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Expected residualminimization (ERM)modelwhichminimizes an expected residual function defined by anNCP function has been
studied in the literature for solving stochastic complementarity problems. In this paper, we first give the definitions of stochastic
𝑃-function, stochastic 𝑃

0
-function, and stochastic uniformly 𝑃-function. Furthermore, the conditions such that the function is a

stochastic 𝑃(𝑃
0
)-function are considered. We then study the boundedness of solution set and global error bounds of the expected

residual functions defined by the “Fischer-Burmeister” (FB) function and “min” function. The conclusion indicates that solutions
of the ERM model are robust in the sense that they may have a minimum sensitivity with respect to random parameter variations
in stochastic complementarity problems. On the other hand, we employ quasi-Monte Carlo methods and derivative-free methods
to solve ERMmodel.

1. Introduction

Given a vector-valued function𝐹 : R𝑛 × Ω → R𝑛, the stochas-
tic complementarity problems, denoted by SCP(𝐹(𝑥, 𝜔)), are
to find a vector 𝑥

∗ such that

𝑥
∗

≥ 0, 𝐹 (𝑥
∗
, 𝜔) ≥ 0,

(𝑥
∗
)
𝑇
𝐹 (𝑥
∗
, 𝜔) = 0, 𝜔 ∈ Ω a.s.,

(1)

where 𝜔 ∈ Ω ⊆ R𝑚 is a random vector with given probability
distribution P and “a.s.” means “almost surely” under the
given probability measure. Particularly, when 𝐹 is an affine
function of 𝑥 for any 𝜔, that is,

𝐹 (𝑥, 𝜔) = 𝑀 (𝜔) 𝑥 + 𝑞 (𝜔) , 𝜔 ∈ Ω, (2)

where 𝑀(𝜔) ∈ R𝑛×𝑛 and 𝑞(𝜔) ∈ R𝑛, the SCP(𝐹(𝑥, 𝜔)) is
called stochastic linear complementarity problems, denoted
by SLCP(𝑀(𝜔), 𝑞(𝜔)). Correspondingly, problem (1) is called
stochastic nonlinear complementarity problem, denoted by
SNCP(𝐹(𝑥, 𝜔)) if 𝐹 can not be denoted by an affine function
of 𝑥 for any 𝜔. The deterministic problems, which are called
complementarity problems (denoted by CP(𝐹(𝑥))), have

been intensively studied. More information about theoretical
analysis, numerical algorithms and applications especially in
economics and engineering can be found in comprehensive
books [1, 2].

In practical applications, some elements may involve
stochastic factors. In fact, due to stochastic factors, the
function value of 𝐹 depends not only on 𝑥, but also on
random vectors. Hence, problem (1) does not have solution
in general for almost all 𝜔 ∈ Ω. To solve these problems,
researchers focus on giving reasonable deterministic refor-
mulations for SCP(𝐹(𝑥, 𝜔)). Certainly, different deterministic
formulations may yield different solutions that are optimal
in different senses. In the study of SCP(𝐹(𝑥, 𝜔)), three types
of formulations have been proposed; the expected value
(EV) formulation, the expected residualminimization (ERM)
formulation, and the SMPEC formulation [3].

The EV formulation is studied by Gürkan et al. [4]. The
problem considered in [4] is actually a stochastic variational
inequality problem. When applied to the SCP(𝐹(𝑥, 𝜔)), the
EV model can be stated as follows:

𝑥
∗

≥ 0, E [𝐹 (𝑥
∗
, 𝜔)] ≥ 0, (𝑥

∗
)
𝑇E [𝐹 (𝑥

∗
, 𝜔)] = 0, (3)

where Emeans expectation with respect to 𝜔.



2 Journal of Applied Mathematics

TheERMmodel is first proposed byChen and Fukushima
[5] for solving the SLCP(𝑀(𝜔), 𝑞(𝜔)). By employing an NCP
function 𝜙, the SCP(𝐹(𝑥, 𝜔)) (1) is transformed equivalently
to the stochastic equations

Φ (𝑥, 𝜔) = 0, 𝜔 ∈ Ω a.s., (4)

where Φ : R𝑛 × Ω → R𝑛 is defined by

Φ (𝑥, 𝜔) := (

𝜙 (𝑥
1
, 𝐹
1

(𝑥, 𝜔))

...
𝜙 (𝑥
𝑛
, 𝐹
𝑛

(𝑥, 𝜔))

) , (5)

and 𝑥
𝑖
denotes the 𝑖th component of the vector 𝑥. Here 𝜙 :

R𝑛 → R is an NCP function which has the property

𝜙 (𝑎, 𝑏) = 0 ⇐⇒ 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑏 = 0. (6)

Then the ERM formulation for (1) is given by

min
𝑥∈R𝑛
+

𝜃 (𝑥) := E [‖Φ (𝑥, 𝜔)‖
2
] . (7)

The NCP functions employed in [5] include the Fischer-
Burmeister function, which is defined by

𝜙FB (𝑎, 𝑏) := √𝑎2 + 𝑏2 − (𝑎 + 𝑏) (8)

and the min function

𝜙min (𝑎, 𝑏) := min {𝑎, 𝑏} . (9)

In particular, it is known [6, 7] that there exist the following
relations between these two functions:

2

√2 + 2

𝜙min
 ≤

𝜙FB
 ≤ (√2 + 2)

𝜙min
 . (10)

As observed in [5], the ERM formulations with different
NCP functions may have different properties. Subsequently,
the ERM formulation for SCP(𝐹(𝑥, 𝜔)) has been studied in
[6, 8–13]. Note that Fang et al. [8] propose a new concept of
stochastic matrice: 𝑀(⋅) is called a stochastic 𝑅

0
matrix if

P {𝜔 : 𝑥 ≥ 0, 𝑀 (𝜔) 𝑥 ≥ 0, 𝑥
𝑇
𝑀 (𝜔) 𝑥 = 0} = 1 ⇒ 𝑥 = 0.

(11)

Moreover, Zhang and Chen [11] introduce a new concept
of stochastic 𝑅

0
function, which can be regarded as a

generalization of the stochastic 𝑅
0
matrix given in [8].

Throughout this paper, we suppose that the sample space
Ω is nonempty and compact set and that the function 𝐹(𝑥, 𝜔)

is continuous with respect to 𝑥 and 𝜔. On the other hand, we
will use the following notations: 𝐼(𝑥) = {𝑖 : 𝑥

𝑖
= 0} and

𝐽(𝑥) = {𝑖 : 𝑥
𝑖

̸= 0} for a given vector 𝑥 ∈ R𝑛. ⟨𝑙, 𝑛⟩ represents
the set {𝑙, 𝑙 + 1, . . . , 𝑙 + 𝑛} for natural numbers 𝑙 and 𝑢 with
𝑙 < 𝑢. 𝑥

+
= max{𝑥, 0} for any given vector 𝑥. ‖ ⋅ ‖ refers to the

Euclidean norm.
The remainder of the paper is organized as follows:

in Section 2, we introduce the concepts of a stochastic 𝑃-
function, a stochastic𝑃

0
-function, and a stochastic uniformly

𝑃-function, which can be regarded as a generalization of
the deterministic 𝑃, 𝑃

0
-function, and uniformly 𝑃-function

or an extension of stochastic 𝑃 matrix and stochastic 𝑃
0

matrix [14]. In addition, some properties of a stochastic
𝑃(𝑃
0
)-function are given. In Section 3, we show the suffi-

cient conditions for the solution set of ERM problem to
be nonempty and bounded. In Section 4, we discuss error
bounds of SCP(𝐹(𝑥, 𝜔)). In Section 5, an algorithm will be
given to solve ERM model. We then give conclusions in
Section 6.

2. Stochastic 𝑃(𝑃
0
)-Function

It is well known that the 𝑃-function, 𝑃
0
-function, and

uniformly𝑃-function play an important role in the nonlinear
complementarity problems theory [1]. We will introduce
a new concept of stochastic 𝑃-function, 𝑃

0
-function, and

uniformly 𝑃-function, which can be regarded as a general-
ization of their deterministic form or stochastic 𝑃 matrix and
stochastic 𝑃

0
matrix.

Definition 1 (see [14]). 𝑀(⋅) is called a stochastic𝑃(𝑃
0
)-matrix

if there exists 𝑖 ∈ 𝐽(𝑥) such that, for every 𝑥 ̸= 0 in R𝑛,

P {𝜔 : 𝑥
𝑖
(𝑀 (𝜔) 𝑥)

𝑖
> 0 (≥ 0)} > 0. (12)

Definition 2. A function 𝐹 : R𝑛 × Ω → R𝑛 is a stochastic
𝑃(𝑃
0
)-function if there exist 𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that,

for every 𝑥 ̸= 𝑦 in R𝑛,

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖 (𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} > 0.

(13)

Definition 3. A function 𝐹 : R𝑛 × Ω → R𝑛 is a stochastic
uniformly 𝑃-function if there exists a positive constant 𝛼 and
𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that, for every 𝑥 ̸= 𝑦 in R𝑛,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖 (𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≥ 𝛼

𝑥 − 𝑦


2
} > 0.

(14)

Clearly, every stochastic uniformly 𝑃-function must be a
stochastic 𝑃-function, which in turn must be a stochastic 𝑃

0
-

function. We further cite the definition of “equicoercive” in
[11]. More information about this definition can be found in
[11].

Definition 4 (see [11]). We say that 𝐹 : R𝑛 × Ω → R𝑛 is
equicoercive on D ⊆ R𝑛, if, for any {𝑥

𝑘
} ⊆ D satisfying

‖𝑥
𝑘
‖ → ∞, the existence of {𝜔

𝑘
} ⊆ suppΩ with

lim
𝑘→∞

𝐹
𝑖
(𝑥
𝑘
, 𝜔
𝑘
) = ∞(lim

𝑘→∞
(−𝐹
𝑖
(𝑥
𝑘
, 𝜔
𝑘
))
+

= ∞) for
some 𝑖 ∈ ⟨1, 𝑛⟩ implies that

P {𝜔 : lim
𝑘→∞

𝐹
𝑖
(𝑥
𝑘
, 𝜔) = ∞}

> 0 (P {𝜔 : lim
𝑘→∞

(−𝐹
𝑖
(𝑥
𝑘
, 𝜔))
+

= ∞} > 0) ,

(15)
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where

suppΩ

:= {𝜔 ∈ Ω : ∫
𝐵
𝜔
(𝜔,])∩Ω

𝑑𝐹 (𝜔) > 0 for any ] > 0}

(16)

and 𝐵
𝜔
(𝜔, ]) := {𝜔 : ‖𝜔 − 𝜔‖ < ]} and 𝐹(𝜔) is the distribution

function of 𝜔.

More details about suppΩ were included in [8].

Proposition 5. If 𝐹 is a stochastic 𝑃
0
-function, then 𝐹 + 𝜀𝑥 is

a stochastic 𝑃-function for every 𝜀 > 0.

Proof. From the definition of stochastic 𝑃
0
-function, there

exist 𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that, for every 𝑥 ̸= 𝑦,

𝑥
𝑖

̸= 𝑦
𝑖
, P {𝜔 : (𝑥

𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≥ 0} > 0.

(17)

Hence, we have

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) + 𝜀𝑥

𝑖
− (𝐹
𝑖
(𝑦, 𝜔) + 𝜀𝑦

𝑖
)) > 0}

= P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) + 𝜀(𝑥

𝑖
− 𝑦
𝑖
)
2
> 0}

≥ P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≥ 0} > 0.

(18)

This proposition gives the relationship between stochastic
𝑃
0
-function and stochastic 𝑃-function.

Proposition 6. Let 𝐹 be an affine function of 𝑥 for any 𝜔 ∈ Ω

defined by (2).Then 𝐹 is a stochastic 𝑃(𝑃
0
)-function if and only

if 𝑀(⋅) is a stochastic 𝑃(𝑃
0
) matrix.

Proof. By the definition of stochastic 𝑃(𝑃
0
)-function, we

have that there exist 𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that, for every
𝑥 ̸= 𝑦,

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖 (𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} > 0,

(19)

which is equivalent to

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝑀 (𝜔) (𝑥 − 𝑦))

𝑖
> 0 (≥ 0)} > 0,

(20)

when𝐹 is defined by (2). Set 𝑧 = 𝑥−𝑦; then 𝑧 ̸= 0, andwe have
that formulation (20) holds if and only if there exists 𝑖 ∈ 𝐽(𝑧)

such that, for every 𝑧 ̸= 0,

P {𝜔 : 𝑧
𝑖
(𝑀 (𝜔) 𝑧)

𝑖
> 0 (≥ 0)} > 0. (21)

Hence, 𝑀(⋅) is a stochastic 𝑃(𝑃
0
) matrix.

Proposition 7. 𝐹 is a stochastic 𝑃(𝑃
0
)-function if and only if

there exists a 𝜔 ∈ suppΩ such that 𝐹(⋅, 𝜔) is a 𝑃(𝑃
0
)-function.

Proof. For the “if ” part, suppose on the contrary that𝐹 is not
a stochastic 𝑃(𝑃

0
)-function, and then there exist 𝑥, 𝑦, 𝑥 ̸= 𝑦 in

R𝑛 for any 𝑖 ∈ ⟨1, 𝑛⟩ satisfying

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} = 0.

(22)

On the other hand, since 𝐹(⋅, 𝜔) is a 𝑃(𝑃
0
)-function, then

for 𝑥, 𝑦 there exist 𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that

(𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0) . (23)

Notice that 𝜔 ∈ suppΩ, by the definition of suppΩ in (16),
we have

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} > 0. (24)

This contradicts formulation (22).Therefore, 𝐹 is a stochastic
𝑃(𝑃
0
)-function.
Now for the “only if ” part, suppose on the contrary that

there does not exist a 𝜔 ∈ suppΩ such that 𝐹(⋅, 𝜔) is a 𝑃(𝑃
0
)-

function. Then for any 𝑖 ∈ ⟨1, 𝑛⟩, 𝜔 ∈ suppΩ, there exists
𝑥, 𝑦, 𝑥 ̸= 𝑦 in R𝑛, such that

𝑥
𝑖

̸= 𝑦
𝑖
,

(𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≤ 0 (< 0) ,

(25)

which means that

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 ∈ suppΩ : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔))

> 0 (≥ 0) } = 0.

(26)

By the definition of suppΩ in (16), we have P{𝜔 ∈ Ω \

suppΩ} = 0. Hence, formulation (26) is equivalent to

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 ∈ Ω : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} = 0,

(27)

which contradicts definition (20). Therefore, there exists a
𝜔 ∈ suppΩ such that 𝐹(⋅, 𝜔) is a 𝑃(𝑃

0
)-function.

Theorem 8. Suppose that 𝑓(𝑥) := E[𝐹(𝑥, 𝜔)] is a 𝑃(𝑃
0
)-

function. Then 𝐹 is a stochastic 𝑃(𝑃
0
)-function.

Proof. Suppose on the contrary that 𝐹 is not a stochastic
𝑃(𝑃
0
)-function, then there exist 𝑥, 𝑦, 𝑥 ̸= 𝑦 in R𝑛 for any 𝑖 ∈

⟨1, 𝑛⟩ satisfying

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖 (𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} = 0.

(28)

This means that

(𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≤ 0 (< 0) (29)
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always holds for any 𝑖 ∈ ⟨1, 𝑛⟩ and 𝜔 ∈ Ω. Furthermore,
following from (29), we have

E [(𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔))] ≤ 0 (< 0) , (30)

that is

(𝑥
𝑖
− 𝑦
𝑖
) (𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)) ≤ 0 (< 0) , (31)

which contradicts the definition of𝑃(𝑃
0
)-function.Therefore,

𝐹 is a stochastic 𝑃(𝑃
0
)-function.

Note that there is at most one solution (may not be
a solution) for the EV model stochastic complementarity
problems if 𝑓(𝑥) := E[𝐹(𝑥, 𝜔)] is a 𝑃(𝑃

0
)-function.

3. Boundedness of Solution Set

Theorem 9. Suppose that 𝐹 is a stochastic uniformly 𝑃-
function and 𝐹 is equicoercive on R𝑛. Then the solution set
of ERM model (7) defined by 𝜙min and 𝜙FB is nonempty and
bounded.

Proof. Suppose on the contrary that the ERMmodel defined
by 𝜙min is not bounded.Thus there exist a sequence {𝑥

𝑘
} ⊂ R𝑛
+

with ‖𝑥
𝑘
‖ → ∞ (𝑘 → ∞) and a constant 𝑐 ∈ R

+
, such that

𝜃 (𝑥
𝑘
) ≤ 𝑐, for ∀𝑘. (32)

Define the index set 𝐼 ⊆ {1, . . . , 𝑛} by

𝐼 := {𝑖 | {𝑥
𝑘

𝑖
} is unbounded} . (33)

By assumption, we have 𝐼 ̸= 0. We now define a sequence
{𝑦
𝑘
} ⊆ R𝑛 as follows:

𝑦
𝑘

𝑖
:= {

0 if 𝑖 ∈ 𝐼,

𝑥
𝑘

𝑖
if 𝑖 ∉ 𝐼.

(34)

From the definition of 𝑦
𝑘 and the fact that 𝐹 is a stochastic

uniformly 𝑃-function, we obtain that for any 𝑥
𝑘
, 𝑦
𝑘, there

exists 𝑖 such that

P {𝜔 : (𝑥
𝑘

𝑖
− 𝑦
𝑘

𝑖
) (𝐹
𝑖
(𝑥
𝑘
, 𝜔) − 𝐹

𝑖
(𝑦
𝑘
, 𝜔))

≥ 𝛼

𝑥
𝑘

− 𝑦
𝑘

2

} > 0,

(35)

and hence there are 𝜔
𝑘

∈ suppΩ satisfying

(𝑥
𝑘

𝑖
− 𝑦
𝑘

𝑖
) (𝐹
𝑖
(𝑥
𝑘
, 𝜔
𝑘
) − 𝐹
𝑖
(𝑦
𝑘
, 𝜔
𝑘
)) ≥ 𝛼


𝑥
𝑘

− 𝑦
𝑘

2

. (36)

Take subsequence 𝑥
𝑘
𝑖 , 𝑦
𝑘
𝑖 such that the corresponding sub-

script of (36) is 𝑗. Noting that 𝑗 ∈ 𝐼 and taking (36) into
account, we have

𝛼∑

𝑗∈𝐼

(𝑥
𝑘
𝑖

𝑗
)
2

≤ 𝑥
𝑘
𝑖

𝑗
(𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔
𝑘
𝑖) − 𝐹

𝑗
(𝑦
𝑘
𝑖 , 𝜔
𝑘
𝑖))

≤ √∑

𝑗∈𝐼

(𝑥
𝑘
𝑖

𝑗
)
2

⋅
√

∑

𝑗∈𝐼


𝐹
𝑗
(𝑥𝑘𝑖 , 𝜔

𝑘
𝑖) − 𝐹

𝑗
(𝑦𝑘𝑖 , 𝜔

𝑘
𝑖)


,

(37)

from which we get

𝛼√∑

𝑗∈𝐼

(𝑥
𝑘
𝑖

𝑗
)
2

≤
√

∑

𝑗∈𝐼


𝐹
𝑗
(𝑥𝑘𝑖 , 𝜔

𝑘
𝑖) − 𝐹

𝑗
(𝑦𝑘𝑖 , 𝜔

𝑘
𝑖)


. (38)

By definition, the sequence {𝑦
𝑘
𝑖} remains bounded. From the

continuity of 𝐹, it follows that the sequence {𝐹
𝑗
(𝑦
𝑘
𝑖 , 𝜔
𝑘
𝑖)} is

also bounded for every 𝑗 ∈ 𝐼. Hence, taking a limit in (38),
we obtain that there is at least one index 𝑗 ∈ 𝐼 such that

𝑥
𝑘
𝑖

𝑗
→ ∞, 𝐹

𝑗
(𝑥
𝑘
𝑖 , 𝜔
𝑘
𝑖) → ∞. (39)

Since 𝐹 is equicoercive on R𝑛, we have

P{𝜔 : lim
𝑘
𝑖
→∞

𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔) = ∞} > 0. (40)

Let

Ω
1

= {𝜔 : lim
𝑘
𝑖
→∞

min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)) = ∞} . (41)

ThenP{Ω
1
} > 0. By Fatou’s Lemma [15], we have

E
Ω
1

[lim inf
𝑘
𝑖
→∞

(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

]

≤ lim inf
𝑘
𝑖
→∞

E
Ω
1

[(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

] .

(42)

Since

lim inf
𝑘
𝑖
→∞

(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

= ∞ (43)

on Ω
1
andP{Ω

1
} > 0, then the left-hand side of formulation

(42) is infinite. Therefore,

lim inf
𝑘
𝑖
→∞

E
Ω
1

[(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

] = ∞. (44)

Moreover, it is easy to find

𝜃 (𝑥
𝑘
𝑖) = E [


Φ(𝑥
𝑘
𝑖 , 𝐹(𝑥
𝑘
𝑖 , 𝜔))



2

]

≥ E
Ω
1

[(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

]

→ ∞

(45)

as 𝑘
𝑖

→ ∞. This contradicts formulation (32). Hence, the
solution set of ERM model (7) defined by 𝜙min is nonempty
and bounded. Similar results about 𝜙FB can be obtained by
relation formulation (10).

4. Robust Solution

As we show, both EV model and ERM model give decisions
by a deterministic formulation. However, the decisions may
not be the best or may be even infeasible for each individual
event. In fact, we should take risk into account to make
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a priori decision in many cases. Naturally, it is necessary to
know how good or how bad the decision which we have given
can be. In this section, we study the robustness of solutions of
the ERM model. Let SOL(𝐹(𝑥, 𝜔)) denote the solution set of
SCP(𝐹(𝑥, 𝜔)), and define the distance from a point 𝑥 to the
set SOL(𝐹(𝑥, 𝜔)) by

dist (𝑥, SOL (𝐹 (𝑥, 𝜔))) := inf
𝑥

∈SOL(𝐹(𝑥,𝜔))


𝑥 − 𝑥


. (46)

Theorem 10. Assume that Ω = {𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑁
} ⊂ R𝑚,

and 𝜔 takes values 𝜔
1
, . . . , 𝜔

𝑁 with respective probabilities
𝑝
1
, . . . , 𝑝

𝑁
. Furthermore, suppose that for every𝜔 ∈ Ω,𝐹(𝑥, 𝜔)

is uniformly P-function and Lipschitz continuous with respect
to 𝑥. Then there is a constant 𝐶 > 0 such that

E [dist (𝑥, SOL (𝐹 (𝑥, 𝜔)))] ≤ 𝐶 ⋅ √𝜃 (𝑥), (47)

where 𝜃(𝑥) is defined by 𝜙min or 𝜙FB.

Proof. For any fixed 𝜔
𝑖, since 𝐹(𝑥, 𝜔

𝑖
) is uniformly 𝑃-

function and Lipschitz continuous, from Corollary 3.19 of
[16], we have unique solution 𝑥(𝜔

𝑖
) of CP(𝐹(𝑥, 𝜔

𝑖
)), and there

exists a constant 𝐶
𝑖
such that


𝑥 − 𝑥 (𝜔

𝑖
)


≤ 𝐶
𝑖


min {𝑥, 𝐹 (𝑥, 𝜔

𝑖
)}


. (48)

Letting 𝐶 := ((√2 + 2)/2)max{𝐶
1
, . . . , 𝐶

𝑁
}, we have

E2 [dist (𝑥, SOL (𝐹 (𝑥, 𝜔)))]

= E2 [
𝑥 − 𝑥 (𝜔

𝑖
)

]

≤ E [

𝑥 − 𝑥 (𝜔

𝑖
)


2

]

≤

𝑁

∑

𝑖=1

𝑝
𝑖
⋅ 𝐶
2

𝑖


min {𝑥, 𝐹 (𝑥, 𝜔

𝑖
)}



2

≤

𝑁

∑

𝑖=1

𝑝
𝑖
⋅ 𝐶
2

𝑖
⋅ (

√2 + 2

2
)

2

×

𝑛

∑

𝑗=1

(√𝐹
2

𝑗
(𝑥, 𝜔𝑖) + 𝑥

2

𝑗
− (𝐹
𝑗
(𝑥, 𝜔
𝑖
) + 𝑥
𝑗
))

2

≤ 𝐶
2

𝑁

∑

𝑖=1

𝑝
𝑖

𝑛

∑

𝑗=1

(√𝐹
2

𝑗
(𝑥, 𝜔𝑖) + 𝑥

2

𝑗
− (𝐹
𝑗
(𝑥, 𝜔
𝑖
) + 𝑥
𝑗
))

2

= 𝐶
2
𝜃 (𝑥) ,

(49)

where the first inequality follows from Cauchy-Schwarz
inequality, the second inequality follows from formulation
(48), and the third inequality follows from formulation (10).
This completes the proof of the theorem.

Theorem 10 particularly shows that for the solution 𝑥
∗ of

(7),

E [dist (𝑥
∗
, SOL (𝐹 (𝑥, 𝜔)))] ≤ 𝐶 ⋅ √𝜃 (𝑥

∗
). (50)

This inequality indicates that the expected distance to the
solution set SOL(𝐹(𝑥, 𝜔)) for 𝜔 ∈ Ω is also likely to be small
at the solution 𝑥

∗ of (7). In other words, we may expect
that a solution of the ERM formulation (7) has a minimum
sensitivity with respect to random parameter variations in
SCP(𝐹(𝑥, 𝜔)). In this sense, solutions of (7) can be regarded
as robust solutions for SCP(𝐹(𝑥, 𝜔)).

5. Quasi-Monte Carlo and Derivative-Free
Methods for Solving ERM Model

Note that the ERM model (7) included an expectation func-
tion,which is generally difficult to be evaluated exactly.Hence
in this section, we first employ a quasi-Monte Carlo method
to obtain approximation problems of (7) for numerical
integration. Then, we consider derivative-free methods to
solve these approximation problems.

By the quasi-Monte Carlo method, we obtain the follow-
ing approximation problem of (7):

min
𝑥∈R𝑛
+

𝜃
𝑁

(𝑥) :=
1

𝑁
∑

𝜔
𝑖
∈Ω
𝑁


Φ (𝑥, 𝜔

𝑖
)


2

𝜌 (𝜔
𝑖
) , (51)

where Ω
𝑁

= {𝜔
𝑖

| 𝑖 = 1, 2, . . . , 𝑁} is a set of observations
generated by a quasi-Monte Carlo method such that Ω

𝑁
⊆

Ω and 𝜌(𝜔) stands for the probability density function.
In the rest of this paper, we assume that the probability
density function 𝜌 is continuous on Ω. For each 𝑁, 𝜃

𝑁
(𝑥)

is continuously differentiable function. We denote by 𝑥
𝑁 the

optimal solutions of approximation problems (51). We are
interested in the situation where the first-order derivatives of
𝜃
𝑁

(𝑥) cannot be explicitly calculated or approximated.

Condition 1. Given a point 𝑥
0

≥ 0, the level set

𝐿 := {𝑥 ≥ 0 | 𝑓 (𝑥) ≤ 𝑓 (𝑥
0
)} (52)

is compact.

Condition 2. If {𝑥
𝑁

𝑘
} and {𝑦

𝑁

𝑘
} are sequences of points such

that 𝑥
𝑁

𝑘
≥ 0, 𝑦

𝑁

𝑘
≥ 0 converging to some 𝑥

𝑁 and 𝐼
𝑁

𝑘
⊆

𝐼(𝑥
𝑁

) := {𝑖 | 𝑥
𝑁

𝑖
= 0} for all 𝑘, then

{dist (𝑇
𝐼
𝑁

𝑘

(𝑥
𝑁

𝑘
) , 𝑇
𝐼
𝑁

𝑘

(𝑦
𝑁

𝑘
))} → 0, (53)

where dist(𝑇
1
, 𝑇
2
) = max

𝑑
1
∈𝑇
1
:‖𝑑
1
‖=1

{min
𝑑
2
∈𝑇
2

‖𝑑
1

− 𝑑
2
‖} and

𝑇
𝐼
𝑁

𝑘

(𝑥) := {𝑑
𝑁

𝑘
∈ R𝑛 | 𝑑

𝑁

𝑘,𝑖
≥ 0, ∀𝑖 ∈ 𝐼

𝑁

𝑘
}.

Condition 3. For every 𝑥
𝑁

≥ 0 there exist scalars 𝛿 > 0, and
𝜂 > 0 such that

min
𝑧≥0

‖𝑧 − 𝑥‖ ≤ 𝜂

𝑛

∑

𝑖=1

max (−𝑥
𝑖
, 0) ,

∀𝑥 ∈ {𝑥 ∈ R𝑛 | ‖𝑥 − 𝑥‖ ≤ 𝛿} .

(54)

Condition 4. Given 𝑥
𝑁

𝑘
and 𝜖

𝑁

𝑘
> 0, the set of search

directions

𝐷
𝑁

𝑘
= {𝑑
𝑁,𝑗

𝑘
, 𝑗 = 1, . . . , 𝑟

𝑁

𝑘
} , with 

𝑑
𝑁,𝑗

𝑘


= 1, (55)
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satisfing 𝑟
𝑁

𝑘
is uniformly bounded and cone{𝐷𝑁

𝑘
} = 𝑇(𝑥

𝑁

𝑘
;

𝜖
𝑁

𝑘
). Here,

cone {𝐷
𝑁

𝑘
}

= {𝑑
𝑁,1

𝑘
𝛽
1

+ ⋅ ⋅ ⋅ + 𝑑
𝑁,𝑟
𝑁

𝑘

𝑘
𝛽
𝑟
𝑁

𝑘 : 𝛽
1

≥ 0, . . . , 𝛽
𝑟
𝑁

𝑘 ≥ 0} ,

𝑇 (𝑥
𝑁

𝑘
; 𝜖
𝑁

𝑘
) = {𝑑

𝑁

𝑘
∈ R𝑛 | 𝑑

𝑁

𝑘,𝑖
≥ 0, 𝑥

𝑁

𝑘,𝑖
≤ 𝜖
𝑁

𝑘
} .

(56)

Under Conditions 1, 2, and 3 and by choosing 𝐷
𝑁

𝑘

satisfying Condition 4 with 𝜖
𝑁

𝑘
→ 0, then the following

generated iterates have at least one cluster point that is a
stationary point of (51) for each 𝑁.

Algorithm 11. Parameters: 𝑥
𝑁

0
≥ 0, �̃�

𝑁

0
> 0, 𝛾

𝑁
> 0, 𝜃

𝑁

1
∈

(0, 1), 𝜃
𝑁

2
∈ (0, 1), 𝜖

𝑁

0
> 0.

Step 1. Set 𝑘
𝑁

= 0.

Step 2. Choose a set of directions 𝐷
𝑁

𝑘
= {𝑑
𝑁,𝑗

𝑘
, 𝑗 = 1, . . . , 𝑟

𝑁

𝑘
}

satisfying Condition 4.

Step 3.

(a) Set 𝑗 = 1, 𝑦
𝑁,𝑗

𝑘
= 𝑥
𝑁

𝑘
, �̃�
𝑁,𝑗

𝑘
= �̃�
𝑁

𝑘
.

(b) Compute the maximum stepsize 𝛼
𝑁,𝑗

𝑘
such that 𝑦

𝑁,𝑗

𝑖,𝑘
+

𝛼
𝑁,𝑗

𝑘
𝑑
𝑁,𝑗

𝑖,𝑘
≥ 0 for all 𝑖. Set �̂�

𝑁,𝑗

𝑘
= min{𝛼

𝑁,𝑗

𝑘
, �̃�
𝑁,𝑗

𝑘
}.

(c) If �̂�
𝑁,𝑗

𝑘
> 0 and 𝜃

𝑁
(𝑦
𝑁,𝑗

𝑘
) ≤ 𝜃

𝑁
(𝑦
𝑁,𝑗

𝑘
) − 𝛾(�̂�

𝑁,𝑗

𝑘
)
2,

set �̃�
𝑁,𝑗+1

𝑘
= 𝛼
𝑁,𝑗

𝑘
; otherwise set 𝛼

𝑁,𝑗

𝑘
= 0, 𝑦

𝑁,𝑗+1

𝑘
=

𝑦
𝑁,𝑗

𝑘
, �̃�
𝑁,𝑗+1

𝑘
= 𝜃
𝑁

1
�̃�
𝑁,𝑗

𝑘
.

(d) If 𝛼
𝑁,𝑗

𝑘
= 𝛼
𝑁,𝑗

𝑘
, set 𝜖
𝑁

𝑘+1
= 𝜖
𝑁

𝑘
, and go to Step 4.

(e) If 𝑗 < 𝑟
𝑁

𝑘
, set 𝑗 = 𝑗 + 1, and go to Step 3(b). Otherwise

set 𝜖
𝑁

𝑘+1
= 𝜃
𝑁

2
𝜖
𝑁

𝑘
and go to Step 4.

Step 4. Find 𝑥
𝑁

𝑘+1
≥ 0 such that 𝜃

𝑁
(𝑥
𝑁

𝑘+1
) ≤ 𝜃

𝑁
(𝑦
𝑁,𝑗+1

𝑘
). Set

�̃�
𝑁

𝑘+1
= �̃�
𝑁,𝑗+1

𝑘
, 𝑟
𝑘

= 𝑗, 𝑘 = 𝑘 + 1, and go to Step 2.

For this algorithm, it is easy to proof that if 𝑥
𝑁

𝑘
is the

sequence produced by algorithm under Conditions 1–4, then
𝑥
𝑁

𝑘
is bounded and there exists at least one cluster pointwhich

is a stationary point of problem (51) for each 𝑁.

6. Conclusions

The SCP(𝐹(𝑥, 𝜔)) has a wide range of applications in engi-
neering and economics. Therefore, it is meaningful and
interesting to study this problem. In this paper, we give the
definitions of stochastic 𝑃-function, stochastic 𝑃

0
-function

and stochastic uniformly 𝑃-function, which can be regarded
as a generalization of the deterministic formulation or an
extension of a stochastic 𝑅

0
function given in [11]. Moreover,

we consider the conditions when the function is a stochastic
𝑃(𝑃
0
)-function. Furthermore, we show that the involved

function being a stochastic uniformly 𝑃-function and equi-
coercive [11] are sufficient conditions for the solution set of the
expected residualminimization problem to be nonempty and
bounded. Finally, we illustrate that the ERM formulation pro-
duces robust solutions with minimum sensitivity in violation
of feasibility with respect to random parameter variations
in SCP(𝐹(𝑥, 𝜔)). On the other hand, we employ a quasi-
Monte Carlo method to obtain approximation problems of
(7) for dealing numerical integration and further consider
derivative-free methods to solve these approximation prob-
lems.
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