lot of others. Description of fault-
tolerance modeling using algebraic structures is proposed
by Beckmann [10] for groups and by Hadjicostis [11] for
semigroups and semirings. Semirings are also used in other
areas of computer science like cryptography [12], databases
[13], graph theory, game theory [14], and so forth. Rao [15]
uses the formalism of semirings to analyze the fault tolerance
of a system as a function of its composition, with a partial
ordering relation between systems used to compare their
fault-tolerance behaviors.

The generalization of algebraic structures was in active
research for a long time; Timm [16] in 1967 proposed com-
mutative 𝑛-groups; later Crombez [17] in 1972 generalized
rings and named it as (𝑚, 𝑛)-rings. It was further studied
by Crombez and Timm [18], Leeson and Butson [19, 20],

and by Dudek [21]. Recently the generalization of algebraic
structures is studied Davvaz et al. [22, 23].

In this paper, we first define the (𝑚, 𝑛)-semiring (R, 𝑓, 𝑔)

(which is a generalization of the ordinary semiring (R, +, ×),
whereR is a set with binary operations + and ×), using𝑓 and
𝑔which are𝑚-ary and 𝑛-ary operations, respectively.We pro-
pose identity elements, multiplicatively absorbing elements,
idempotents, and homomorphisms for (𝑚, 𝑛)-semirings. We
also briefly touch on zero-divisor free, zero-sum free, addi-
tively cancellative, and multiplicatively cancellative (𝑚, 𝑛)-
semirings and the congruence relation on (𝑚, 𝑛)-semirings.
In Section 4, we use the facts that each system consists
of components or subsystems and that the fault-tolerance
behavior of the system depends on each of the components or
subsystems that constitute the system. A system may itself be
a module or part of a larger system, so that its fault tolerance
affects that of the whole system of which it is a part. We
analyze the fault tolerance of a system given its composition,
extending earlier work of Rao [15]. Section 2 describes the
notations used and the general conventions followed.

Section 3 deals with the definition and properties of
(𝑚, 𝑛)-semirings. In Section 4, we extend the results of
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Rao [15] using a partial ordering on the (𝑚, 𝑛)-semiring of
systems: the class of systems is algebraically represented by
an (𝑚, 𝑛)-semiring, and the fault-tolerance behavior of two
systems is compared using partially ordered (𝑚, 𝑛)-semiring.

2. Preliminaries

The set of integers is denoted byZ, withZ
+
andZ

−
denoting

the sets of positive integers and negative integers, respectively,
and 𝑚 and 𝑛 used are positive integers. LetR be a set and 𝑓
a mapping 𝑓 : R𝑚 → R; that is, 𝑓 is an 𝑚-ary operation.
Elements of the setR are denoted by 𝑥

𝑖
, 𝑦
𝑖
where 𝑖 ∈ Z

+
.

Definition 1. A nonempty setRwith an𝑚-ary operation𝑓 is
called an𝑚-ary groupoid and is denoted by (R, 𝑓) (seeDudek
[24]).

We use the following general convention.
The sequence 𝑥

𝑖
, 𝑥
𝑖+1
, . . . , 𝑥

𝑚
is denoted by 𝑥𝑚

𝑖
where

1 ≤ 𝑖 ≤ 𝑚.
For all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚, the following term

𝑓 (𝑥
1
, . . . , 𝑥

𝑖
, 𝑦
𝑖+1
, . . . , 𝑦

𝑗
, 𝑧
𝑗+1
, . . . , 𝑧

𝑚
) (1)

is represented as

𝑓 (𝑥
𝑖

1
, 𝑦
𝑗

𝑖+1
, 𝑧
𝑚

𝑗+1
) . (2)

In the case when 𝑦
𝑖+1

= ⋅ ⋅ ⋅ = 𝑦
𝑗
= 𝑦, (2) is expressed as

𝑓(𝑥𝑖
1
,
(𝑗−𝑖)
𝑦 , 𝑧
𝑚

𝑗+1
). (3)

Definition 2. Let 𝑥
1
, 𝑥
2
, . . . , 𝑥

2𝑚−1
be elements of setR.

(i) Then, the associativity and distributivity laws for the
𝑚-ary operation 𝑓 are defined as follows.

(a) Associativity:

𝑓 (𝑥
𝑖−1

1
, 𝑓 (𝑥
𝑚+𝑖−1

𝑖
) , 𝑥
2𝑚−1

𝑚+𝑖
)

= 𝑓 (𝑥
𝑗−1

1
, 𝑓 (𝑥
𝑚+𝑗−1

𝑗
) , 𝑥
2𝑚−1

𝑚+𝑗
) ,

(4)

for all 𝑥
1
, . . . , 𝑥

2𝑚−1
∈ R, for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚

(from Gluskin [25]).
(b) Commutativity:

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

= 𝑓 (𝑥
𝜂(1)

, 𝑥
𝜂(2)

, . . . , 𝑥
𝜂(𝑚)

) ,
(5)

for every permutation 𝜂 of {1, 2, . . . , 𝑚} (from
Timm [16]), ∀𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ R.

(ii) An 𝑚-ary groupoid (R, 𝑓) is called an 𝑚-ary semi-
group if 𝑓 is associative (from Dudek [24]); that is, if

𝑓 (𝑥
𝑖−1

1
, 𝑓 (𝑥
𝑚+𝑖−1

𝑖
) , 𝑥
2𝑚−1

𝑚+𝑖
)

= 𝑓 (𝑥
𝑗−1

1
, 𝑓 (𝑥
𝑚+𝑗−1

𝑗
) , 𝑥
2𝑚−1

𝑚+𝑗
) ,

(6)

for all 𝑥
1
, . . . , 𝑥

2𝑚−1
∈ R, where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚.

(iii) Let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
be elements of setR,

and 1 ≤ 𝑖 ≤ 𝑛. The 𝑛-ary operation 𝑔 is distributive
with respect to the𝑚-ary operation 𝑓 if

𝑔 (𝑥
𝑖−1

1
, 𝑓 (𝑎
𝑚

1
) , 𝑥
𝑛

𝑖+1
)

= 𝑓 (𝑔 (𝑥
𝑖−1

1
, 𝑎
1
, 𝑥
𝑛

𝑖+1
) , . . . ,

𝑔 (𝑥
𝑖−1

1
, 𝑎
𝑚
, 𝑥
𝑛

𝑖+1
)) .

(7)

Remark 3. (i) An 𝑚-ary semigroup (R, 𝑓) is called a semia-
belian or (1, 𝑚)-commutative if

𝑓(𝑥, 𝑎, . . . , 𝑎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

, 𝑦) = 𝑓(𝑦, 𝑎, . . . , 𝑎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

, 𝑥), (8)

for all 𝑥, 𝑦, 𝑎 ∈ R (from Dudek and Mukhin [26]).
(ii) Consider a 𝑘-ary group (𝐺, ℎ) in which the 𝑘-ary

operation ℎ is distributive with respect to itself, that is,

ℎ (𝑥
𝑖−1

1
, ℎ (𝑎
𝑘

1
) , 𝑥
𝑘

𝑖+1
)

= ℎ (ℎ (𝑥
𝑖−1

1
, 𝑎
1
, 𝑥
𝑘

𝑖+1
) , . . . , ℎ (𝑥

𝑖−1

1
, 𝑎
𝑘
, 𝑥
𝑘

𝑖+1
)) ,

(9)

for all 1 ≤ 𝑖 ≤ 𝑘. These types of groups are called autodistrib-
utive 𝑘-ary groups (see Dudek [27]).

3. (𝑚, 𝑛)-Semirings and Their Properties

Definition 4. An (𝑚, 𝑛)-semiring is an algebraic structure
(R, 𝑓, 𝑔) which satisfies the following axioms:

(i) (R, 𝑓) is an𝑚-ary semigroup,
(ii) (R, 𝑔) is an 𝑛-ary semigroup,
(iii) the 𝑛-ary operation𝑔 is distributivewith respect to the

𝑚-ary operation 𝑓.

Example 5. Let B be any Boolean algebra. Then, (B, 𝑓, 𝑔)

is an (𝑚, 𝑛)-semiring where 𝑓(𝐴𝑚
1
) = 𝐴

1
∪ 𝐴
2
∪ ⋅ ⋅ ⋅ ∪ 𝐴

𝑚

and 𝑔(𝐵𝑛
1
) = 𝐵

1
∩ 𝐵
2
∩ ⋅ ⋅ ⋅ ∩ 𝐵

𝑛
, for all 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
and

𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
∈ B.

In general, we have the following.

Theorem6. Let (R, +, ×) be an ordinary semiring. Let𝑓 be an
𝑚-ary operation and 𝑔 be an 𝑛-ary operation onR as follows:

𝑓 (𝑥
𝑚

1
) =

𝑚

∑
𝑖=1

𝑥
𝑖
, ∀𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ R,

𝑔 (𝑦
𝑛

1
) =

𝑛

∏
𝑖=1

𝑦
𝑖
, ∀𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ R.

(10)

Then, (R, 𝑓, 𝑔) is an (𝑚, 𝑛)-semiring.

Proof. Omitted as obvious.

Example 7. The following give us some (𝑚, 𝑛)-semirings in
different ways indicated byTheorem 6.
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(i) Let (R, +, ×) be an ordinary semiring and 𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑛
be inR. If we set

𝑔 (𝑥
𝑛

1
) = 𝑥
1
× 𝑥
2
× ⋅ ⋅ ⋅ × 𝑥

𝑛
, (11)

we get a (2, 𝑛)-semiring (R, +, 𝑔).
(ii) In an (𝑚, 𝑛)-semiring (R, 𝑓, 𝑔), fixing elements 𝑎𝑚−1

2

and 𝑏𝑛−1
2

, we obtain two binary operations as follows:

𝑥 ⊕ 𝑦 = 𝑓 (𝑥, 𝑎
𝑚−1

2
, 𝑦) ,

𝑥 ⊗ 𝑦 = 𝑔 (𝑥, 𝑏
𝑛−1

2
, 𝑦) .

(12)

Obviously, (R, ⊕, ⊗) is a semiring.
(iii) The set Z

−
of all negative integers is not closed under

the binary products; that is, Z
−
does not form a

semiring, but it is a (2, 3)-semiring.

Definition 8. Let (R, 𝑓, 𝑔) be an (𝑚, 𝑛)-semiring.Then𝑚-ary
semigroup (R, 𝑓) has an identity element 0 if

𝑥 = 𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑖−1

, 𝑥, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−𝑖

), (13)

for all 𝑥 ∈ R and 1 ≤ 𝑖 ≤ 𝑚. We call 0 as an identity element
of (𝑚, 𝑛)-semiring (R, 𝑓, 𝑔).

Similarly, 𝑛-ary semigroup (R, 𝑔) has an identity ele-
ment 1 if

𝑦 = 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑗−1

, 𝑦, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑗

), (14)

for all 𝑦 ∈ R and 1 ≤ 𝑗 ≤ 𝑛.
We call 1 as an identity element of (𝑚, 𝑛)-semiring

(R, 𝑓, 𝑔).
We therefore call 0 the 𝑓-identity, and 1 the 𝑔-identity.

Remark 9. In an (𝑚, 𝑛)-semiring (R, 𝑓, 𝑔), placing 0 and 1,
(𝑚−2) and (𝑛−2) times, respectively, we obtain the following
binary operations:

𝑥 + 𝑦 = 𝑓(𝑥, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

, 𝑦),

𝑥 × 𝑦 = 𝑔(𝑥, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

, 𝑦),

∀𝑥, 𝑦 ∈ R.

(15)

Definition 10. Let (R, 𝑓, 𝑔) be an (𝑚, 𝑛)-semiring with an 𝑓-
identity element 0 and 𝑔-identity element 1. Then,

(i) 0 is said to bemultiplicatively absorbing if it is absorb-
ing in (R, 𝑔), that is, if

𝑔 (0, 𝑥𝑛−1
1

) = 𝑔 (𝑥
𝑛−1

1
, 0) = 0, (16)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
∈ R.

(ii) (R, 𝑓, 𝑔) is called zero-divisor free if

𝑔 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 0 (17)

always implies 𝑥
1
= 0 or 𝑥

2
= 0 or ⋅ ⋅ ⋅ or 𝑥

𝑛
= 0.

Elements 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
∈ R are called left zero-

divisors of (𝑚, 𝑛)-semiring (R, 𝑓, 𝑔) if there exists
𝑎 ̸= 0 and the following holds:

𝑔 (𝑥
𝑛−1

1
, 𝑎) = 0. (18)

(iii) (R, 𝑓, 𝑔) is called zero-sum free if
𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) = 0 (19)

always implies 𝑥
1
= 𝑥
2
= ⋅ ⋅ ⋅ = 𝑥

𝑚
= 0.

(iv) (R, 𝑓, 𝑔) is called additively cancellative if the 𝑚-ary
semigroup (R, 𝑓) is cancellative, that is,

𝑓 (𝑥
𝑖−1

1
, 𝑎, 𝑥
𝑚

𝑖+1
) = 𝑓 (𝑥

𝑖−1

1
, 𝑏, 𝑥
𝑚

𝑖+1
) ⇒ 𝑎 = 𝑏, (20)

for all 𝑎, 𝑏, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ R and for all 1 ≤ 𝑖 ≤ 𝑚.

(v) (R, 𝑓, 𝑔) is calledmultiplicatively cancellative if the 𝑛-
ary semigroup (R, 𝑔) is cancellative, that is,

𝑔 (𝑥
𝑖−1

1
, 𝑎, 𝑥
𝑛

𝑖+1
) = 𝑔 (𝑥

𝑖−1

1
, 𝑏, 𝑥
𝑛

𝑖+1
) ⇒ 𝑎 = 𝑏, (21)

for all 𝑎, 𝑏, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ R and for all 1 ≤ 𝑖 ≤ 𝑛.

Elements 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
are called left cancellable in

an 𝑛-ary semigroup (R, 𝑔) if

𝑔 (𝑥
𝑛−1

1
, 𝑎) = 𝑔 (𝑥

𝑛−1

1
, 𝑏) ⇒ 𝑎 = 𝑏, (22)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑎, 𝑏 ∈ R.

(R, 𝑓, 𝑔) is called multiplicatively left cancellative if
elements𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛−1
∈ R\{0} aremultiplicatively

left cancellable in 𝑛-ary semigroup (R, 𝑔).

Theorem 11. Let (R, 𝑓, 𝑔) be an (𝑚, 𝑛)-semiring with 𝑓-
identity 0.

(i) If elements 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
∈ R are multiplicatively

left cancellable, then elements 𝑥
1
,𝑥
2
,. . .,𝑥
𝑛−1

are not left
divisors.

(ii) If the (𝑚, 𝑛)-semiring (R, 𝑓, 𝑔) is multiplicatively left
cancellative, then it is zero-divisor free.

We have generalized Theorem 11 from Theorem 4.4 of
Hebisch and Weinert [28].

We have generalized the definition of idempotents of
semirings given by Bourne [29] and Hebisch and Weinert
[28]), as follows.

Definition 12. Let (R, 𝑓, 𝑔) be an (𝑚, 𝑛)-semiring. Then,
(i) it is called additively idempotent if (R, 𝑓) is an

idempotent𝑚-ary semigroup, that is, if

𝑓(𝑥, 𝑥, . . . , 𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

) = 𝑥, (23)

for all 𝑥 ∈ R;
(ii) it is called multiplicatively idempotent if (R, 𝑔) is an

idempotent 𝑛-ary semigroup, that is, if

𝑔(𝑦, 𝑦, . . . , 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

) = 𝑦, (24)

for all 𝑦 ∈ R, 𝑦 ̸= 0.
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Theorem 13. An (𝑚, 𝑛)-semiring (R, 𝑓, 𝑔) having at least
two multiplicatively idempotent elements in the center is not
multiplicatively cancellative.

Proof. Let 𝑎 and 𝑏 be two multiplicatively idempotent ele-
ments in the center, 𝑎 ̸= 𝑏. Then,

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

, 𝑎, 𝑏) = 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

, 𝑏, 𝑎), (25)

which can be written as follows:

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

, 𝑔
(𝑛)

(𝑎), 𝑏) = 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

, 𝑔
(𝑛)

(𝑏), 𝑎), (26)

which is represented as

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−3

, 𝑔(1,
(𝑛−1)

𝑎 ), 𝑎, 𝑏)

= 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−3

, 𝑔(1,
(𝑛−1)

𝑏 ), 𝑏, 𝑎).
(27)

If the (𝑚, 𝑛)-semiring (R, 𝑓, 𝑔) is multiplicatively can-
cellative, then the following holds true:

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−3

, 𝑔(1,
(𝑛−1)

𝑎 ), 1, 1)

= 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−3

, 𝑔(1,
(𝑛−1)

𝑏 ), 1, 1),

𝑔(1,
(𝑛−1)

𝑎 ) = 𝑔(1,
(𝑛−1)

𝑏 ),

(28)

which implies that 𝑎 = 𝑏, which is a contradiction to the
assumption that 𝑎 ̸= 𝑏; therefore, (R, 𝑓, 𝑔) is not multiplica-
tively cancellative.

We have generalized Exercise 2.7 in Chapter I of Hebisch
and Weinert [28] to get the following.

Definition 14. Let (R, 𝑓, 𝑔) be an (𝑚, 𝑛)-semiring and 𝜎 an
equivalence relation onR.

(i) Then, 𝜎 is called a congruence relation or a congruence
of (R, 𝑓, 𝑔), if it satisfies the following properties for
all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛:

(a) if 𝑥
𝑖
𝜎𝑦
𝑖
then 𝑓(𝑥𝑚

1
)𝜎𝑓(𝑦𝑚

1
),

(b) if 𝑧
𝑗
𝜎𝑢
𝑗
then 𝑔(𝑧𝑛

1
)𝜎𝑔(𝑢𝑛

1
),

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
, 𝑧
1
, 𝑧
2
, . . . ,

𝑧
𝑛
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
∈ R.

(ii) Let𝜎 be a congruence on an algebraR.Then, the quo-
tient ofR by 𝜎, written asR/𝜎, is the algebra whose
universe is R/𝜎 and whose fundamental operation
satisfies

𝑓
R/𝜎

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) =

𝑓R (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

𝜎
, (29)

where 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ R [30].

Theorem 15. Let (R, 𝑓, 𝑔) be an (𝑚, 𝑛)-semiring and the
relation 𝜎 be a congruence relation on (R, 𝑓, 𝑔). Then, the
quotient (R/𝜎, 𝐹, 𝐺) is an (𝑚, 𝑛)-semiring under 𝐹((𝑥

1
)/𝜎,

. . . , (𝑥
𝑚
)/𝜎) = 𝑓(𝑥𝑚

1
)/𝜎 and 𝐺((𝑦

1
)/𝜎, . . . , (𝑦

𝑛
)/𝜎) = 𝑔(𝑦𝑛

1
)/𝜎,

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
and 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
inR.

Proof. Omitted as obvious.

Definition 16. We define homomorphism, isomorphism, and
a product of two mappings as follows.

(i) A mapping 𝜑 : R → S from (𝑚, 𝑛)-semiring
(R, 𝑓, 𝑔) into (𝑚, 𝑛)-semiring (S, 𝑓, 𝑔) is called a
homomorphism if

𝜑 (𝑓 (𝑥
𝑚

1
)) = 𝑓



(𝜑 (𝑥
1
) , 𝜑 (𝑥

2
) , . . . , 𝜑 (𝑥

𝑚
)) ,

𝜑 (𝑔 (𝑦
𝑛

1
)) = 𝑔



(𝜑 (𝑦
1
) , 𝜑 (𝑦

2
) , . . . , 𝜑 (𝑦

𝑛
)) ,

(30)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ R.

(ii) The (𝑚, 𝑛)-semirings (R, 𝑓, 𝑔) and (S, 𝑓, 𝑔) are
called isomorphic if there exists one-to-one homo-
morphism from R onto S. One-to-one homomor-
phism is called isomorphism.

(iii) If we apply mapping 𝜑 : R → S and then 𝜓 : S →

T on 𝑥, we get the mapping (𝜓 ∘ 𝜑)(𝑥) which is equal
to 𝜓(𝜑(𝑥)), where 𝑥 ∈ R. It is called the product of 𝜓
and 𝜑 [28].

We have generalized Definition 16 from Definition 2 of
Allen [31].

We have generalized the following theorem from Theo-
rem 3.3 given by Hebisch and Weinert [28].

Theorem 17. Let (R, 𝑓, 𝑔), (S, 𝑓, 𝑔), and (T, 𝑓, 𝑔) be
(𝑚, 𝑛)-semirings. Then, if the following mappings 𝜑 :

(R, 𝑓, 𝑔) → (S, 𝑓, 𝑔) and

𝜓 : (S, 𝑓, 𝑔) → (T, 𝑓, 𝑔) are homomorphisms;
then,
𝜓 ∘ 𝜑 : (R, 𝑓, 𝑔) → (T, 𝑓, 𝑔) is also a homomor-
phism.

Proof. Let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
and 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
be inR. Then

(𝜓 ∘ 𝜑) (𝑓 (𝑥
𝑚

1
)) = 𝜓 (𝜑 (𝑓 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)))

= 𝜓 (𝑓


(𝜑 (𝑥
1
) , 𝜑 (𝑥

2
) , . . . , 𝜑 (𝑥

𝑚
)))

= 𝑓


(𝜓 (𝜑 (𝑥
1
)) , 𝜓 (𝜑 (𝑥

2
)) , . . . , 𝜓 (𝜑 (𝑥

𝑚
)))

= 𝑓


((𝜓 ∘ 𝜑) (𝑥
1
) , (𝜓 ∘ 𝜑) (𝑥

2
) , . . . , (𝜓 ∘ 𝜑) (𝑥

𝑚
)) .

(31)
In a similar manner, we can deduce that
(𝜓 ∘ 𝜑) (𝑔 (𝑦

𝑛

1
))

= 𝑔


((𝜓 ∘ 𝜑) (𝑦
1
) , (𝜓 ∘ 𝜑) (𝑦

2
) , . . . , (𝜓 ∘ 𝜑) (𝑦

𝑛
)) .

(32)
Thus, it is evident that 𝜓 ∘ 𝜑 is a homomorphism from
R → T.
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This proof is similar to that ofTheorem6.5 given byBurris
and Sankappanavar [30].

Definition 18. Let (R, 𝑓, 𝑔) and (S, 𝑓, 𝑔) be (𝑚, 𝑛)-
semirings and 𝜑 : R → S a homomorphism. Then, the
kernel of 𝜑, written as ker𝜑, is defined as follows:

ker 𝜑 = {(𝑎, 𝑏) ∈ R ×R | 𝜑 (𝑎) = 𝜑 (𝑏)} . (33)

Generalization of Burris and Sankappanavar [30].

Theorem 19. Let (R, 𝑓, 𝑔) and (S, 𝑓, 𝑔) be (𝑚, 𝑛)-semirings
and 𝜑 : R → S a homomorphism. Then, ker 𝜑 is a con-
gruence relation on R, and there exists a unique one-to-one
homomorphism 𝜓 fromR/ ker 𝜑 into S.

Proof. Omitted as obvious.

Corollary 20. Let (R, 𝑓, 𝑔) be an (𝑚, 𝑛)-semiring and 𝜌 and
𝜎 congruence relations on R, with 𝜌 ⊆ 𝜎. Then, 𝜎/𝜌 =

{𝜌(𝑥), 𝜌(𝑦) | (𝑥, 𝑦) ∈ 𝜎} is a congruence relation on R/𝜌,
and (R/𝜌)/(𝜎/𝜌) ≅ R/𝜎.

Lemma 21. Let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ R. Then,

(i) 𝑓(𝑓( . . . 𝑓(𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

(𝑥
1
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

), 𝑥
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

), . . . ),

𝑥
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

) = 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
),

(ii) 𝑔(𝑔( . . . 𝑔(𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

(𝑦
1
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

), 𝑦
2
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

), . . . ),

𝑦
𝑛
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

) = 𝑔(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
).

Proof. (i)

𝑓(𝑓( . . . 𝑓(𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

(𝑥
1
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

), 𝑥
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

), . . . ), 𝑥
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

).

(34)

By associativity (Definition 2 (i)), (34) is equal to

𝑓(𝑓( . . . 𝑓(𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

(0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

), 𝑥
1
, 𝑥
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−3

), . . . ), 𝑥
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

= 𝑓(𝑓( . . . 𝑓(𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

(0, 𝑥
1
, 𝑥
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−3

), 𝑥
3
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

), . . . ),

𝑥
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

= 𝑓(𝑓( . . . 𝑓(𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

), 𝑥
1
, 𝑥
2
, 𝑥
3
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−4

), . . . ),

𝑥
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

= 𝑓(𝑓( . . . 𝑓(𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

(0, 𝑥
1
, 𝑥
2
, 𝑥
3
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−4

), 𝑥
4
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

), . . . ),

𝑥
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

...

= 𝑓(𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚−1
, 0), 𝑥
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

= 𝑓(𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚−1
, 𝑥
𝑚
), 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

)

= 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) .

(35)

(ii) Similar to part (i).

4. Partial Ordering on Fault Tolerance

In this sections we use 𝑥
𝑖
, 𝑦
𝑖
, and so forth, where 𝑖 ∈ Z

+

to denote individual system components that are assumed
to be atomic at the level of discussion; that is, they have no
components or subsystems of their own. We use component
to refer to such an atomic part of a system, and subsystem to
refer to a part of a system that is not necessarily atomic. We
assume that components and subsystems are disjoint, in the
sense that if they fail, they fail independently and do not affect
the functioning of other components.

Let U be a universal set of all systems in the domain of
discourse as given by Rao [15], and let 𝑓 be a mapping 𝑓 :

U𝑚 → U, that is, 𝑓 is an𝑚-ary operation. Likewise, let 𝑔 be
an 𝑛-ary operation.

Definition 22. We define 𝑓 and 𝑔 operations for systems as
follows.

(i) 𝑓 is an 𝑚-ary operation which applies on systems
made up of 𝑚 components or subsystems, where if
any one of the components or subsystems fails, then
the whole system fails.
If a system made up of 𝑚 components 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
,

then, the system over operation 𝑓 is represented
as 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ U.

The system 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) fails when any of the

components 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
fails.

(ii) 𝑔 is an 𝑛-ary operation which applies on a system
consisting of 𝑛 components or subsystems, which fails
if all the components or subsystems fail; otherwise
it continues working even if a single component or
subsystem is working properly.
Let a system consist of 𝑛 components 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
,

then, the system over operation 𝑔 is represented
as 𝑔(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ U. The

system𝑔(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) fails when all the components

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
fail.

Consider a partial ordering relation ≼ on U, such that
(U, ≼) is a partially ordered set (poset). This is a fault-
tolerance partial ordering where 𝑓(𝑥

𝑚

1
) ≼ 𝑓(𝑦𝑚

1
) means

that 𝑓(𝑥𝑚
1
) has a lower measure of some fault metric than

𝑓(𝑦
𝑚

1
) and 𝑓(𝑥𝑚

1
) has a better fault tolerance than 𝑓(𝑦𝑚

1
), for

all 𝑓(𝑥𝑚
1
), 𝑓(𝑦𝑚

1
) ∈ U (see Rao [32] for more details) and

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
are disjoint components.



6 Journal of Applied Mathematics

Assume that 0 represents the atomic system “which is
always up” and 1 represents the system “which is always
down” (see Rao [32]).

Observation 23. We observe the following for all disjoint
components 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
, which are inU.

(i) 𝑔(𝑦𝑗−1
1
, 0, 𝑦𝑛
𝑗+1
) = 0 for all 1 ≤ 𝑗 ≤ 𝑛.

This is so since 0 represents the component or system
which never fails, and as per the definition of 𝑔,
the system as a whole fails if all the components
fail, and otherwise it continues working even if a
single component is working properly. In a system
𝑔(𝑦
𝑗−1

1
, 0, 𝑦𝑛
𝑗+1
), even if all other components 𝑦𝑗−1

1
and

𝑦𝑛
𝑗+1

fail even then 0 is up and the system is always up.

(ii) 𝑓(𝑥𝑖−1
1
, 1, 𝑥𝑚
𝑖+1
) = 1 for all 1 ≤ 𝑖 ≤ 𝑚.

This is so since 1 represents the component or system
which is always down, and as per the definition of
𝑓 if either of the component fails, then the whole
system fails. Thus, even though all other components
are working properly but due to the component 1 the
system is always down.

Definition 24. If (U, 𝑓, 𝑔) is an (𝑚, 𝑛)-semiring and (U, ≼) is
a poset, then (U, 𝑓, 𝑔, ≼) is a partially ordered (𝑚, 𝑛)-semiring
if the following conditions are satisfied for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
,

𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
, 𝑎, 𝑏 ∈ U and 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.

(i) If 𝑎 ≼ 𝑏, then 𝑓(𝑥𝑖−1
1
, 𝑎, 𝑥𝑚
𝑖+1
) ≼ 𝑓(𝑥𝑖−1

1
, 𝑏, 𝑥𝑚
𝑖+1
).

(ii) If 𝑎 ≼ 𝑏, then 𝑔(𝑦𝑗−1
1
, 𝑎, 𝑦𝑛
𝑗+1
) ≼ 𝑔(𝑦

𝑗−1

1
, 𝑏, 𝑦𝑛
𝑗+1
).

Remark 25. As it is assumed that 0 is the system which is
always up, it is more fault tolerant than any of the other
systems or components. Therefore 0 ≼ 𝑎, for all 𝑎 ∈ U.
Similarly, 𝑎 ≼ 1 because 1 is the system that always fails, and
therefore, it is the least fault tolerant; every other system is
more fault tolerant than it.

Observation 26. The following are obtained for all disjoint
components 𝑟, 𝑠,𝑥

𝑖
,𝑦
𝑗
, 𝑎
𝑖
, 𝑏
𝑗
, which are inU, where 1 ≤ 𝑖 ≤ 𝑚,

1 ≤ 𝑗 ≤ 𝑛.

(i) 0 ≼ 𝑓(𝑥𝑖−1
1
, 𝑟, 𝑥𝑚
𝑖+1
) ≼ 1.

(ii) 0 ≼ 𝑔(𝑦𝑗−1
1
, 𝑠, 𝑦𝑛
𝑗+1
) ≼ 1.

(iii) 0 ≼ 𝑔(𝑦𝑗−1
1
, 𝑓(𝑎𝑚
1
), 𝑦𝑛
𝑗+1
) ≼ 1.

(iv) 0 ≼ 𝑓(𝑥𝑖−1
1
, 𝑔(𝑏
𝑛

1
), 𝑥
𝑚

𝑖+1
) ≼ 1.

From the above description of 0 and 1, the observa-
tion is quite obvious. Case (i) shows that 0 is less faulty
than 𝑓(𝑥𝑖−1

1
, 𝑟, 𝑥𝑚
𝑖+1
), and 𝑓(𝑥𝑖−1

1
, 𝑟, 𝑥𝑚
𝑖+1
) is less faulty than 1.

Similarly, case (ii) shows that 0 is more fault tolerant than
𝑔(𝑦
𝑗−1

1
, 𝑠, 𝑦𝑛
𝑗+1
) and 𝑔(𝑦𝑗−1

1
, 𝑠, 𝑦𝑛
𝑗+1
) is more fault tolerant than

1. Likewise, case (iii) shows the operation 𝑔 over 𝑦𝑗−1
1

, 𝑦𝑛
𝑗+1

and 𝑓 of 𝑎𝑚
1
to be less faulty than 1 and more faulty than 0,

and a similar interpretation is made for (iv).

Lemma 27. If ≼ is a fault-tolerance partial order and
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
are

disjoint components, which are in U, where 𝑚, 𝑛 ∈ Z
+
, then

for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 the following holds true:

(i) if 𝑥
𝑖
≼ 𝑦
𝑖
, then 𝑓(𝑥𝑚

1
) ≼ 𝑓(𝑦𝑚

1
),

(ii) if 𝑧
𝑗
≼ 𝑢
𝑗
, then 𝑔(𝑧𝑛

1
) ≼ 𝑔(𝑢

𝑛

1
).

Proof. (i) Since 𝑥
𝑖
≼ 𝑦
𝑖
for all 1 ≤ 𝑖 ≤ 𝑚, we have

𝑥
1
≼ 𝑦
1
, (36)

which is represented as follows:

𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑥
1
) ≼ 𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

, 𝑦
1
), (37)

𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑥
2
) ≼ 𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

, 𝑦
2
). (38)

By 𝑓 operation on both sides of (37) with 𝑦
2
, we get

𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑥
1
), 𝑦
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

≼ 𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑦
1
), 𝑦
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

).
(39)

By 𝑓 operation on both sides of (38) with 𝑥
1

𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑥
2
), 𝑥
1
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

≼ 𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑦
2
), 𝑥
1
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

).
(40)

From (39) and (40), we get

𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑥
1
), 𝑦
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

≼ 𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑦
1
), 𝑦
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

).
(41)

Similarly, we find for𝑚 terms

𝑓( . . . (𝑓(𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑥
1
), 𝑥
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

), . . . ), 𝑥
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

≼ 𝑓( . . . (𝑓(𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑦
1
), 𝑦
2
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

), . . . ), 𝑦
𝑚
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

).

(42)

From Lemma 21, (42) may be represented as

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) ≼ 𝑓 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
) (43)

so

𝑓 (𝑥
𝑚

1
) ≼ 𝑓 (𝑦

𝑚

1
) . (44)

(ii) Since 𝑧
𝑗
≼ 𝑦
𝑗
, for all 1 ≤ 𝑗 ≤ 𝑛

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

, 𝑧
1
) ≼ 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

, 𝑢
1
)

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

, 𝑧
2
) ≼ 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

, 𝑢
2
).

(45)



Journal of Applied Mathematics 7

After following similar steps as seen in part (i), we use the 𝑔
operation for 𝑛 terms,

𝑔( . . . (𝑔(𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

, 𝑧
1
), 𝑧
2
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

), . . . ), 𝑧
𝑛
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

)

≼ 𝑔( . . . (𝑔(𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

, 𝑢
1
), 𝑢
2
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

), . . . ), 𝑢
𝑛
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

),

(46)

which is represented as

𝑔 (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ≼ 𝑔 (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) , (47)

and so

𝑔 (𝑧
𝑛

1
) ≼ 𝑔 (𝑢

𝑛

1
) . (48)

Theorem 28. If ≼ is a fault-tolerance partial order and given
disjoint components 𝑎

𝑖
, 𝑐
𝑗
, 𝑏
𝑖
, 𝑑
𝑗
in U, where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤

𝑗 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑚, the following obtain.

(i) If 𝑎
𝑖
≼ 𝑏
𝑖
, then

𝑔 (𝑦
𝑗−1

1
, 𝑓 (𝑎
𝑚

1
) , 𝑦
𝑛

𝑗+1
) ≼ 𝑔 (𝑦

𝑗−1

1
, 𝑓 (𝑏
𝑚

1
) , 𝑦
𝑛

𝑗+1
)

∀𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ U.

(49)

(ii) If 𝑐
𝑗
≼ 𝑑
𝑗
, then

𝑓 (𝑥
𝑘−1

1
, 𝑔 (𝑐
𝑛

1
) , 𝑥
𝑚

𝑘+1
) ≼ 𝑓 (𝑥

𝑘−1

1
, 𝑔 (𝑑
𝑛

1
) , 𝑥
𝑚

𝑘+1
)

∀𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ U.

(50)

Proof. (i) Since 𝑎
𝑖
≼ 𝑏
𝑖
, for all 1 ≤ 𝑖 ≤ 𝑚.

Therefore, from Lemma 27 (i)

𝑓 (𝑎
𝑚

1
) ≼ 𝑓 (𝑏

𝑚

1
) , ∀𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚
∈ U.

(51)

FromDefinition 24 of a partially ordered (𝑚, 𝑛)-semiring, we
deduce that

𝑔 (𝑦
𝑗−1

1
, 𝑓 (𝑎
𝑚

1
) , 𝑦
𝑛

𝑗+1
) ≼ 𝑔 (𝑦

𝑗−1

1
, 𝑓 (𝑏
𝑚

1
) , 𝑦
𝑛

𝑗+1
) , (52)

for all 1 ≤ 𝑗 ≤ 𝑛.
(ii) Since 𝑐

𝑗
≼ 𝑑
𝑗
, for all 1 ≤ 𝑗 ≤ 𝑛, from Lemma 27 (ii),

we find that

𝑔 (𝑐
𝑛

1
) ≼ 𝑔 (𝑑

𝑛

1
) , ∀𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
, 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
∈ U.

(53)

FromDefinition 24 of a partially ordered (𝑚, 𝑛)-semiring, we
deduce that

𝑓 (𝑥
𝑘−1

1
, 𝑔 (𝑐
𝑛

1
) , 𝑥
𝑚

𝑘+1
) ≼ 𝑓 (𝑥

𝑘−1

1
, 𝑔 (𝑑
𝑛

1
) , 𝑥
𝑚

𝑘+1
) , (54)

for all 1 ≤ 𝑘 ≤ 𝑚.

Lemma 29. If ≼ is a fault-tolerance partial order and 𝑥
𝑖
, 𝑦
𝑗

are disjoint components which are inU, where 1 ≤ 𝑖 ≤ 𝑚 and
1 ≤ 𝑗 ≤ 𝑛, one gets the following:

(i) 𝑥
𝑖
≼ 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
),

(ii) 𝑔(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ≼ 𝑦
𝑗
.

Proof. (i) As

0 ≼ 𝑥
1
, (55)

by 𝑓 operation on both sides of (55) with 𝑥
𝑖
, we get

𝑓(0, 𝑥
𝑖
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

) ≼ 𝑓(𝑥
1
, 𝑥
𝑖
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

). (56)

Therefore,

𝑥
𝑖
≼ 𝑓(𝑥

1
, 𝑥
𝑖
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

). (57)

Similarly, we obtain

𝑥
𝑖
≼ 𝑓(𝑥

1
, 𝑥
𝑖
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

) ≼ ⋅ ⋅ ⋅ ≼ 𝑓 (𝑥
1
, 𝑥
2
, 𝑥
𝑖
, . . . , 𝑥

𝑚−1
, 0)

≼ 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) .

(58)

Hence,

𝑥
𝑖
≼ 𝑓 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) , (59)

for all 1 ≤ 𝑖 ≤ 𝑚.
(ii) As

𝑦
1
≼ 1, (60)

by 𝑔 operation on both sides of (60) with 𝑦
𝑗
, we get

𝑔(𝑦
1
, 𝑦
𝑗
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

) ≼ 𝑦
𝑗
. (61)

Similarly, we obtain

𝑔 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ≼ 𝑔 (𝑦

1
, 𝑦
2
, 𝑦
𝑗
, . . . , 𝑦

𝑛−1
, 1)

≼ ⋅ ⋅ ⋅ ≼ 𝑔(𝑦
1
, 𝑦
𝑗
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

) ≼ 𝑦
𝑗
.

(62)

Hence,

𝑔 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ≼ 𝑦
𝑗
, (63)

for all 1 ≤ 𝑗 ≤ 𝑛.

Corollary 30. If ≼ is a fault-tolerance partial order, then the
following hold for all disjoint components 𝑥

𝑖
, 𝑦
𝑗
which are

elements ofU, where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 and 𝑘, 𝑡 ∈ Z
+
:

(i) 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−𝑘

) ≼ 𝑓(𝑥𝑚
1
), where 𝑘 < 𝑚,

(ii) 𝑔(𝑦𝑛
1
) ≼ 𝑔(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑡
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑡

), where 𝑡 < 𝑛.
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Proof. (i) From (58), we deduce that

𝑓(𝑥
1
, . . . , 𝑥

𝑘
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−𝑘

) ≼ 𝑓(𝑥
1
, . . . , 𝑥

𝑘+1
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−𝑘−1

)

≼ ⋅ ⋅ ⋅ ≼ 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) .

(64)

Therefore,

𝑓(𝑥
1
, . . . , 𝑥

𝑘
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−𝑘

) ≼ 𝑓 (𝑥𝑚
1
) . (65)

(ii) As in part (i), we deduce from (62) that

𝑔 (𝑦
𝑛

1
) ≼ 𝑔(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑡
, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑡

). (66)

𝑓(
(𝑚)

𝑓(𝑎𝑚
1
)) represents the system which is obtained after

applying the 𝑓 operation on 𝑚 repeated 𝑓(𝑎𝑚
1
) systems or

subsystems. Similarly, 𝑔(
(𝑛)

𝑔(𝑏𝑛
1
)) represents the system which

is obtained after applying the 𝑔 operation on 𝑛 repeated 𝑔(𝑏𝑛
1
)

systems or subsystems.

Theorem 31. If ≼ is a fault-tolerance partial order, and com-
ponents 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
are disjoint components

and are inU, then

(i) 𝑓(𝑥𝑚
1
) ≼ 𝑓(

(𝑚)

𝑓(𝑥𝑚
1
)),

(ii) 𝑔(
(𝑛)

𝑔(𝑦𝑛
1
)) ≼ 𝑔(𝑦𝑛

1
).

Corollary 32. The following hold for all disjoint components
𝑥
1
, . . . , 𝑥

𝑚
, 𝑧
1
, . . . , 𝑧

𝑛
, 𝑦
1
, . . . , 𝑦

𝑚
, 𝑢
1
, . . . , 𝑢

𝑛
, which are ele-

ments ofU, where𝑚, 𝑛 ∈ Z
+
.

(i) If 𝑓(
(𝑚)

𝑓(𝑥𝑚
1
)) ≼ 𝑓(𝑦𝑚

1
), then

𝑓 (𝑥
𝑚

1
) ≼ 𝑓 (𝑦

𝑚

1
) . (67)

(ii) If 𝑔(𝑧𝑛
1
) ≼ 𝑔(

(𝑛)

𝑔(𝑢𝑛
1
)), then

𝑔 (𝑧
𝑛

1
) ≼ 𝑔 (𝑢

𝑛

1
) . (68)

Proof. (i) 𝑓(
(𝑚)

𝑓(𝑥𝑚
1
)) ≼ 𝑓(𝑦𝑚

1
) and fromTheorem 31, 𝑓(𝑥𝑚

1
) ≼

𝑓(
(𝑚)

𝑓(𝑥𝑚
1
)). Therefore, 𝑓(𝑥𝑚

1
) ≼ 𝑓(𝑦𝑚

1
).

(ii) The proof is very similar to that of part (i).

Corollary 33. Let 𝑘 and 𝑡 be positive integers and 𝑘 < 𝑚,
𝑡 < 𝑛. Given disjoint components 𝑥

1
, . . . , 𝑥

𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
that are inU, the following hold:

(i) If 𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−𝑘

,
(𝑘)

𝑓(𝑥𝑚
1
)) ≼ 𝑓(𝑦𝑚

1
), then 𝑓(𝑥𝑚

1
) ≼ 𝑓(𝑦𝑚

1
).

(ii) If 𝑔(𝑧𝑛
1
) ≼ 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑡

,
(𝑡)

𝑔(𝑢𝑛
1
)), then 𝑔(𝑧𝑛

1
) ≼ 𝑔(𝑢𝑛

1
).

Proof. Similar to Corollary 32.

Theorem 34. Let ≼ be a fault-tolerance partial order and 𝑥
𝑖
≼

𝑦
𝑖
and 𝑧
𝑗
≼ 𝑢
𝑗
for all 𝑥

𝑖
, 𝑦
𝑖
, 𝑧
𝑗
, 𝑢
𝑗
∈ U, where 1 ≤ 𝑖 ≤ 𝑚 and

1 ≤ 𝑗 ≤ 𝑛. Then, the following obtain:

(i) 𝑓(
(𝑚)

𝑓(𝑥𝑚
1
)) ≼ 𝑓(

(𝑚)

𝑓(𝑦𝑚
1
)),

(ii) 𝑔(
(𝑛)

𝑔(𝑧𝑛
1
)) ≼ 𝑔(

(𝑛)

𝑔(𝑢𝑛
1
)),

(iii) 𝑓(
(𝑚)

𝑔(𝑧𝑛
1
)) ≼ 𝑓(

(𝑚)

𝑔(𝑢𝑛
1
)),

(iv) 𝑔(
(𝑛)

𝑓(𝑥𝑚
1
)) ≼ 𝑔(

(𝑛)

𝑓(𝑦𝑚
1
)).

Proof. (i) As

𝑥
𝑖
≼ 𝑦
𝑖
, 1 ≤ 𝑖 ≤ 𝑚, (69)

from Lemma 27 (i), we get

𝑓 (𝑥
𝑚

1
) ≼ 𝑓 (𝑦

𝑚

1
) . (70)

This is written as

𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑓(𝑥𝑚
1
)) ≼ 𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−1

, 𝑓(𝑦𝑚
1
)). (71)

So by 𝑓 operation on both sides of (71) with 𝑓(𝑥𝑚
1
), we get

𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑓(𝑥𝑚
1
)), 𝑓(𝑥𝑚

1
), 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

≼ 𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑓(𝑥𝑚
1
)), 𝑓(𝑦𝑚

1
), 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

).
(72)

So by 𝑓 operation on both sides of (71) with 𝑓(𝑦𝑚
1
), we get

𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑓(𝑥𝑚
1
)), 𝑓(𝑦𝑚

1
), 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

)

≼ 𝑓(𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−1

, 𝑓(𝑦𝑚
1
)), 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

, 𝑓(𝑦𝑚
1
)).

(73)

From (72) and (73), we get

𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

,
(2)

𝑓(𝑥𝑚
1
))≼ 𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−2

,
(2)

𝑓(𝑦𝑚
1
)) . (74)

Similarly, we get for𝑚 terms

𝑓
(𝑚)

(𝑓(𝑥
𝑚

1
))≼ 𝑓

(𝑚)

(𝑓(𝑦
𝑚

1
)) . (75)

(ii) We know that

𝑧
𝑗
≼ 𝑢
𝑗
, 1 ≤ 𝑗 ≤ 𝑛. (76)

From Lemma 27 (ii), we get

𝑔 (𝑧
𝑛

1
) ≼ 𝑔 (𝑢

𝑛

1
) . (77)

Which is represented as follows

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

, 𝑔(𝑧𝑛
1
)) ≼ 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1

, 𝑔(𝑢𝑛
1
)). (78)
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Now by 𝑔 operation on both sides of (78) with 𝑔(𝑧𝑛
1
), we get

𝑔 (
(2)

𝑔(𝑧
𝑛

1
), 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

) ≼ 𝑔(𝑔(𝑧𝑛
1
), 𝑔(𝑢𝑛
1
), 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

). (79)

So by 𝑔 operation on both sides of (78) with 𝑔(𝑢𝑛
1
), we get

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

, 𝑔(𝑧𝑛
1
), 𝑔(𝑢𝑛
1
)) ≼ 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−2

,
(2)

𝑔(𝑢𝑛
1
)) . (80)

So now from (79) and (80), we get

𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−2

,
(2)

𝑔(𝑧𝑛
1
))≼ 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−2

,
(2)

𝑓(𝑢𝑛
1
)) . (81)

Similarly, we find for 𝑛 terms

𝑔
(𝑛)

(𝑔 (𝑧
𝑛

1
))≼ 𝑔

(𝑛)

(𝑔 (𝑢
𝑛

1
)) . (82)

(iii) From Lemma 27 (ii)

𝑔 (𝑧
𝑛

1
) ≼ 𝑔 (𝑢

𝑛

1
) . (83)

Similar to part (i), we find 𝑓 operation of𝑚 terms and get

𝑓(𝑔(𝑧𝑛
1
), 𝑔(𝑧𝑛
1
), . . . , 𝑔(𝑧𝑛

1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

)

≼ 𝑓(𝑔(𝑢𝑛
1
), 𝑔(𝑢𝑛
1
), . . . , 𝑔(𝑢𝑛

1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

),

𝑓
(𝑚)

(𝑔 (𝑧
𝑛

1
))≼ 𝑓

(𝑚)

(𝑔 (𝑢
𝑛

1
)) .

(84)

(iv) We know that

𝑥
𝑖
≼ 𝑦
𝑖
, 1 ≤ 𝑖 ≤ 𝑚, (85)

so from Lemma 27 (i), we get

𝑓 (𝑥
𝑚

1
) ≼ 𝑓 (𝑦

𝑚

1
) . (86)

As proved in part (ii), we find 𝑔 operations of 𝑛 terms and get

𝑔(𝑓(𝑥𝑚
1
), 𝑓(𝑥𝑚

1
), . . . , 𝑓(𝑥𝑚

1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)

≼ 𝑔(𝑓(𝑦𝑚
1
), 𝑓(𝑦𝑚

1
), . . . , 𝑓(𝑦𝑚

1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

).
(87)

Thus, we get

𝑔
(𝑛)

(𝑓 (𝑥
𝑚

1
))≼ 𝑔

(𝑛)

(𝑓 (𝑦
𝑚

1
)) . (88)

Corollary 35. If ≼ is a fault-tolerance partial order and 𝑘 <

𝑚, 𝑡 < 𝑛 where 𝑘, 𝑡 ∈ Z
+
, if 𝑥
𝑖
≼ 𝑦
𝑖
, 𝑧
𝑗
≼ 𝑢
𝑗
for all disjoint

components 𝑥
𝑖
, 𝑧
𝑗
, 𝑦
𝑖
, 𝑢
𝑗
, which are inU, where 1 ≤ 𝑖 ≤ 𝑚 and

1 ≤ 𝑗 ≤ 𝑛, then

(i) 𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−𝑘

,
(𝑘)

𝑓(𝑥𝑚
1
)) ≼ 𝑓(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−𝑘

,
(𝑘)

𝑓(𝑦𝑚
1
)),

(ii) 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑡

(𝑡)

𝑔(𝑧𝑛
1
)) ≼ 𝑔(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑡

,
(𝑡)

𝑔(𝑢𝑛
1
)).

Proof. (i) Proof is similar to that of Theorem 34 (i). We find
the 𝑓 operation of 𝑘 terms where ∀𝑘 ∈ Z

+
, and 𝑘 < 𝑚.

(ii) Proof is similar to that ofTheorem 34 (ii). We find the
𝑔 operation of 𝑡 terms where ∀𝑡 ∈ Z

+
, and 𝑡 < 𝑛.

We propose the following theorem for very complex
systems.

Theorem 36. If ≼ is a fault-tolerance partial order, disjoint
components 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑗
, 𝑑
𝑗
, 𝑥
𝑘
, 𝑦
𝑘
, 𝑧
𝑡
, 𝑢
𝑡
are in U and 𝑎

𝑖
≼ 𝑏
𝑖
,

𝑐
𝑗
≼ 𝑑
𝑗
, 𝑥
𝑘
≼ 𝑦
𝑘
and 𝑧

𝑡
≼ 𝑢
𝑡
, where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛,

1 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑡 ≤ 𝑛, then

(i) 𝑓(𝑥𝑘−1
1

, 𝑓(𝑎𝑚
1
), 𝑥𝑚
𝑘+1

) ≼ 𝑓(𝑦𝑘−1
1

, 𝑓(𝑏𝑚
1
), 𝑦𝑚
𝑘+1

), for all
1 ≤ 𝑘 ≤ 𝑚;

(ii) 𝑓(𝑥𝑘−1
1

, 𝑔(𝑐𝑛
1
), 𝑥𝑚
𝑘+1

) ≼ 𝑓(𝑦𝑘−1
1

, 𝑔(𝑑𝑛
1
), 𝑦𝑚
𝑘+1

), for all 1 ≤
𝑘 ≤ 𝑚;

(iii) 𝑔(𝑧𝑡−1
1
, 𝑓(𝑎
𝑚

1
), 𝑧
𝑛

𝑡+1
) ≼ 𝑔(𝑢

𝑡−1

1
, 𝑓(𝑏
𝑚

1
), 𝑢
𝑛

𝑡+1
), for all 1 ≤

𝑡 ≤ 𝑛; and

(iv) 𝑔(𝑧𝑡−1
1
, 𝑔(𝑐𝑛
1
), 𝑧𝑛
𝑡+1
) ≼ 𝑔(𝑢𝑡−1

1
, 𝑔(𝑑𝑛
1
), 𝑢𝑛
𝑡+1
), for all 1 ≤

𝑡 ≤ 𝑛.

Proof. (i) From Lemma 27 (i), if 𝑎
𝑖
≼ 𝑏
𝑖
, then 𝑓(𝑎𝑚

1
) ≼ 𝑓(𝑏𝑚

1
)

for all 1 ≤ 𝑖 ≤ 𝑚.
We prove in a similar manner as Lemma 27 (i) that

𝑓(𝑓(𝑎𝑚
1
), 𝑥
1
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

) ≼ 𝑓(𝑓(𝑏𝑚
1
), 𝑦
1
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−2

). (89)

Similarly, we get

𝑓 (𝑓 (𝑎
𝑚

1
) , 𝑥
𝑘−1

1
, 𝑥
𝑚

𝑘+1
) ≼ 𝑓 (𝑓 (𝑏

𝑚

1
) , 𝑦
𝑘−1

1
, 𝑦
𝑚

𝑘+1
) . (90)

Thus,

𝑓 (𝑥
𝑘−1

1
, 𝑓 (𝑎
𝑚

1
) , 𝑥
𝑚

𝑘+1
) ≼ 𝑓 (𝑦

𝑘−1

1
, 𝑓 (𝑏
𝑚

1
) , 𝑦
𝑚

𝑘+1
) . (91)

Similar to the above, we can prove (ii), (iii), and (iv).
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