
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 547209, 13 pages
http://dx.doi.org/10.1155/2013/547209

Research Article
Evaluating the Lifetime Performance Index Based on
the Bayesian Estimation for the Rayleigh Lifetime Products with
the Upper Record Values

Wen-Chuan Lee,1 Jong-Wuu Wu,2 Ching-Wen Hong,3 and Shie-Fan Hong2

1 Department of International Business, Chang Jung Christian University, Tainan 71101, Taiwan
2Department of Applied Mathematics, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
3Department of Information Management, Shih Chien University, Kaohsiung Campus, Kaohsiung 84550, Taiwan

Correspondence should be addressed to Jong-WuuWu; jwwu@mail.ncyu.edu.tw

Received 20 October 2012; Accepted 17 December 2012

Academic Editor: Chong Lin

Copyright © 2013 Wen-Chuan Lee et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Quality management is very important for many manufacturing industries. Process capability analysis has been widely applied in
the field of quality control to monitor the performance of industrial processes. Hence, the lifetime performance index𝐶

𝐿
is utilized

to measure the performance of product, where 𝐿 is the lower specification limit. This study constructs a Bayesian estimator of 𝐶
𝐿

under a Rayleigh distribution with the upper record values. The Bayesian estimations are based on squared-error loss function,
linear exponential loss function, and general entropy loss function, respectively. Further, the Bayesian estimators of 𝐶

𝐿
are utilized

to construct the testing procedure for 𝐶
𝐿
based on a credible interval in the condition of known 𝐿. The proposed testing procedure

not only can handle nonnormal lifetime data, but also can handle the upper record values. Moreover, the managers can employ
the testing procedure to determine whether the lifetime performance of the Rayleigh products adheres to the required level. The
hypothesis testing procedure is a quality performance assessment system in enterprise resource planning (ERP).

1. Introduction

Process capability analysis is an effective means to measure
the performance and potential capabilities of a process. Pro-
cess capability indices (PCIs) are utilized to assess whether
product quality meets the required level in manufacturing
industries. For instance, the lifetime of electronic compo-
nents exhibits a larger-the-better type of quality character-
istic. Montgomery [1] proposed the process capability index
𝐶
𝐿
to evaluate the lifetime performance of electronic com-

ponents, where 𝐿 is the lower specification limit. Tong et al.
[2] constructed the uniformly minimum variance unbiased
estimator (UMVUE) of𝐶

𝐿
and proposed a hypothesis testing

procedure for the complete sample from a one-parameter
exponential distribution. In addition, the lifetime perfor-
mance index 𝐶

𝐿
also is applied to evaluate the lifetime of

product in the censored sample. For instance, Hong et al. [3,
4] constructed the lifetime performance index 𝐶

𝐿
to evaluate

business performance under the right type II censored sample

and proposed a confidence interval for Pareto’s distribution.
Wu et al. [5] proposed a hypothesis testing procedure based
on a maximum likelihood estimator (MLE) of 𝐶

𝐿
to evaluate

the product quality for two-parameter exponential distri-
bution under the right type II censored sample. Lee et al.
[6] also proposed a hypothesis testing procedure based on
a MLE of 𝐶

𝐿
to evaluate product quality for exponential

distribution under the progressively type II right censored
sample. Lee et al. [7] also constructed an UMVUE of 𝐶

𝐿

and developed a testing procedure for the performance index
of products with the exponential distribution based on the
type II right censored sample. All of the above 𝐶

𝐿
have been

utilized to evaluate the quality performance for complete data
and censored data. Nevertheless, record values often arise in
industrial stress testing and other similar situations.

Record values and the associated statistics are of interest
and important in many real-life applications. In industry and
reliability studies, many products fail under stress. For exam-
ple, a battery dies under the stress of time. But the precise
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breaking stress or failure point varies even among identical
items. Hence, in such experiments, measurements may be
made sequentially and only the record values (lower or upper)
are observed. Record values arise naturally in many real-
life applications involving data relating to weather, sports,
economics, and life tests. According to themodel of Chandler
[8], there are some situations in lifetime testing experiments
where the failure time of a product is recorded if it exceeds
all preceding failure times. These recorded failure times are
the upper record value sequence. In general, let 𝑋

1
, 𝑋
2
, . . .

be a sequence of independent and identically distributed
(i.i.d.) random variables having the same distribution as
the (population) random variable 𝑋 with the cumulative
distribution function (c.d.f) 𝐹(𝑥) and the probability density
function (p.d.f) 𝑓(𝑥). An observation 𝑋

𝑗
will be called an

upper record value if it exceeds in value all of the preceding
observations, that is, if𝑋

𝑗
> 𝑋
𝑖
, for every 𝑖 < 𝑗. The sequence

of record times 𝑇
𝑛
, 𝑛 ≥ 1 is defined as follows.

Let 𝑇
1
= 1 with probability 1, for 𝑛 ≥ 2, 𝑇

𝑛
= min{𝑗 :

𝑋
𝑗
> 𝑋
𝑇
𝑛−1

}. A sequence of upper record values {𝑋
𝑈(𝑛)
} is

then defined by

𝑋
𝑈(𝑛)

= 𝑋
𝑇
𝑛

, 𝑛 = 1, 2, . . . . (1)

Let 𝑋
∼
= {𝑋
𝑈(1)
, 𝑋
𝑈(2)
, . . . , 𝑋

𝑈(𝑛)
} be the first 𝑛 upper record

values arising from a sequence of i.i.d. random variables
𝑋
1
, 𝑋
2
, . . . with c.d.f. 𝐹(𝑥).

In this study, we consider the case of the upper record
values instead of complete data or censored data. In order
to evaluate the lifetime performance of nonnormal data
with upper record values, the lifetime performance index 𝐶

𝐿

is utilized to measure product quality under the Rayleigh
distribution with the upper record values. The Rayleigh
distribution is a nonnormal distribution and a special case of
the Weibull distribution, which provides a population model
useful in several areas of statistics, including life testing and
reliability whose age with time as its failure rate is a linear
function of time. Bhattacharya and Tyagi [9] mentioned that
in some clinical studies dealing with cancer patients the
survival pattern follows the Rayleigh distribution. Cliff and
Ord [10] showed that the Rayleigh distribution arises as the
distribution of the distance between an individual and its
nearest neighbor when the special pattern is generated by the
Poisson process. Dyer and Whisenand [11] demonstrated the
importance of this distribution in communication engineer-
ing (also see Soliman and Al-Aboud [12]).The p.d.f. and c.d.f.
of the Rayleigh distribution are given, respectively, by

𝑓 (𝑥) =
𝑥

𝜃2
𝑒
−𝑥
2

/2𝜃
2

, (2)

𝐹 (𝑥) = 1 − 𝑒
−𝑥
2

/2𝜃
2

, (3)

where 𝑥 > 0 and 𝜃 > 0, respectively. When𝑋 comes from the
Rayleigh distribution, the mean of 𝑋 is 𝐸(𝑋) = √𝜋/2𝜃, and
the standard deviation of𝑋 is 𝜎 = √(4 − 𝜋)/2𝜃.

Bayesian and non-Bayesian approaches have been used to
obtain the estimators of the parameter 𝜃 under the Rayleigh

distribution with the upper record values. Soliman and Al-
Aboud [12] compared the performance of the Bayesian esti-
mators with non-Bayesian estimators such as the MLE and
the best linear unbiased (BLUE) estimator.The Bayesian esti-
mators are developed under symmetric and nonsymmetric
loss functions. The symmetric loss function is squared-error
(SE) loss function. The nonsymmetric loss function includes
linear exponential (LINEX) and general entropy (GE) loss
functions. In recent decades, the Bayesian viewpoint has
received frequent attention for analyzing failure data and
other time-to-event data and has been often proposed as a
valid alternative to traditional statistical perspectives. The
Bayesian approach to estimation of the parameters and
reliability analysis allows prior subjective knowledge on
lifetime parameters and technical information on the failure
mechanism as well as experimental data. Bayesian methods
usually require less sample data to achieve the same quality
of inferences than methods based on sampling theory (also
see [12]).

The main aim of this study will construct the Bayesian
estimator of 𝐶

𝐿
under a Rayleigh distribution with upper

record values. The Bayesian estimators of 𝐶
𝐿
are developed

under symmetric and nonsymmetric loss functions. The
estimators of 𝐶

𝐿
are then utilized to develop a credible

interval, respectively. The new testing procedures of credible
interval for 𝐶

𝐿
can be employed by managers to assess

whether the products performance adheres to the required
level in the condition of known 𝐿. The new proposed testing
procedures can handle nonnormal lifetime data with upper
record values. Moreover, we will evaluate the performance of
the new proposed testing procedures with Bayesian and non-
Bayesian approaches.

The rest of this study is organized as follows. Section 2
introduces some properties of the lifetime performance
index for lifetime of product with the Rayleigh distribution.
Section 3 discusses the relationship between the lifetime
performance index and conforming rate. Section 4 develops
a hypothesis testing procedure for the lifetime performance
index𝐶

𝐿
with the non-Bayesian approach. Section 5 develops

a hypothesis testing procedure for the lifetime performance
index 𝐶

𝐿
with the Bayesian approach. Section 6 discusses the

MonteCarlo simulation algorithmof confidence (or credible)
level. One numerical example and concluding remarks are
made in Sections 7 and 8, respectively.

2. The Lifetime Performance Index

Montgomery [1] has developed a process capability index 𝐶
𝐿

to measure the larger-the-better quality characteristic. Then,
𝐶
𝐿
is defined by

𝐶
𝐿
=
𝜇 − 𝐿

𝜎
, (4)

where 𝜇, 𝜎, and 𝐿 are the process mean, the process standard
deviation, and the lower specification limit, respectively.

To assess the product performance of products, 𝐶
𝐿
can

be defined as the lifetime performance index. If 𝑋 comes
from theRayleigh distribution, then the lifetime performance
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index 𝐶
𝐿
can be rewritten as

𝐶
𝐿
=
𝜇 − 𝐿

𝜎
=
√𝜋/2𝜃 − 𝐿

√(4 − 𝜋) /2𝜃
= √

𝜋

4 − 𝜋
− √

2

4 − 𝜋

𝐿

𝜃
,

−∞ < 𝐶
𝐿
< √

𝜋

4 − 𝜋
,

(5)

where 𝜇 = 𝐸(𝑋) = √𝜋/2𝜃 is the process mean, 𝜎 =

√Var(𝑋) = √(4 − 𝜋)/2𝜃 is the process standard deviation,
and 𝐿 is the lower specification limit.

3. The Conforming Rate

If the lifetime of a product 𝑋 exceeds the lower specification
limit 𝐿, then the product is defined as a conforming product.
The ratio of conforming products is known as the conforming
rate and can be defined as

𝑃
𝑟
= 𝑃 (𝑋 ≥ 𝐿) = 𝑒

−(1/2)(√𝜋/2−√(4−𝜋)/2𝐶
𝐿
)
2

,

− ∞ < 𝐶
𝐿
< √𝜋/ (4 − 𝜋).

(6)

Obviously, a strictly increasing relationship exists
between the conforming rate 𝑃

𝑟
and the lifetime

performance index 𝐶
𝐿
. Table 1 lists various 𝐶

𝐿
values and

the corresponding conforming rate 𝑃
𝑟
by using STATISTICA

software [13] (also see [14]).
For the 𝐶

𝐿
values which are not listed in Table 1, the

conforming rate 𝑃
𝑟
can be obtained through interpolation. In

addition, since a one-to-one mathematical relationship exists
between the conforming rate𝑃

𝑟
and the lifetime performance

index 𝐶
𝐿
. Therefore, utilizing the one-to-one relationship

between 𝑃
𝑟
and 𝐶

𝐿
, lifetime performance index can be

a flexible and effective tool, not only evaluating product
performance, but also estimating the conforming rate 𝑃

𝑟
.

4. Testing Procedure for the Lifetime
Performance Index 𝐶

𝐿
with

Non-Bayesian Approach

This section will apply non-Bayesian approach to construct a
maximum likelihood estimator (MLE) of𝐶

𝐿
under aRayleigh

distribution with upper record values. The MLE of 𝐶
𝐿
is

then utilized to develop a new hypothesis testing procedure
in the condition of known 𝐿. Assuming that the required
index value of lifetime performance is larger than 𝑐

0
, where

𝑐
0
denotes the target value, the null hypothesis 𝐻

0
: 𝐶
𝐿
≤ 𝑐
0

and the alternative hypothesis𝐻
1
: 𝐶
𝐿
> 𝑐
0
are constructed.

Based on the new hypothesis testing procedure, the lifetime
performance of products is easy to assess.

Let 𝑋 be the lifetime of such a product, and 𝑋 has
a Rayleigh distribution with the p.d.f. as given by (2).
Let 𝑋
∼

= (𝑋
𝑈(1)
, 𝑋
𝑈(2)
, . . . , 𝑋

𝑈(𝑛)
) be the first 𝑛 upper

record values arising from a sequence of i.i.d. Rayleigh

variables with p.d.f. as given by (2). Since the joint p.d.f. of
(𝑋
𝑈(1)
, 𝑋
𝑈(2)
, . . . , 𝑋

𝑈(𝑛)
) is

𝑓 (𝑥
𝑈(𝑛)
)

𝑛−1

∏

𝑖=1

𝑓 (𝑥
𝑈(𝑖)
)

1 − 𝐹 (𝑥
𝑈(𝑖)
)
, (7)

where 𝑓(𝑥) and 𝐹(𝑥) are the p.d.f. and c.d.f. of 𝑋, respec-
tively (also see [12, 15, 16]). So, the likelihood function of
(𝑋
𝑈(1)
, 𝑋
𝑈(2)
, . . . , 𝑋

𝑈(𝑛)
) is given as

𝐿 (𝜃 | 𝑥
𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
) = {

𝑛

∏

𝑖=1

𝑥
𝑈(𝑖)

𝜃2
} exp(−

𝑥
2

𝑈(𝑛)

2𝜃2
) . (8)

The natural logarithm of the likelihood function with (8) is

ln 𝐿 (𝜃 | 𝑥
𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
) =

𝑛

∑

𝑖=1

ln (𝑥
𝑈(𝑖)
) − 2𝑛 ln 𝜃 −

𝑥
2

𝑈(𝑛)

2𝜃2
.

(9)

Upon differentiating (9) with respect to 𝜃 and equating the
result to zero, theMLE of the parameter 𝜃 can be shown to be

𝜃MLE =
𝑋
𝑈(𝑛)

√2𝑛
(10)

(also see [12]). By using the invariance of MLE (see Zehna
[17]), the MLE of 𝐶

𝐿
can be written as given by

𝐶
𝐿,MLE = √

𝜋

4 − 𝜋
− √

2

4 − 𝜋

𝐿

𝜃MLE

= √
𝜋

4 − 𝜋
− √

2

4 − 𝜋
⋅ 𝐿 ⋅

√2𝑛

𝑋
𝑈(𝑛)

.

(11)

Construct a statistical testing procedure to assess whether
the lifetime performance index adheres to the required level.
The one-sided confidence interval for 𝐶

𝐿
is obtained using

the pivotal quantity 𝑋2
𝑈(𝑛)
/𝜃
2. By using the pivotal quantity

𝑋
2

𝑈(𝑛)
/𝜃
2, given the specified significance level 𝛼, the level

100(1 − 𝛼)% one-sided confidence interval for 𝐶
𝐿
can be

derived as follows.
Since the pivotal quantity 𝑋2

𝑈(𝑛)
/𝜃
2
∼ 𝜒
2

2𝑛
, and 𝜒2

2𝑛,1−𝛼

function which represents the lower 1 − 𝛼 percentile of 𝜒2
2𝑛
,

then

𝑃(
𝑋
2

𝑈(𝑛)

𝜃2
≤ 𝜒
2

2𝑛,1−𝛼
) = 1 − 𝛼,

⇒ 𝑃(𝐶
𝐿
≥ √

𝜋

4 − 𝜋
−(√

𝜋

4 − 𝜋
−𝐶
𝐿,MLE)(

𝜒
2

2𝑛,1−𝛼

2𝑛
)

1/2

)

= 1 − 𝛼,

(12)

where 𝐶
𝐿
= √𝜋/(4 − 𝜋) − √2/(4 − 𝜋)(𝐿/𝜃). From (12), we
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Table 1: The lifetime performance index 𝐶
𝐿
versus the conforming rate 𝑃

𝑟
.

𝐶
𝐿

𝑃
𝑟

𝐶
𝐿

𝑃
𝑟

𝐶
𝐿

𝑃
𝑟

−∞ 0.000000 0.40 0.611832 1.20 0.896627
−4.50 0.000147 0.45 0.631685 1.25 0.909965
−4.00 0.000551 0.50 0.651484 1.30 0.922511
−3.50 0.001858 0.55 0.671182 1.35 0.934227
−3.00 0.005628 0.60 0.690734 1.40 0.945076
−2.50 0.015308 0.65 0.710094 1.45 0.955027
−2.00 0.037404 0.70 0.729213 1.50 0.964047
−1.50 0.082094 0.75 0.748044 1.55 0.972109
−1.00 0.161849 0.80 0.766539 1.60 0.979187
−0.50 0.286621 0.85 0.784648 1.65 0.985259
0.00 0.455938 0.90 0.802324 1.70 0.990306
0.15 0.513214 0.95 0.819518 1.75 0.994310
0.20 0.532718 1.00 0.836183 1.80 0.997261
0.25 0.552370 1.05 0.852271 1.85 0.999147
0.30 0.572132 1.10 0.867738 1.90 0.999963
0.35 0.591967 1.15 0.882538 1.91 0.999997

obtain that a 100(1 − 𝛼)% one-sided confidence interval for
𝐶
𝐿
is

𝐶
𝐿
≥ √

𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,MLE)(

𝜒
2

2𝑛,1−𝛼

2𝑛
)

1/2

, (13)

where𝐶
𝐿,MLE is given by (11).Therefore, the 100(1−𝛼)% lower

confidence interval bound for 𝐶
𝐿
can be written as

LBMLE = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,MLE)(

𝜒
2

2𝑛,1−𝛼

2𝑛
)

1/2

,

(14)

where 𝐶
𝐿,MLE, 𝛼, and 𝑛 denote the MLE of 𝐶

𝐿
, the specified

significance level, and the upper record sample of size,
respectively.

The managers can use the one-sided confidence interval
to determine whether the product performance adheres to
the required level.The proposed testing procedure of𝐶

𝐿
with

𝐶
𝐿,MLE can be organized as follows.

Step 1. Determine the lower lifetime limit 𝐿 for products
and the performance index value 𝑐

0
, then the testing null

hypothesis 𝐻
0
: 𝐶
𝐿
≤ 𝑐
0
and the alternative hypothesis

𝐻
1
: 𝐶
𝐿
> 𝑐
0
are constructed.

Step 2. Specify a significance level 𝛼.

Step 3. Given the upper record values 𝑥
∼
= (𝑥
𝑈(1)
, 𝑥
𝑈(2)
, . . . ,

𝑥
𝑈(𝑛)
), the lower lifetime limit 𝐿, and the significance level 𝛼,

then we can calculate the 100(1 − 𝛼)% one-sided confidence
interval [LBMLE,∞) for 𝐶𝐿, where LBMLE as the definition of
(14).

Step 4. The decision rule of statistical test is provided as
follows:

(1) if the performance index value 𝑐
0
∉ [LBMLE,∞), then

we will reject 𝐻
0
. It is concluded that the lifetime

performance index of products meets the required
level;

(2) if the performance index value 𝑐
0
∈ [LBMLE,∞), then

we do not reject 𝐻
0
. It is concluded that the lifetime

performance index of products does not meet the
required level.

5. Testing Procedure for
the Lifetime Performance Index 𝐶

𝐿
with

the Bayesian Approach

This section will apply the Bayesian approach to construct
an estimator of 𝐶

𝐿
under a Rayleigh distribution with upper

record values. The Bayesian estimators are developed under
symmetric and nonsymmetric loss functions.The symmetric
loss function is squared-error (SE) loss function. The non-
symmetric loss function includes linear exponential (LINEX)
and general entropy (GE) loss functions. The Bayesian esti-
mator of 𝐶

𝐿
is then utilized to develop a new hypothesis

testing procedure in the condition of known 𝐿. Assuming
that the required index value of lifetime performance is larger
than 𝑐

0
, where 𝑐

0
denotes the target value, the null hypothesis

𝐻
0
: 𝐶
𝐿
≤ 𝑐
0
and the alternative hypothesis𝐻

1
: 𝐶
𝐿
> 𝑐
0
are

constructed. Based on the new hypothesis testing procedure,
the lifetime performance of products is easy to assess.

5.1. Testing Procedure for the Lifetime Performance Index
𝐶
𝐿
with the Bayesian Estimator under Squared-Error Loss

Function. Let 𝑋 be the lifetime of such a product, and 𝑋
has a Rayleigh distribution with the p.d.f. as given by (2).
We consider the conjugate prior distribution of the form
which is defined by the square-root inverted-gamma density
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as follows:

𝜋
1 (𝜃) =

𝑎
𝑏

Γ (𝑏) 2𝑏−1
𝜃
−2𝑏−1

𝑒
−𝑎/2𝜃

2

, (15)

where 𝜃 > 0, 𝑎 > 0, and 𝑏 > 0.

𝐸 (𝜃) = (
𝑎

2
)

1/2
Γ (𝑏 − 1/2)

Γ (𝑏)
,

Var (𝜃) = 𝑎

2 (𝑏 − 1)
− (

𝑎

2
) [
Γ (𝑏 − 1/2)

Γ (𝑏)
]

2

, 𝑏 > 1.

(16)

With record values, 𝑛 products (or items) take place on
test. Consider (𝑋

𝑈(1)
, 𝑋
𝑈(2)
, . . . , 𝑋

𝑈(𝑛)
) is the upper record

values. We can obtain that the posterior p.d.f. of 𝜃 | (𝑋
𝑈(1)
,

𝑋
𝑈(2)
, . . . , 𝑋

𝑈(𝑛)
) is given as

𝑝
1
(𝜃 | 𝑥

𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
)

=
𝐿 (𝜃 | 𝑥

𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
) 𝜋
1 (𝜃)

∫
∞

0
𝐿 (𝜃 | 𝑥

𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
) 𝜋
1 (𝜃) 𝑑𝜃

=

𝜃
−2(𝑛+𝑏)−1

(𝑥
2

𝑈(𝑛)
+ 𝑎)
(𝑛+𝑏)

𝑒
−(𝑥
𝑈(𝑛)
+𝑎)/2𝜃

2

Γ (𝑛 + 𝑏) 2𝑛+𝑏−1
,

(17)

where 𝜃 > 0, and the likelihood function 𝐿(𝜃 | 𝑥
𝑈(1)
, . . . ,

𝑥
𝑈(𝑛)
) as (8).
Let 𝑡 = 𝑥2

𝑈(𝑛)
+𝑎, then the posterior p.d.f. can be rewritten

as

𝑝
1
(𝜃 | 𝑥

𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
) =

𝜃
−2(𝑛+𝑏)−1

𝑡
(𝑛+𝑏)

𝑒
−𝑡/2𝜃

2

Γ (𝑛 + 𝑏) 2𝑛+𝑏−1
, (18)

and we can show that 𝑡/𝜃2|
𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
∼ 𝜒
2

2(𝑛+𝑏)
.

The Bayesian estimator 𝜃BS of 𝜃 based on the squared
error (SE) loss function 𝐿(𝜃∗, 𝜃) = (𝜃∗ −𝜃)2 can be derived as
follows:

𝐸 (𝜃 | 𝑥
𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
)

= ∫

∞

0

𝜃𝑝
1
(𝜃 | 𝑥

𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
) 𝑑𝜃

=
Γ (𝑛 + 𝑏 − 1/2)

Γ (𝑛 + 𝑏)
(
𝑡

2
)

1/2

,

(19)

where 𝑡 = 𝑥2
𝑈(𝑛)

+ 𝑎, 𝑛 + 𝑏 − 1/2 > 0.
Hence, the Bayesian estimator of 𝜃 based on SE loss

function is given by

𝜃BS =
Γ (𝑛 + 𝑏 − 1/2)

Γ (𝑛 + 𝑏)
(
𝑇

2
)

1/2

, (20)

where 𝑇 = 𝑋
2

𝑈(𝑛)
+ 𝑎, 𝑛 + 𝑏 − 1/2 > 0, 𝑎, and 𝑏 are the

parameters of prior distribution with density as (15).
The lifetime performance index 𝐶

𝐿
of Rayleigh products

can be written as

𝐶
𝐿
= √

𝜋

4 − 𝜋
− √

2

4 − 𝜋

𝐿

𝜃
, −∞ < 𝐶

𝐿
< √

𝜋

4 − 𝜋
. (21)

By using (5) and the Bayesian estimator 𝜃BS as (20), 𝐶
𝐿,BS

based on the Bayesian estimator 𝜃BS of 𝜃 is given by

𝐶
𝐿,BS = √

𝜋

4 − 𝜋
− √

2

4 − 𝜋

𝐿

𝜃BS

= √
𝜋

4 − 𝜋
− √

2

4 − 𝜋
⋅ 𝐿 ⋅ [

Γ (𝑛 + 𝑏 − 1/2)

Γ (𝑛 + 𝑏)
(
𝑇

2
)

1/2

]

−1

,

(22)

where 𝑇 = 𝑋
2

𝑈(𝑛)
+ 𝑎, 𝑛 + 𝑏 − 1/2 > 0, 𝑎, and 𝑏 are the

parameters of prior distribution with density as in (15).
We construct a statistical testing procedure to assess

whether the lifetime performance index adheres to the
required level. The one-sided credible confidence interval for
𝐶
𝐿
are obtained using the pivotal quantity 𝑡/𝜃2|

𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
.

By using the pivotal quantity 𝑡/𝜃2|
𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
, given the

specified significance level 𝛼, the level 100(1−𝛼)% one-sided
credible interval for 𝐶

𝐿
can be derived as follows.

Since the pivotal quantity 𝑡/𝜃2|
𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
∼ 𝜒
2

2(𝑛+𝑏)
,

and 𝜒2
2(𝑛+𝑏),1−𝛼

function which represents the lower 1 − 𝛼
percentile of 𝜒2

2(𝑛+𝑏)
, then

𝑃(
𝑡

𝜃2
≤ 𝜒
2

2(𝑛+𝑏),1−𝛼
| 𝑥
∼
) = 1 − 𝛼,

where 𝑥
∼
= (𝑥
𝑈(1)
, 𝑥
𝑈(2)
, . . . , 𝑥

𝑈(𝑛)
) ,

⇒ 𝑃(𝐶
𝐿
≥ √

𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BS)

×
Γ (𝑛 + 𝑏 − 1/2)

Γ (𝑛 + 𝑏)
(
𝜒
2

2(𝑛+𝑏),1−𝛼

2
)

1/2

| 𝑥
∼
)

= 1 − 𝛼,

(23)

where 𝐶
𝐿
as the definition of (5).

From (23), we obtain that a 100(1−𝛼)%one-sided credible
interval for 𝐶

𝐿
is given by

𝐶
𝐿
≥ √

𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BS)

×
Γ (𝑛 + 𝑏 − 1/2)

Γ (𝑛 + 𝑏)
(
𝜒
2

2(𝑛+𝑏),1−𝛼

2
)

1/2

,

(24)

where 𝐶
𝐿,BS is given by (22).

Therefore, the 100(1 − 𝛼)% lower credible interval bound
for 𝐶
𝐿
can be written as

LBBS = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BS)

×
Γ (𝑛 + 𝑏 − 1/2)

Γ (𝑛 + 𝑏)
(
𝜒
2

2(𝑛+𝑏),1−𝛼

2
)

1/2

,

(25)
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where 𝐶
𝐿,BS is given by (22), and 𝑏 is a parameter of prior

distribution with density as (15).
The managers can use the one-sided credible interval to

determine whether the product performance adheres to the
required level. The proposed testing procedure of 𝐶

𝐿
with

𝐶
𝐿,BS can be organized as follows.

Step 1. Determine the lower lifetime limit 𝐿 for products
and the performance index value 𝑐

0
, then the testing null

hypothesis 𝐻
0
: 𝐶
𝐿
≤ 𝑐
0
and the alternative hypothesis

𝐻
1
: 𝐶
𝐿
> 𝑐
0
are constructed.

Step 2. Specify a significance level 𝛼.

Step 3. Given the parameters 𝑎 and 𝑏 of prior distribution,
the upper record values 𝑥

∼
= (𝑥

𝑈(1)
, 𝑥
𝑈(2)
, . . . , 𝑥

𝑈(𝑛)
), the

lower lifetime limit 𝐿, and the significance level 𝛼, then we
can calculate the 100(1 − 𝛼)% one-sided credible interval
[LBBS,∞) for 𝐶𝐿, where LBBS as the definition of (25).

Step 4. The decision rule of statistical test is provided as
follows:

(1) if the performance index value 𝑐
0
∉ [LBBS,∞), then

we will reject 𝐻
0
. It is concluded that the lifetime

performance index of products meets the required
level;

(2) if the performance index value 𝑐
0
∈ [LBBS,∞), then

we do not reject 𝐻
0
. It is concluded that the lifetime

performance index of products does not meet the
required level.

5.2. Testing Procedure for the Lifetime Performance Index 𝐶
𝐿

with the Bayesian Estimator under Linear Exponential Loss
Function. Let 𝑋 be the lifetime of such a product, and 𝑋
has a Rayleigh distribution with the p.d.f. as given by (2). We
consider the linear exponential (LINEX) loss function as (also
see [18–23])

𝐿 (Δ) ∝ 𝑒
𝑐Δ
− 𝑐Δ − 1, (26)

where Δ = (𝜃∗ − 𝜃), 𝑐 ̸= 0.
In this paper, we suppose that

Δ
1
= (

𝜃
∗

𝜃
)

2

− 1, (27)

where 𝜃∗ is an estimator of 𝜃.
By using (26)-(27), the posterior expectation of LINEX

loss function 𝐿(Δ
1
) is

𝐸 [𝐿 (Δ
1
) | 𝑥
∼
] = 𝑒
−𝑐
𝐸 [𝑒
𝑐(𝜃
∗

/𝜃)
2 | 𝑥
∼
]

− 𝑐𝐸 [(
𝜃
∗

𝜃
)

2

− 1 | 𝑥
∼
] − 1,

(28)

where 𝑥
∼
= (𝑥
𝑈(1)
, 𝑥
𝑈(2)
, . . . , 𝑥

𝑈(𝑛)
).

The value of 𝜃∗ that minimizes 𝐸[𝐿(Δ
1
) | 𝑥
∼
] denoted by

𝜃BL is obtained by solving the equation:

𝑑𝐸 [𝐿 (Δ
1
) | 𝑥
∼
]

𝑑𝜃∗
= 𝑒
−𝑐
𝐸[𝑒
𝑐(𝜃
∗

/𝜃)
2 ⋅
2𝑐𝜃
∗

𝜃2
| 𝑥
∼
]

− 𝑐𝐸(
2𝜃
∗

𝜃2
| 𝑥
∼
) = 0;

(29)

that is, 𝜃BL is the solution to the following equation:

𝐸[
𝜃BL
𝜃2
𝑒
𝑐(𝜃BL/𝜃)2 | 𝑥

∼
] = 𝑒
𝑐
𝐸(

𝜃BL
𝜃2

| 𝑥
∼
) . (30)

By using (18) and (30), we have

2𝜃BL (𝑛 + 𝑏) ⋅
𝑡
𝑛+𝑏

(𝑡 − 2𝑐𝜃
2

BL)
𝑛+𝑏+1

= 𝑒
𝑐
𝜃BL

2 (𝑛 + 𝑏)

𝑡
,

where 𝑡 = 𝑥2
𝑈(𝑛)

+ 𝑎.

(31)

Hence, the Bayesian estimator of 𝜃 under the LINEX loss
function is given by

𝜃BL = [
𝑇

2𝑐
(1 − 𝑒

−𝑐/(𝑛+𝑏+1)
)]

1/2

, (32)

where 𝑇 = 𝑋
2

𝑈(𝑛)
+ 𝑎, 𝑎, and 𝑏 are the parameters of prior

distribution with density as (15).
By using (5) and the Bayesian estimator 𝜃BL as (32), 𝐶𝐿,BL

based on the Bayesian estimator 𝜃BL of 𝜃 is given by

𝐶
𝐿,BL = √

𝜋

4 − 𝜋
− √

2

4 − 𝜋

𝐿

𝜃BL

= √
𝜋

4 − 𝜋
− √

2

4 − 𝜋
𝐿[
𝑇

2𝑐
(1 − 𝑒

−𝑐/(𝑛+𝑏+1)
)]

−1/2

,

(33)

where 𝑇 = 𝑋
2

𝑈(𝑛)
+ 𝑎, 𝑎, and 𝑏 are the parameters of prior

distribution with density as (15).
We construct a statistical testing procedure to assess

whether the lifetime performance index adheres to the
required level. The one-sided credible confidence interval for
𝐶
𝐿
is obtained using the pivotal quantity 𝑡/𝜃2|

𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
.

By using the pivotal quantity 𝑡/𝜃2|
𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
, given the

specified significance level 𝛼, the level 100(1−𝛼)% one-sided
credible interval for 𝐶

𝐿
can be derived as follows.
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Since the pivotal quantity 𝑡/𝜃2|
𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
∼ 𝜒
2

2(𝑛+𝑏)
,

and 𝜒2
2(𝑛+𝑏),1−𝛼

function which represents the lower 1 − 𝛼
percentile of 𝜒2

2(𝑛+𝑏)
, then

𝑃(
𝑡

𝜃2
≤ 𝜒
2

2(𝑛+𝑏),1−𝛼
| 𝑥
∼
) = 1 − 𝛼,

where 𝑥
∼
= (𝑥
𝑈(1)
, 𝑥
𝑈(2)
, . . . , 𝑥

𝑈(𝑛)
) ,

⇒ 𝑃(𝐶
𝐿
≥ √

𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BL)

× [
1

2𝑐
(1 − 𝑒

−𝑐/(𝑛+𝑏+1)
) 𝜒
2

2(𝑛+𝑏),1−𝛼
]

1/2

| 𝑥
∼
)

= 1 − 𝛼,

(34)

where 𝐶
𝐿
as the definition of (5).

From (34), we obtain that a 100(1−𝛼)%one-sided credible
interval for 𝐶

𝐿
is

𝐶
𝐿
≥ √

𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BL)

× [
1

2𝑐
(1 − 𝑒

−𝑐/(𝑛+𝑏+1)
) 𝜒
2

2(𝑛+𝑏),1−𝛼
]

1/2

,

(35)

where 𝐶
𝐿,BL is given by (33).

Therefore, the 100(1 − 𝛼)% lower credible interval bound
for 𝐶
𝐿
can be written as

LBBL = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BL)

× [
1

2𝑐
(1 − 𝑒

−𝑐/(𝑛+𝑏+1)
) 𝜒
2

2(𝑛+𝑏),1−𝛼
]

1/2

,

(36)

where 𝐶
𝐿,BL is given by (33), and 𝑏 is a parameter of prior

distribution with density as (15).
The managers can use the one-sided credible interval to

determine whether the product performance attains to the
required level. The proposed testing procedure of 𝐶

𝐿
with

𝐶
𝐿,BL can be organized as follows.

Step 1. Determine the lower lifetime limit 𝐿 for products
and the performance index value 𝑐

0
, then the testing null

hypothesis 𝐻
0
: 𝐶
𝐿
≤ 𝑐
0
and the alternative hypothesis

𝐻
1
: 𝐶
𝐿
> 𝑐
0
are constructed.

Step 2. Specify a significance level 𝛼.

Step 3. Given the parameters 𝑎 and 𝑏 of prior distribution, the
parameter 𝑐 of LINEX loss function, the upper record values
𝑥
∼
= (𝑥
𝑈(1)
, 𝑥
𝑈(2)
, . . . , 𝑥

𝑈(𝑛)
), the lower lifetime limit 𝐿, and the

significance level 𝛼, then we can calculate the 100(1 − 𝛼)%
one-sided credible interval [LBBL,∞) for 𝐶𝐿, where LBBL as
the definition of (36).

Step 4. The decision rule of statistical test is provided as
follows:

(1) if the performance index value 𝑐
0
∉ [LBBL,∞), then

we will reject 𝐻
0
. It is concluded that the lifetime

performance index of products meets the required
level;

(2) if the performance index value 𝑐
0
∈ [LBBL,∞), then

we do not reject 𝐻
0
. It is concluded that the lifetime

performance index of products does not meet the
required level.

5.3. Testing Procedure for the Lifetime Performance Index
𝐶
𝐿
with the Bayesian Estimator under General Entropy Loss

Function. Let 𝑋 be the lifetime of such a product, and 𝑋
has a Rayleigh distribution with the p.d.f. as given by (2).
We consider the general entropy (GE) loss function (also see
[12, 20]):

𝐿 (𝜃
∗
, 𝜃) ∝ (

𝜃
∗

𝜃
)

𝑞

− 𝑞 log(𝜃
∗

𝜃
) − 1, (37)

whose minimum occurs at 𝜃∗ = 𝜃.
The loss function is a generalization of entropy loss used

by several authors (e.g., Dyer and Liu [24], Soliman [25], and
Soliman and Elkahlout [26]) where the shape parameter 𝑞 =
1. When 𝑞 > 0, a positive error (𝜃∗ > 𝜃) causes more serious
consequences than a negative error. The Bayesian estimator
𝜃BG of 𝜃 under GE loss function is given by

𝜃BG = [𝐸 (𝜃
−𝑞
| 𝑥
𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
)]
−1/𝑞

. (38)

By using (18) and (38), then the Bayesian estimator 𝜃BG of
𝜃 is derived as follows:

𝐸 (𝜃
−𝑞
| 𝑥
𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
)

= ∫

∞

0

𝜃
−𝑞
𝑝
1
(𝜃 | 𝑥

𝑈(1)
, . . . , 𝑥

𝑈(𝑛)
) 𝑑𝜃

= (
𝑡

2
)

−𝑞/2

⋅
Γ (𝑛 + 𝑏 + 𝑞/2)

Γ (𝑛 + 𝑏)
,

(39)

where 𝑡 = 𝑥2
𝑈(𝑛)

+ 𝑎. Hence, the Bayesian estimator 𝜃BG of 𝜃
under the GE loss function is given by

𝜃BG = (
𝑇

2
)

1/2

[
Γ (𝑛 + 𝑏 + 𝑞/2)

Γ (𝑛 + 𝑏)
]

−1/𝑞

, (40)

where 𝑇 = 𝑋
2

𝑈(𝑛)
+ 𝑎, 𝑎, and 𝑏 are the parameters of prior

distribution with density as (15).
By using (5) and the Bayesian estimator 𝜃BG as (40),𝐶

𝐿,BG
based on the Bayesian estimator 𝜃BG of 𝜃 is given by

𝐶
𝐿,BG = √

𝜋

4 − 𝜋
− √

2

4 − 𝜋

𝐿

𝜃BG

= √
𝜋

4 − 𝜋
− √

2

4 − 𝜋
⋅ 𝐿

⋅ [(
𝑇

2
)

−𝑞/2
Γ (𝑛 + 𝑏 + 𝑞/2)

Γ (𝑛 + 𝑏)
]

1/𝑞

,

(41)
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where 𝑇 = 𝑋
2

𝑈(𝑛)
+ 𝑎, 𝑎, and 𝑏 are the parameters of prior

distribution with density as (15).
We construct a statistical testing procedure to assess

whether the lifetime performance index adheres to the
required level. The one-sided credible confidence interval for
𝐶
𝐿
is obtained using the pivotal quantity 𝑡/𝜃2|

𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
.

By using the pivotal quantity 𝑡/𝜃2|
𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
, given the

specified significance level 𝛼, the level 100(1−𝛼)% one-sided
credible interval for 𝐶

𝐿
can be derived as follows.

Since the pivotal quantity 𝑡/𝜃2|
𝑥
∼

=(𝑥
𝑈(1)
,...,𝑥
𝑈(𝑛)
)
∼ 𝜒
2

2(𝑛+𝑏)
,

and 𝜒2
2(𝑛+𝑏),1−𝛼

function which represents the lower 1 − 𝛼
percentile of 𝜒2

2(𝑛+𝑏)
, then

𝑃(
𝑡

𝜃2
≤ 𝜒
2

2(𝑛+𝑏),1−𝛼
| 𝑥
∼
) = 1 − 𝛼,

where 𝑥
∼
= (𝑥
𝑈(1)
, 𝑥
𝑈(2)
, . . . , 𝑥

𝑈(𝑛)
) ,

⇒ 𝑃(𝐶
𝐿
≥ √

𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BG)

×[
Γ (𝑛 + 𝑏 + 𝑞/2)

Γ (𝑛 + 𝑏)
]

−1/𝑞

(
𝜒
2

2(𝑛+𝑏),1−𝛼

2
)

1/2

| 𝑥
∼
)

= 1 − 𝛼,

(42)

where 𝐶
𝐿
as the definition of (5).

From (42), we obtain that a 100(1 − 𝛼)% one-sided
credible interval for 𝐶

𝐿
is

𝐶
𝐿
≥ √

𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BG)

× [
Γ (𝑛 + 𝑏 + 𝑞/2)

Γ (𝑛 + 𝑏)
]

−1/𝑞

(
𝜒
2

2(𝑛+𝑏),1−𝛼

2
)

1/2

,

(43)

where 𝐶
𝐿,BG is given by (41).

Therefore, the 100(1 − 𝛼)% lower credible interval bound
for 𝐶
𝐿
can be written as

LBBG = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BG)

× [
Γ (𝑛 + 𝑏 + 𝑞/2)

Γ (𝑛 + 𝑏)
]

−1/𝑞

(
𝜒
2

2(𝑛+𝑏),1−𝛼

2
)

1/2

,

(44)

where 𝐶
𝐿,BG is given by (41), 𝛼 is the specified significance

level, and 𝑏 is a parameter of prior distribution with density
as (15).

The managers can use the one-sided credible interval to
determine whether the product performance attains to the
required level. The proposed testing procedure of 𝐶

𝐿
with

𝐶
𝐿,BG can be organized as follows.

Step 1. Determine the lower lifetime limit 𝐿 for products
and the performance index value 𝑐

0
, then the testing null

hypothesis 𝐻
0
: 𝐶
𝐿
≤ 𝑐
0
and the alternative hypothesis

𝐻
1
: 𝐶
𝐿
> 𝑐
0
are constructed.

Step 2. Specify a significance level 𝛼.

Step 3. Given the parameters 𝑎 and 𝑏 of prior distribution,
the parameter 𝑞 of GE loss function, the upper record values
𝑥
∼
= (𝑥
𝑈(1)
, 𝑥
𝑈(2)
, . . . , 𝑥

𝑈(𝑛)
), the lower lifetime limit 𝐿, and the

significance level 𝛼, then we can calculate the 100(1 − 𝛼)%
one-sided credible interval [LBBG,∞) for 𝐶𝐿, where LBBG as
the definition of (44).

Step 4. The decision rule of statistical test is provided as
follows:

(1) if the performance index value 𝑐
0
∉ [LBBG,∞), then

we will reject 𝐻
0
. It is concluded that the lifetime

performance index of products meets the required
level;

(2) if the performance index value 𝑐
0
∈ [LBBG,∞), then

we do not reject 𝐻
0
. It is concluded that the lifetime

performance index of products does not meet the
required level.

6. The Monte Carlo Simulation Algorithm of
Confidence (or Credible) Level

In this section, we will report the results of a simulation
study for confidence (or credible) level (1 − 𝛼) based on a
100(1 − 𝛼)% one-sided confidence (or credible) interval of
the lifetime performance index 𝐶

𝐿
. We considered 𝛼 = 0.05

and then generated samples from the Rayleigh distribution
with p.d.f. as in (2) with respect to the record values.

(i) The Monte Carlo simulation algorithm of confidence
level (1 − 𝛼) for 𝐶

𝐿
under MLE is given in the

following steps.

Step 1. Given 𝑛, 𝑎, 𝑏, 𝐿, and 𝛼, where 𝑎 > 0, 𝑏 > 0.

Step 2. For the values of prior parameters (𝑎, 𝑏), use (15) to
generate 𝜃 from the square-root inverted-gamma distribu-
tion.

Step 3.
(a) The generation of data (𝑍

1
, 𝑍
2
, . . . , 𝑍

𝑛
) is by standard

exponential distribution with parameter 1.
(b) Set𝑌2

1
= 2𝜃
2
𝑍
1
and𝑌2
𝑖
= 2𝜃
2
𝑍
𝑖
+𝑌
2

𝑖−1
, for 𝑖 = 2, . . . , 𝑛.

𝑌
1
= √2𝜃2𝑍

1
, 𝑌

𝑖
= √2𝜃2𝑍

𝑖
+ 𝑌
2

𝑖−1
, for 𝑖 = 2, . . . , 𝑛.

(45)

(𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
) are the upper record values from the

Rayleigh distribution.
(c) The value of LBMLE is calculated by

LBMLE = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,MLE)(

𝜒
2

2𝑛,1−𝛼

2𝑛
)

1/2

,

(46)
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where 𝐶
𝐿,MLE is given by (11) and 𝜒2

2𝑛,1−𝛼
function

which represents the lower 1 − 𝛼 percentile of 𝜒2
2𝑛
.

(d) If 𝐶
𝐿
≥ LBMLE, then count = 1; else count = 0.

Step 4.

(a) Step 3 is repeated 1000 times.
(b) The estimation of confidence level (1 − 𝛼) is (1̂ − 𝛼) =

(total count)/1000.

Step 5.

(a) Repeat Step 2–Step 4 for 100 times, then we can get
the 100 estimations of confidence level as follows:

(1̂ − 𝛼)
1
, (1̂ − 𝛼)

2
, . . . , (1̂ − 𝛼)

100
. (47)

(b) The average empirical confidence level 1 − 𝛼

of (1̂ − 𝛼)
𝑖
, 𝑖 = 1, . . . , 100; that is, 1 − 𝛼 =

(1/100)∑
100

𝑖=1
(1̂ − 𝛼)

𝑖
.

(c) The sample mean square error (SMSE) of
(1̂ − 𝛼)

1
, (1̂ − 𝛼)

2
, . . . , (1̂ − 𝛼)

100
SMSE = (1/100)

× ∑
100

𝑖=1
[(1̂ − 𝛼)

𝑖
− (1 − 𝛼)]

2

.

The results of simulation are summarized in Table 2 based
on 𝐿 = 1.0, the different value of sample size 𝑛, prior
parameter (𝑎, 𝑏) = (2, 5), (6, 1.5), and (2, 2) at 𝛼 = 0.05,
respectively. The scope of SMSE is between 0.00413 and
0.00593.

Step 1. Given 𝑛, 𝑎, 𝑏, 𝐿, and 𝛼, where 𝑎 > 0, 𝑏 > 0.

Step 2. For the values of prior parameters (𝑎, 𝑏), use (15) to
generate 𝜃 from the square-root inverted-gamma distribu-
tion.

Step 3.

(a) The generation of data (𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑛
) is by standard

exponential distribution with parameter 1.
(b) Set𝑌2

1
= 2𝜃
2
𝑍
1
and𝑌2
𝑖
= 2𝜃
2
𝑍
𝑖
+𝑌
2

𝑖−1
, for 𝑖 = 2, . . . , 𝑛.

𝑌
1
= √2𝜃2𝑍

1
, 𝑌

𝑖
= √2𝜃2𝑍

𝑖
+ 𝑌
2

𝑖−1
, for 𝑖 = 2, . . . , 𝑛.

(48)

(𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
) are the upper record values from the

Rayleigh distribution.
(c) The values of LBBS, LBBL, and LBBG are calculated by

(25), (36), and (44), respectively.
(d) If𝐶

𝐿
≥ LB, then count = 1; else count = 0, where LB =

LBBS or LBBL or LBBG.

Step 4.

(a) Step 3 is repeated 1000 times.
(b) The estimation of credible level (1 − 𝛼) is (1̂ − 𝛼) =

(total count)/1000.

Step 5.

(a) Repeat Step 2–Step 4 for 100 times, then we can get
the 100 estimations of credible level as follows:

(1̂ − 𝛼)
1
, (1̂ − 𝛼)

2
, . . . , (1̂ − 𝛼)

100
. (49)

(b) The average empirical credible level 1 − 𝛼 of (1̂ − 𝛼)
𝑖
,

𝑖 = 1, . . . , 100; that is, 1 − 𝛼 = (1/100)∑100
𝑖=1
(1̂ − 𝛼)

𝑖
.

(c) The sample mean square error (SMSE) of
(1̂ − 𝛼)

1
, (1̂ − 𝛼)

2
, . . . , (1̂ − 𝛼)

100
SMSE = (1/100)

× ∑
100

𝑖=1
[(1̂ − 𝛼)

𝑖
− (1 − 𝛼)]

2

.

Based on 𝐿 = 1.0, the different value of sample size
𝑛, prior parameter (𝑎, 𝑏) = {(2, 5), (6, 1.5), (2, 2)}, and 𝛼 =

0.05, the results of simulation are summarized in Tables 3–5
under SE loss function, LINEX loss function with parameter
𝑐 = {−0.5, 0.5, 1.5}, and GE loss function with parameter
𝑞 = {3, 5, 8}, respectively. The following points can be drawn.

(a) All of the SMSEs are small enough and the scope of
SMSE is between 0.00346 and 0.00467.

(b) Fix the size 𝑛, comparison of prior parameter (𝑎, 𝑏) =
(2, 5), (6, 1.5), and (2, 2) as follows:

(i) the values of SMSEwith prior parameter (𝑎, 𝑏) =
(6, 1.5) and (2, 5) are smaller than (𝑎, 𝑏) = (2, 2),
respectively;

(ii) a comparison of prior parameter (𝑎, 𝑏) = (2, 5),
and (2, 2); that is, fix prior parameter 𝑎, if prior
parameter 𝑏 increases, then it can be seen that
the SMSE will decrease.

(c) In Table 4, fix the size 𝑛 and the prior parameter (𝑎, 𝑏),
comparison the parameter of LINEX loss function 𝑐 =
{−0.5, 0.5, 1.5} as follows:
the values of SMSE with prior parameter 𝑐 = 0.5, 1.5,
and−1.5 are the same as the values of SMSE inTable 3.

(d) In Table 5, fix the prior parameter (𝑎, 𝑏), comparison
of GE loss function parameter 𝑞 = {3, 5, 8} as follows:
the values of SMSE with prior parameter 𝑞 = 3, 5, and
8 are the same as the values of SMSE in Table 3.

Hence, these results from simulation studies illustrate that
the performance of our proposed method is acceptable.
Moreover, we suggest that the prior parameter (𝑎, 𝑏) = (6, 1.5)
and (2, 5) is appropriate for the square-root inverted-gamma
distribution.

7. Numerical Example

In this section, we propose the new hypothesis testing
procedures to a real-life data. In the following example,
we discuss a real-life data for 25 ball bearings to illustrate
the use of the new hypothesis testing procedures in the
lifetime performance of ball bearings. The proposed testing
procedures not only can handle nonnormal lifetime data, but
also can handle the upper record values.
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Table 2: Average empirical confidence level (1 − 𝛼) for 𝐶
𝐿
under MLE when 𝛼 = 0.05.

𝑛 𝑎 = 2, 𝑏 = 5 𝑎 = 6, 𝑏 = 1.5 𝑎 = 2, 𝑏 = 2

5 0.93653 (0.00462) 0.93482 (0.00467) 0.93577 (0.00507)
10 0.93643 (0.00449) 0.93581 (0.00413) 0.93450 (0.00593)
15 0.93523 (0.00489) 0.93557 (0.00503) 0.93463 (0.00516)
𝑛 denotes the sample size; the values in parentheses are sample mean square error of (1̂ − 𝛼).

Table 3: Average empirical credible level (1 − 𝛼) for 𝐶
𝐿
under SE loss function when 𝛼 = 0.05.

𝑛 𝑎 = 2, 𝑏 = 5 𝑎 = 6, 𝑏 = 1.5 𝑎 = 2, 𝑏 = 2

5 0.94357 (0.00386) 0.93760 (0.00386) 0.93925 (0.00395)
10 0.94244 (0.00359) 0.93704 (0.00359) 0.93664 (0.00462)
15 0.94096 (0.00346) 0.93619 (0.00426) 0.93635 (0.00467)
𝑛 denotes the sample size; the values in parentheses are sample mean square error of (1̂ − 𝛼).

Table 4: Average empirical credible level (1 − 𝛼) for 𝐶
𝐿
under LINEX loss function when 𝛼 = 0.05.

𝑛 𝑐 𝑎 = 2, 𝑏 = 5 𝑎 = 6, 𝑏 = 1.5 𝑎 = 2, 𝑏 = 2

−0.5 0.94357 (0.00386) 0.93760 (0.00386) 0.93925 (0.00395)
5 0.5 0.94357 (0.00386) 0.93760 (0.00386) 0.93925 (0.00395)

1.5 0.94357 (0.00386) 0.93760 (0.00386) 0.93925 (0.00395)
−0.5 0.94244 (0.00359) 0.93704 (0.00359) 0.93664 (0.00462)

10 0.5 0.94244 (0.00359) 0.93704 (0.00359) 0.93664 (0.00462)
1.5 0.94244 (0.00359) 0.93704 (0.00359) 0.93664 (0.00462)
−0.5 0.94096 (0.00346) 0.93619 (0.00426) 0.93635 (0.00467)

15 0.5 0.94096 (0.00346) 0.93619 (0.00426) 0.93635 (0.00467)
1.5 0.94096 (0.00346) 0.93619 (0.00426) 0.93635 (0.00467)

𝑛 denotes the sample size; the values in parentheses are sample mean square error of (1̂ − 𝛼).

Table 5: Average empirical credible level (1 − 𝛼) for 𝐶
𝐿
under GE loss function when 𝛼 = 0.05.

𝑛 𝑞 𝑎 = 2, 𝑏 = 5 𝑎 = 6, 𝑏 = 1.5 𝑎 = 2, 𝑏 = 2

3 0.94357 (0.00386) 0.93760 (0.00386) 0.93925 (0.00395)
5 5 0.94357 (0.00386) 0.93760 (0.00386) 0.93925 (0.00395)

8 0.94357 (0.00386) 0.93760 (0.00386) 0.93925 (0.00395)
3 0.94244 (0.00359) 0.93704 (0.00359) 0.93664 (0.00462)

10 5 0.94244 (0.00359) 0.93704 (0.00359) 0.93664 (0.00462)
8 0.94244 (0.00359) 0.93704 (0.00359) 0.93664 (0.00462)
3 0.94096 (0.00346) 0.93619 (0.00426) 0.93635 (0.00467)

15 5 0.94096 (0.00346) 0.93619 (0.00426) 0.93635 (0.00467)
8 0.94096 (0.00346) 0.93619 (0.00426) 0.93635 (0.00467)

𝑛 denotes the sample size; the values in parentheses are sample mean square error of (1̂ − 𝛼).

Example. The data is the failure times of 25 ball bearings in
endurance test.The 25 observations are the number ofmillion
revolutions before failure for each of the ball bearings. The
data come from Caroni [27] as follows:

67.80, 67.80, 67.80, 68.64, 33.00, 68.64, 98.64, 128.04, 42.12,
28.92, 45.60, 51.84, 55.56, 173.40, 48.48, 17.88, 93.12, 54.12,
41.52, 51.96, 127.92, 84.12, 105.12, 105.84, and 68.88.

Raqab and Madi [28] and Lee [29] indicated that a one-
parameter Rayleigh distribution is acceptable for these data.
In addition, we also have a way to test the hypothesis that
the failure data come from the Rayleigh distribution. The
testing hypothesis𝐻

0
: 𝑋 comes from a Rayleigh distribution

versus𝐻
1
: 𝑋 does not come from a Rayleigh distribution is

constructed under significance level 𝛼 = 0.05.
From a probability plot of Figure 1 by using the Minitab

Statistical Software, we can conclude the operational lifetimes
data of 25 ball bearings from the Rayleigh distribution which
is the Weibull distribution with the shape 2 (also see Lee et
al. [14]). For informative prior, we use the prior information:
𝐸(𝜃) = 𝜃MLE ≐ 54.834 and Var(𝜃) = 0.2, giving the prior
parameter values as (𝑎 = 6.014, 𝑏 = 1.001).

Here, if only the upper record values have been observed,
these are {𝑥

𝑈(𝑖)
, 𝑖 = 1, . . . , 5(= 𝑛)} = {67.80, 68.64, 98.64,

128.04, 173.40}.
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Figure 1: Probability plot for failure times of 25 ball bearings data.

(1) The proposed testing procedure of 𝐶
𝐿
with 𝐶

𝐿,MLE is
stated as follows.

Step 1. The record values from the above data are (𝑥
𝑈(𝑖)
, 𝑖 =

1, 2, 3, 4, 5) = (67.80, 68.64, 98.64, 128.04, 173.40).

Step 2. The lower specification limit 𝐿 is assumed to be 23.37.
The deal with the product managers’ concerns regarding
lifetime performance and the conforming rate 𝑃

𝑟
of products

is required to exceed 80 percent. Referring to Table 1, 𝐶
𝐿
is

required to exceed 0.90.Thus, the performance index value is
set at 𝑐

0
= 0.90. The testing hypothesis𝐻

0
: 𝐶
𝐿
≤ 0.90 versus

𝐻
1
: 𝐶
𝐿
> 0.90 is constructed.

Step 3. Specify a significance level 𝛼 = 0.05.

Step 4. We can calculate that the 95% lower confidence
interval bound for 𝐶

𝐿
, where

LBMLE = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,MLE)(

𝜒
2

2𝑛,1−𝛼

2𝑛
)

1/2

= √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 1.26251254)(

𝜒
2

10,0.95

10
)

1/2

= 1.03285.

(50)
So, the 95% one-sided confidence interval for 𝐶

𝐿
is

[LBMLE,∞) = [1.03285,∞).

Step 5. Because of the performance index value 𝑐
0
= 0.90 ∉

[LBMLE,∞), we reject the null hypothesis𝐻0 : 𝐶𝐿 ≤ 0.90.

Thus, we can conclude that the lifetime performance
index of data meets the required level.

(2) The proposed testing procedures of 𝐶
𝐿
with 𝐶

𝐿,BS,
𝐶
𝐿,BL, and 𝐶𝐿,BG are stated as follows.

Step 1. The record values from the above data are (𝑥
𝑈(𝑖)
, 𝑖 =

1, 2, 3, 4, 5) = (67.80, 68.64, 98.64, 128.04, 173.40).

Step 2. The lower specification limit 𝐿 is assumed to be 23.37.
The deal with the product managers’ concerns regarding
lifetime performance and the conforming rate 𝑃

𝑟
of products

is required to exceed 80 percent. Referring to Table 1, 𝐶
𝐿
is

required to exceed 0.90.Thus, the performance index value is
set at 𝑐

0
= 0.90. The testing hypothesis𝐻

0
: 𝐶
𝐿
≤ 0.90 versus

𝐻
1
: 𝐶
𝐿
> 0.90 is constructed.

Step 3. Specify a significance level 𝛼 = 0.05, the parameter of
LINEX loss function 𝑐 = 0.5, and the parameter of GE loss
function 𝑞 = 2.

Step 4. We can calculate the 95% lower credible interval
bound for 𝐶

𝐿
, where

LBBS = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BS)

×
Γ (𝑛 + 𝑏 − 1/2)

Γ (𝑛 + 𝑏)
(
𝜒
2

2(𝑛+𝑏),1−𝛼

2
)

1/2

= √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 1.246074685)

×
Γ (5 + 1.001 − 1/2)

Γ (5 + 1.001)
(
𝜒
2

2(5+1.001),0.95

2
)

1/2

= 0.96984.

(51)
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So, the 95% one-sided credible interval for 𝐶
𝐿

is
[LBBS,∞) = [0.96984,∞).

LBBL = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BL)

× [
1

2𝑐
(1 − 𝑒

−𝑐/(𝑛+𝑏+1)
) 𝜒
2

2(𝑛+𝑏),1−𝛼
]

1/2

= √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 1.129561059)

× [
1

2 (0.5)
(1 − 𝑒

−0.5/(5+1.001+1)
) 𝜒
2

2(5+1.001),0.95
]

1/2

= 0.96984.

(52)

So, the 95% one-sided credible interval for 𝐶
𝐿

is
[LBBL,∞) = [0.96984,∞).

LBBG = √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 𝐶
𝐿,BG)

× [
Γ (𝑛 + 𝑏 + 𝑞/2)

Τ (𝑛 + 𝑏)
]

−1/𝑞

(
𝜒
2

2(𝑛+𝑏),1−𝛼

2
)

1/2

= √
𝜋

4 − 𝜋
− (√

𝜋

4 − 𝜋
− 1.200432998)

× [
Γ (5 + 1.001 + 2/2)

Γ (5 + 1.001)
]

−1/2

(
𝜒
2

2(5+1.001),0.95

2
)

1/2

= 0.96984.

(53)

So, the 95% one-sided credible interval for 𝐶
𝐿

is
[LBBG,∞) = [0.96984,∞).

Step 5. Because of the performance index value 𝑐
0
= 0.90 ∉

[LBBS,∞) = [LBBL,∞) = [LBBG,∞), we reject the null
hypothesis𝐻

0
: 𝐶
𝐿
≤ 0.90.

Thus, we can conclude that the lifetime performance index of
data meets the required level. In addition, by using the prior
parameter values (𝑎, 𝑏) = (6, 1.5) based on the simulation
studies, we also obtain that 𝑐

0
= 0.90 ∉ [LBBS,∞) =

[LBBL,∞) = [LBBG,∞) = 0.94033. So, we also reject
the null hypothesis 𝐻

0
: 𝐶
𝐿
≤ 0.90. Hence, the lifetime

performance index of data meets the required level.

8. Conclusions

Montgomery [1] proposed a process capability index 𝐶
𝐿
for

larger-the-better quality characteristic. The assumption of
most process capability is normal distribution, but it is often
invalid. In this paper, we consider that Rayleigh distribution
is the special case of Weibull distribution.

Moreover, in lifetime data testing experiments, the exper-
imenter may not always be in a position to observe the life

times of all the products put to test. In industry and reliability
studies, many products fail under stress, for example, an
electronic component ceases to function in an environment
of too high temperature, and a battery dies under the stress
of time. So, in such experiments, measurement may be made
sequentially and only the record values are observed.

In order to let the process capability, indices can be
effectively used. This study constructs MLE and Bayesian
estimator of 𝐶

𝐿
under assuming the conjugate prior distribu-

tion and SE loss function, LINEX loss function, and GE loss
function based on the upper record values from the Rayleigh
distribution. The Bayesian estimator of 𝐶

𝐿
is then utilized to

develop a credible interval in the condition of known 𝐿.
This study also provides a table of the lifetime perfor-

mance index with its corresponding conforming rate based
on the Rayleigh distribution.That is, the conforming rate and
the corresponding 𝐶

𝐿
can be obtained.

Further, the Bayesian estimator and posterior distribution
of 𝐶
𝐿
are also utilized to construct the testing procedure of

𝐶
𝐿
which is based on a credible interval. If you want to test

whether the products meet the required level, you can utilize
the proposed testing procedure which is easily applied and
an effectively method to test in the condition of known 𝐿.
Numerical example is illustrated to show that the proposed
testing procedure is effectively evaluating whether the true
performance index meets requirements.

In addition, these results from simulation studies illus-
trate that the performance of our proposedmethod is accept-
able. According to SMSE, the Bayesian approach is smaller
than the non-Bayesian approach, we suggest that the Bayesian
approach is better than the non-Bayesian approach.Then, the
SMSEs of prior parameters (𝑎, 𝑏) = (6, 1.5) and (2, 5) are
smaller than the SMSE of prior parameter (𝑎, 𝑏) = (2, 2).
We suggest that the prior parameters (𝑎, 𝑏) = (6, 1.5) and
(2, 5) are appropriate for the square-root inverted-gamma
distribution based on the Bayesian estimators under the
Rayleigh distribution.
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