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This paper describes the use of trigonometric spline to visualize the given planar data. The goal of this work is to determine the
smoothest possible curve that passes through its data points while simultaneously satisfying the shape preserving features of the
data. Positive, monotone, and constrained curve interpolating schemes, by using a𝐶1 piecewise rational cubic trigonometric spline
with four shape parameters, are developed. Two of these shape parameters are constrained and the other two are set free to preserve
the inherited shape features of the data as well as to control the shape of the curve. Numerical examples are given to illustrate the
worth of the work.

1. Introduction

Data visualization, the technique of using images to represent
information, has its history in the days back to the second
century AD. But most of the developments are made in the
last couple of centuries, predominantly during the last 30
years. It has extensively been used in industrial design, image
processing, computer vision, computer aided geometric de-
sign, computer graphics, and many more. Shape preserving
interpolation is a powerful tool to visualize the data in the
form of curves and surfaces. The problem of curve interpola-
tion to the given data has been studied with various require-
ments. One may be concerned with the smoothness of the
interpolating curves, the preservation of the underlying shape
features of the data, the computational complexity, or the
fulfillment of certain constraints. Shape preserving signifies
preserving the three basic and crucial geometrical features
such as positivity, monotonicity, and convexity of the data.
These shape characteristics can be easily observed when data
arises from a physical experiment. In this case, it becomes
vital that the interpolant produces curves more smooth
and represent physical reality as close as possible. For this
purpose, designers and engineers want such approximation
methods that represent such physical situations accurately.

At present, spline methods have become the main tools
for solving themajority of problems involving the approxima-
tion of functions, which also includes interpolation problems.

Many spline functions exist that generate smooth and visual-
ly pleasant curves. Sarfraz et al. [1] studied shape preserving
curve interpolation for positive, monotone, convex data and
data lying above a line, using a piecewise rational cubic func-
tion with four shape parameters. Hussain et al. [2] visualized
scientific data with shape preserving 𝐶1 rational cubic inter-
polation by developing positive, monotone, and constrained
data preserving schemes.

In recent years, polynomial splines and NURBS are re-
placed by trigonometric splines in order to prevail over the
difficulties faced in using the former. Polynomial splines are
not able to represent circular arcs and conics which are the
most basic geometrical entity in almost every modeling sys-
tem [3]. Also conics find a widespread application in opti-
cal and telecommunication instruments. NURBS offers great
flexibility and precision for handling both analytic and free-
form shapes but at the expense of intuitiveness and ease of
implementation. A number of authors have contributed to
trigonometric splines to represent curves and surfaces [4–
11]. Lately, an alternative approach in shape preserving, using
the trigonometric splines is introduced. Liu et al. [10] studied
cubic trigonometric polynomial B-spline curves and surfaces
with shape parameter. Ibraheem et al. [12] introduced a 𝐶1
piecewise rational trigonometric cubic function and piece-
wise rational trigonometric bicubic function with four shape
parameters to visualize the positivity of positive curve and
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surface data. Zhu et al. [13] constructed shape preserving
quartic trigonometric interpolation spline curves with shape
parameters. The authors obtained 𝐹3 continuous shape pre-
serving spline curves, for any shape parameters satisfying the
shape preserving conditions.

In this paper, we present a 𝐶1 piecewise rational cubic
trigonometric interpolating curve scheme for positive, mon-
otone, and constrained data. Four positive shape parameters
are used in the description of the interpolating scheme. Two
of these parameters are constrained by simple data-depend-
ent conditions to preserve the inherited shape feature of the
data while the other two are kept free to modify the shape of
the positive, monotone, and constrained curve. The scheme
is useful for both equally and unequally spaced data.

This paper is arranged as follows. In Section 2, a𝐶1 piece-
wise rational cubic trigonometric spline with four shape pa-
rameters is constructed. Sections 3, 4, and 5 describe positive,
monotone, and constrained curve interpolation schemes,
respectively, to visualize positive, monotone, and constrained
2D data. Section 5 concludes the paper with some future
work.

2. 𝐶1 Piecewise Rational Cubic
Trigonometric Spline

In this section, we develop a 𝐶1 piecewise rational cubic trig-
onometric spline with four parameters. Two of these parame-
ters are free that can be used to preserve and control the shape
of the interpolating curve while the other two are restricted.
Data-dependent constraints are developed for these param-
eters to preserve the shape characteristics of the data under
consideration.

Suppose that for knot spacing 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
,

given data points are defined as {(𝑡
𝑖
, 𝑓
𝑖
): 𝑖 = 0, 1, 2, . . . , 𝑛}

where 𝑓
𝑖
are the function values at the knots of the function

being interpolated. In each subinterval [𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1,

2, . . . , 𝑛 − 1, a piecewise rational cubic trigonometric spline
with four shape parameters is defined as

𝑃 (𝑡) ≡ 𝑃
𝑖
(𝑡) =

∑
3

𝑗=0
𝜉
𝑗
𝑏
𝑗

∑
3

𝑗=0
𝑤
𝑗

𝑖
𝑏
𝑗

, (1)

where

𝑏
0
= (1 − sin 𝑢)2,

𝑏
1
= 2 sin 𝑢 (1 − sin 𝑢) ,

𝑏
2
= 2 cos 𝑢 (1 − cos 𝑢) ,

𝑏
3
= (1 − cos 𝑢)2.

(2)

The spline in (1) is 𝐶1 continuous if the following interpolat-
ing conditions are satisfied:

𝑃 (𝑡
𝑖
) = 𝑓
𝑖
, 𝑃 (𝑡

𝑖+1
) = 𝑓
𝑖+1
,

𝑃

(𝑡
𝑖
) = 𝑑
𝑖
, 𝑃


(𝑡
𝑖+1
) = 𝑑
𝑖+1
,

(3)

where 𝑃(𝑡) denotes the derivative with respect to “𝑡” and 𝑑
𝑖

are derivative values at given knots 𝑡
𝑖
that are used for the

shape control and smoothness of curve. These 𝑑
𝑖
are either

given or can be computed by some numerical method [14].
Using conditions (3), the values of unknowns 𝜉

𝑖
, 𝑖 =

0, 1, 2, 3 are

𝜉
0
= 𝑤
0

𝑖
𝑓
𝑖
,

𝜉
1
=
𝜋𝑤
1

𝑖
𝑓
𝑖
+ ℎ
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𝑑
𝑖
𝑤
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,
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2
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3

𝑖

𝜋
,

𝜉
3
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3

𝑖
𝑓
𝑖+1
.

(4)

Thus after using (4), (1) takes the form

𝑃 (𝑡) ≡ 𝑃
𝑖
(𝑡) =

𝑝
𝑖
(𝑢)

𝑞
𝑖
(𝑢)

, (5)

where

𝑝 (𝑢) = 𝑤
0
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𝑖
𝑏
0
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𝑤
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𝑖
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2
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3

𝑖
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3
,

𝑞 (𝑢) = 𝑏
0
𝑤
0

𝑖
+ 𝑏
1
𝑤
1

𝑖
+ 𝑏
2
𝑤
2
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+ 𝑏
3
𝑤
3

𝑖
,

(6)

𝑢 = (𝜋/2)((𝑡 − 𝑡
𝑖
)/ℎ
𝑖
), ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
, and 𝑤𝑗

𝑖
, 𝑗 = 0, 1, 2, 3

are positive shape parameters. It is to mention that if the
values of the shape parameters are chosen on trial basis, the
shape characteristics of the data are not always preserved.
Thus there arises a need for some conditions to be imposed
on these shape parameters.

3. Positive Curve Interpolation

In this section, we utilize𝐶1 piecewise rational cubic trigono-
metric spline developed in Section 1 to generate a positivity
preserving curve using a positive data set.

Theorem 1. A𝐶1 piecewise rational cubic trigonometric spline
defined in (5) preserves the positivity of the positive data in
each subinterval [𝑡

𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, if the shape

parameters satisfy the following conditions:

𝑤
0

𝑖
, 𝑤
3

𝑖
> 0,

𝑤
1

𝑖
> max{0,

−𝑑
𝑖
ℎ
𝑖
𝑤
0

𝑖

𝜋𝑓
𝑖

} ,

𝑤
2

𝑖
> max{0,

𝑑
𝑖+1
ℎ
𝑖
𝑤
3

𝑖

𝜋𝑓
𝑖+1

} .

(7)

Proof. Consider a data set {(𝑡
𝑖
, 𝑓
𝑖
): 𝑖 = 0, 1, 2, . . . , 𝑛} such that

𝑡
𝑖
< 𝑡
𝑖+1
, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, 𝑓

𝑖
> 0. (8)
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Table 1: A 2D positive dataset.

𝑖 1 2 3 4 5 6 7 8
𝑡
𝑖

0 0.04 0.05 0.06 0.07 0.08 0.12 0.13
𝑓
𝑖

0.82 1.2 0.978 0.6 0.3 0.1 0.15 0.48

𝐶
1 piecewise rational cubic trigonometric spline given in (5)

preserves positivity through positive data if 𝑃
𝑖
(𝑡) > 0.

𝑃
𝑖
(𝑡) > 0 if

𝑝
𝑖
(𝑢) , 𝑞

𝑖
(𝑢) > 0. (9)

Since 𝑞
𝑖
(𝑢) > 0, thus the positivity of the interpolant depends

on 𝑝
𝑖
(𝑢) only.

𝑝
𝑖
(𝑢) > 0 if all the coefficients are positive. It yields

𝑤
1

𝑖
>
−𝑑
𝑖
ℎ
𝑖
𝑤
0

𝑖

𝜋𝑓
𝑖

, 𝑤
2

𝑖
>
𝑑
𝑖+1
ℎ
𝑖
𝑤
3

𝑖

𝜋𝑓
𝑖+1

. (10)

Thus the sufficient conditions for the interpolant defined in
(5) to preserve the positivity of positive data are that the shape
parameters satisfy

𝑤
0

𝑖
, 𝑤
3

𝑖
> 0,

𝑤
1

𝑖
> max{0,

−𝑑
𝑖
ℎ
𝑖
𝑤
0

𝑖

𝜋𝑓
𝑖

} ,

𝑤
2

𝑖
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𝑑
𝑖+1
ℎ
𝑖
𝑤
3

𝑖

𝜋𝑓
𝑖+1

} .

(11)

This proves the desired result.

These conditions on the shape parameters can also be
expressed as

𝑤
1

𝑖
= 𝜂
𝑖
+max{0,

−𝑑
𝑖
ℎ
𝑖
𝑤
0

𝑖

𝜋𝑓
𝑖

} , 𝜂
𝑖
> 0,

𝑤
2

𝑖
= ]
𝑖
+max{0,

𝑑
𝑖+1
ℎ
𝑖
𝑤
3

𝑖

𝜋𝑓
𝑖+1

} , ]
𝑖
> 0.

(12)

The developed scheme is used to demonstrate the positivity
preserving of positive data. The curves in Figures 1 and 3 are
drawn by using 𝐶

1 piecewise rational cubic trigonometric
spline for 2D positive data sets given in Tables 1 and 2,
respectively. Random values to the shape parameters are
assigned and it is clearly visible that the resulting curves do
not preserve the positivity. On the other hand, the positivity
preserving curves in Figures 2 and 4 are generated for the
same data set by using the scheme developed in Section 2.
These figures also delineate the role of free shape parameters
in shape control of the curve.

4. Monotone Curve Interpolation

A 2D data set {(𝑡
𝑖
, 𝑓
𝑖
): 𝑖 = 0, 1, 2, . . . , 𝑛} with 𝑡

𝑖
< 𝑡
𝑖+1

,
𝑖 = 0, 1, 2, . . . , 𝑛 − 1 is said to be monotonically increasing
(monotonically decreasing) if

𝑓
𝑖
≤ 𝑓
𝑖+1

(𝑓
𝑖
≥ 𝑓
𝑖+1
) . (13)

Table 2: A 2D positive dataset.

𝑖 1 2 3 4 5 6 7 8 9 10
𝑡
𝑖

0 3.25 15 26.5 30 32 37 40 42.5 44
𝑓
𝑖
8.8 3 0.025 3.1 6.2 9.6 20 22.5 21.519 20
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Figure 1: Nonpositivity preserving rational cubic trigonometric
curve.

This section discusses a monotonicity preserving curve inter-
polating scheme with four parameters. For a given set of
monotone data points, we wish to generate a piecewise cubic
trigonometric curve that interpolates the data points and
preserves monotonicity as well. We drive data-dependent
conditions for two shape parameters while leaving the other
two for designer’s choice.

Theorem 2. The 𝐶1 piecewise rational cubic trigonometric
spline defined in (5) preserves the monotonicity through mono-
tone data in each subinterval [𝑡

𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 if

the shape parameters satisfy the following conditions:

𝑤
0

𝑖
, 𝑤
3

𝑖
> 0,

𝛼
𝑖
< 𝑤
1

𝑖
< 𝛽
𝑖
,

𝛾
𝑖
< 𝑤
1

𝑖
< 𝛿
𝑖
,

(14)

where

𝛼
𝑖
= max{0, 𝑤0

𝑖
,
𝑑
𝑖
𝑤
0

𝑖

𝜋Δ
𝑖

} , 𝛽
𝑖
= (1 +

𝑑
𝑖

𝜋Δ
𝑖

)𝑤
0

𝑖
,

𝛾
𝑖
= max{0, 𝑤3

𝑖
,
𝑑
𝑖+1
𝑤
3

𝑖

𝜋Δ
𝑖

} , 𝛿
𝑖
= (1 +

𝑑
𝑖+1

𝜋Δ
𝑖

)𝑤
3

𝑖
.

(15)
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Figure 2: A 𝐶
1 positivity preserving curve with different values of free parameters.
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Figure 3: Nonpositive rational cubic trigonometric curve.

Proof. Let {(𝑡
𝑖
, 𝑓
𝑖
): 𝑖 = 0, 1, 2, . . . , 𝑛} be a monotonically in-

creasing data set, that is,

𝑓
𝑖
≤ 𝑓
𝑖+1

or equivalently Δ
𝑖
=
𝑓
𝑖+1

− 𝑓
𝑖

ℎ
𝑖

≥ 0. (16)

The case of monotonically decreasing data set can be dealt in
a similar fashion.

Formonotonicity, the necessary conditions on derivatives
are

𝑑
𝑖
≥ 0, 𝑖 = 0, 1, 2, . . . , 𝑛. (17)

There arise the following two cases for the interpolant (5) to
preserve the monotonicity of monotone data.

Case 1. 𝑑
𝑖
= 𝑑
𝑖+1

= 0 when Δ
𝑖
= 0. In this case, 𝑃

𝑖
(𝑡) reduces

to

𝑃
𝑖
(𝑡) = 𝑓

𝑖
, ∀𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
] . (18)

This proves that the interpolant is monotone.

Case 2. WhenΔ
𝑖
̸= 0, then 𝑃

𝑖
(𝑡) is monotonically increasing if

and only if

𝑃


𝑖
(𝑡) > 0, ∀𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
] . (19)

For 𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
], 𝑃
𝑖
(𝑡) is presented in a simpler form as

𝑃


𝑖
(𝑡)

=
𝜋

2(𝑞
𝑖
(𝑢))
2

× {𝐵
1
cos 𝑢(1 − sin 𝑢)2 + 𝐵

2
cos 𝑢 (1 + sin2𝑢)

+ 2𝐵
3
cos 𝑢 + 𝐵

4
cos 𝑢 sin 𝑢 + 2𝐵

5
sin 𝑢

+𝐵
6
sin 𝑢 (1 + cos2𝑢) + 𝐵

7
sin 𝑢(1 − cos 𝑢)2 + 4𝐵

8
}

(20)



Journal of Applied Mathematics 5

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25
y
-a
xi
s

x-axis

w
0

i
= 0.5

w
3

i
= 0.5

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

w
0

i
= 1.3

w
3

i
= 1.5

y
-a
xi
s

x-axis

Figure 4: Positive curve by rational cubic trigonometric spline with different values of free parameters.
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Figure 5: Nonmonotonicity preserving curve.
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𝑖
− 𝑤
1

𝑖
) .

(21)
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Figure 6: Monotonicity preserving curve with different values of shape parameters.
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Figure 7: Nonmonotonicity preserving curve.

Thedenominator of (20) is always positive.Thus the sufficient
conditions for monotonicity preserving curve are

𝐵
𝑘
≥ 0, 𝑘 = 1, . . . , 8, (22)

since 𝐵
1
, 𝐵
7
> 0.

Table 3: A 2D monotone dataset.

𝑖 1 2 3 4 5 6 7 8 9 10 11
𝑡
𝑖

1 4 6.5 7 11 15 20 25 40 44 45
𝑓
𝑖

1 1 2 3.5 5.5 5.5 10 10 12.5 18 20

Table 4: A 2D monotone dataset.

𝑖 1 2 3 4 5 6 7 8 9 10 11
𝑡
𝑖

0 2 3 5 6 8 9 11 12 14 15
𝑓
𝑖

10 10 10 10 10 10 10.5 15 50 60 80

Also 𝐵
𝑖
≥ 0, 𝑖 = 2, 3, 4, 5, 6, 8 if

𝑤
1

𝑖
> 𝑤
0

𝑖
,

𝑤
1

𝑖
>
𝑑
𝑖
𝑤
0

𝑖

𝜋Δ
𝑖

,

𝑤
1

𝑖
< (1 +

𝑑
𝑖

𝜋Δ
𝑖

)𝑤
0

𝑖
,

(23)

𝑤
2

𝑖
> 𝑤
3

𝑖
,

𝑤
2

𝑖
>
𝑑
𝑖+1
𝑤
3

𝑖

𝜋Δ
𝑖

,

𝑤
2

𝑖
< (1 +

𝑑
𝑖+1

𝜋Δ
𝑖

)𝑤
3

𝑖
,

(24)
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Figure 8: Monotone data visualization with specified values of free parameters.

Hence, to preserve the monotonicity of monotone data and
control the shape of the curve as per desire, (23) and (24) can
be written as

𝑤
0

𝑖
, 𝑤
3

𝑖
> 0,

𝛼
𝑖
< 𝑤
1

𝑖
< 𝛽
𝑖
,

𝛾
𝑖
< 𝑤
1

𝑖
< 𝛿
𝑖

(25)

with

𝛼
𝑖
= max{0, 𝑤0

𝑖
,
𝑑
𝑖
𝑤
0

𝑖

𝜋Δ
𝑖

} , 𝛽
𝑖
= (1 +

𝑑
𝑖

𝜋Δ
𝑖

)𝑤
0

𝑖
,

𝛾
𝑖
= max{0, 𝑤3

𝑖
,
𝑑
𝑖+1
𝑤
3

𝑖

𝜋Δ
𝑖

} , 𝛿
𝑖
= (1 +

𝑑
𝑖+1

𝜋Δ
𝑖

)𝑤
3

𝑖

(26)

as required.
To produce amonotone curve using amonotone data, the

restrictions on the shape parameters can be rearranged as

𝑤
0

𝑖
, 𝑤
3

𝑖
> 0,

𝛼
𝑖
+ 𝑘
𝑖
= 𝑤
1

𝑖
= 𝛽
𝑖
− 𝑙
𝑖
, 𝑘
𝑖
, 𝑙
𝑖
> 0,

𝛾
𝑖
+ 𝑚
𝑖
= 𝑤
2

𝑖
= 𝛿
𝑖
− 𝑛
𝑖
, 𝑚
𝑖
, 𝑛
𝑖
> 0.

(27)

To implement the developed scheme, two monotone data
sets are given in Tables 3 and 4, respectively. Initially, the
curves are generated by assigning arbitrary values to the
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Figure 9: Rational cubic trigonometric curve lying below the given
line.

four shape parameters and nonmonotonicity preserving
curves are shown in Figures 5 and 7, respectively. To remedy
this deficiency, the scheme developed inTheorem 2 is applied
to the same data sets and monotonicity preservation and
smoothness of the curves are shown in Figures 6 and 8,
respectively.
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Figure 10: 𝐶1 rational cubic trigonometric curve lying above the given line with different values of free parameters.
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Figure 11: Rational cubic trigonometric curve lying below the given
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5. Constrained Curve Interpolation

In this section, we generalize the curve scheme for positive
data developed in Section 2. It is assumed that the data under
consideration lies not only above the line 𝑦 = 0, but also
above any arbitrary line𝑦 = 𝑚𝑥+𝑐.Wewish to drive a scheme
for generating a curve which interpolates this data and lies
above the line as well.

Table 5: 2D data set lying above the line𝑦 = 0.06𝑥 + 0.02.

𝑖 1 2 3 4 5
𝑡
𝑖

0 1.1 2 3 4.5
𝑓
𝑖

1.5 0.4 4 6.2 6

Table 6: 2D data set lying above the line 𝑦 = 0.05𝑥 + 0.23.

𝑖 1 2 3 4 5 6 7 8 9
𝑡
𝑖

0 0.3 0.5 1 1.5 2 2.5 3.05 4
𝑓
𝑖

2 0.6 0.33 0.35 1 0.5 1.1 0.45 0.6

Theorem 3. The 𝐶1 piecewise rational cubic trigonometric
spline defined in (5) preserves the shape of data lying above
an arbitrary straight line in each subinterval [𝑡

𝑖
, 𝑡
𝑖+1
], 𝑖 =

0, 1, 2, . . . , 𝑛 − 1, if the following conditions are satisfied:

𝑤
0

𝑖
, 𝑤
3

𝑖
> 0,

𝑤
2

𝑖
> max{0,

−𝑑
𝑖
ℎ
𝑖
𝑤
0

𝑖

𝜋 (𝑓
𝑖
− 𝑙)

} ,

𝑤
2

𝑖
> max{0,

𝑑
𝑖+1
ℎ
𝑖
𝑤
3

𝑖

𝜋 (𝑓
𝑖+1

− 𝑙)
} .

(28)

Proof. Let {(𝑡
𝑖
, 𝑓
𝑖
): 𝑖 = 0, 1, 2, . . . , 𝑛} be a set of data points

lying above a given straight line 𝑦 = 𝑚𝑥 + 𝑐; that is,

𝑓
𝑖
> 𝑚𝑡
𝑖
+ 𝑐. (29)
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Figure 12: 𝐶1 piecewise rational cubic trigonometric curve constrained by a given line.

The curve will lie above the straight line if the rational cubic
trigonometric spline (5) satisfies the following condition:

𝑃 (𝑡) > 𝑚𝑡 + 𝑐, ∀𝑡 ∈ [𝑡
0
, 𝑡
𝑛
] . (30)

For each subinterval [𝑡
𝑖
, 𝑡
𝑖+1
], (30) can be expressed as

𝑃
𝑖
(𝑡) =

𝑝
𝑖
(𝑢)

𝑞
𝑖
(𝑢)

> 𝛼
𝑖
(1 −

2

𝜋
𝑢) −

2

𝜋
𝑢𝛽
𝑖 (31)

or

𝑝
𝑖
(𝑢) − 𝑙𝑞

𝑖
(𝑢) > 0, (32)

where 𝑙 = 𝛼
𝑖
(1 − (2/𝜋)𝑢) − (2/𝜋)𝑢𝛽

𝑖
with 𝛼

𝑖
= 𝑚𝑡
𝑖
+ 𝑐 and

𝛽
𝑖
= 𝑚𝑡
𝑖+1

+ 𝑐. Using the values of 𝑝
𝑖
(𝑢) and 𝑞

𝑖
(𝑢) as defined

in (5), (31) can be written in a simplified form as

3

∑

𝑗=0

𝜉
𝑗
𝑏
𝑗
− 𝑙

3

∑

𝑗=0

𝑤
𝑗

𝑖
𝑏
𝑗
> 0. (33)

Using (4), we get

3

∑

𝑗=0

𝑏
𝑗
𝐶
𝑗
> 0, (34)

where

𝐶
0
= 𝑓
𝑖
− 𝑙𝑤
0

𝑖
,

𝐶
1
=
𝜋𝑤
1

𝑖
𝑓
𝑖
+ ℎ
𝑖
𝑑
𝑖
𝑤
0

𝑖

𝜋
− 𝑙𝑤
1

𝑖
,

𝐶
2
=
𝜋𝑤
2

𝑖
𝑓
𝑖+1

− ℎ
𝑖
𝑑
𝑖+1
𝑤
3

𝑖

𝜋
− 𝑙𝑤
2

𝑖
,

𝐶
4
= 𝑓
𝑖+1

− 𝑙𝑤
3

𝑖
.

(35)

Since 𝑏
𝑗
≥ 0, 𝑗 = 0, 1, 2, 3, thus (34) is true if 𝐶

𝑗
> 0.

As 𝐶
0
, 𝐶
3
> 0:

𝐶
1
> 0 if

𝑤
1

𝑖
>
−𝑑
𝑖
ℎ
𝑖
𝑤
0

𝑖

𝜋 (𝑓
𝑖
− 𝑙)

. (36)

Also 𝐶
2
> 0 if

𝑤
2

𝑖
>

𝑑
𝑖+1
ℎ
𝑖
𝑤
3

𝑖

𝜋 (𝑓
𝑖+1

− 𝑙)
. (37)

Thus for a curve constrained by a line, the parameters must
satisfy

𝑤
0

𝑖
, 𝑤
3

𝑖
> 0,

𝑤
1

𝑖
> max{0,

−𝑑
𝑖
ℎ
𝑖
𝑤
0

𝑖

𝜋 (𝑓
𝑖
− 𝑙)

} ,

𝑤
2

𝑖
> max{0,

𝑑
𝑖+1
ℎ
𝑖
𝑤
3

𝑖

𝜋 (𝑓
𝑖+1

− 𝑙)
} .

(38)

Equation (38) can also be expressed as

𝑤
0

𝑖
, 𝑤
3

𝑖
> 0,

𝑤
1

𝑖
= 𝜇
𝑖
+max{0,

−𝑑
𝑖
ℎ
𝑖
𝑤
0

𝑖

𝜋 (𝑓
𝑖
− 𝑙)

} , 𝜇
𝑖
> 0,

𝑤
2

𝑖
= ]
𝑖
+max{0,

𝑑
𝑖+1
ℎ
𝑖
𝑤
3

𝑖

𝜋 (𝑓
𝑖+1

− 𝑙)
} , ]

𝑖
> 0.

(39)
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The usefulness of the developed scheme is shown by taking
data sets lying above a given line. The data set in Table 5 lies
above line 𝑦 = 0.06𝑥 + 0.02, whereas the data set given
in Table 6 lies above the line 𝑦 = 0.05𝑥 + 0.23. Figures
9 and 11 are produced by taking the values of the shape
parameters on trial and error basis. These figures depict that
the curves do not lie above the respective given straight lines.
To remove this drawback, curves in Figures 10 and 12 are
generated by using the constrained curve scheme developed
in the previous theorem. It is clearly shown that the curves
not only lie above their same respective lines but also can be
made as smooth as required.

6. Conclusion and Future Plan

A 𝐶
1 piecewise rational cubic trigonometric spline is dis-

cussed in this paper to address the problem of scientific data
visualization. Four positive shape parameters are used in the
description of positive, monotone, and constrained curve
interpolation schemes. Two of these four shape parameters
are constrained to preserve the shape of data and the other
two are left free for the designer to alter the shape of curves
in order to look like as he wants them to be. The presented
scheme works well for both equally and unequally spaced
data. It is tested for different data sets to show its usefulness
in curve construction. In future this scheme will be extended
to rational bicubic surface interpolation scheme to generate
positive, monotone, and constrained surfaces.
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