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Exact and approximate analytical solutions of linear and nonlinear singular two-point boundary value problems (BVPs) are
obtained for the first time by the Legendre operational matrix of differentiation. Different from other numerical techniques, shifted
Legendre polynomials and their properties are employed for deriving a general procedure for forming this matrix. The accuracy of
the technique is demonstrated through several linear and nonlinear test examples.

1. Introduction

In this work, we consider the singular two-point boundary
value problems (BVPs) of the type

1

𝑝 (𝑥)
𝑢


(𝑥) +
1

𝑞 (𝑥)
𝑢


(𝑥) +
1

𝑟 (𝑥)
(𝑢 (𝑥))

𝑛
= 𝑔 (𝑥) ,

0 < 𝑥 ≤ 1,

(1)

subject to the boundary conditions

𝑢 (0) = 𝛼
1
, 𝑢 (1) = 𝛽, (2)

or

𝑢


(0) = 𝛼
2
, 𝑢 (1) = 𝛽, (3)

where 𝑝, 𝑞, 𝑟, and 𝑔 are continuous functions on (0, 1], and
the parameters 𝛼

1
, 𝛼
2
, 𝛽 are real constants.

Problems of form (1) and (2) have been studied in
many areas of science and engineering, for example, fluid
mechanics, quantum mechanics, optimal control, chemical
reactor theory, aerodynamics, reaction-diffusion process,
geophysics, and so forth. Exact/approximate solutions of
these problems are of great importance due to their wide

applications in scientific research. Singular BVPs have been
studied by several authors. Bataineh et al. [1] used the
modified homotopy analysis method (MHAM) to search
for approximate solutions of a certain class of singular
two-point BVPs. Ravi Kanth and Aruna. [2] and Lu [3]
used differential transform method (DTM) and variational
iteration method (VIM), respectively, for solving singular
two-point boundary value problems. Abu-Zaid and Gebeily
[4] provided a finite difference approximation to the solution
of the above problems. Ravi Kanth and Reddy [5] presented a
method based on cubic splines for solving a class of singular
two-point BVPs.The existence of a unique solution of (1) and
(2) was discussed in [4].

Legendre operational matrix of differentiation, first pro-
posed by Saadatmandi and Dehghan [6], is a powerful
method for solving linear and nonlinear problems. They
extended the application of Legendre polynomials to solve
fractional differential equations. Recently, Pandey et al. [7]
employed the Legendre operational matrix of differentiation
to solve Lane-Emden type equations. Most recently, Kazem
et al. [8] constructed a general formulation for the fractional-
order Legendre functions to obtain the solution of fractional-
order differential equations. To the best of the authors’
knowledge, the present work demonstrates for the first time
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the applicability of the method of Legendre operational
matrix of differentiation for obtaining the exact/approximate
solutions of the singular two-point BVPs of the type (1)
and (2). Several examples are studied to demonstrate the
capability of the method.

2. Legendre Polynomials and Operational
Matrix of Differentiation

The𝑚th-order Legendre polynomials, 𝐿
𝑚
(𝑧), on the interval

[−1, 1] are defined as

𝐿
0
(𝑧) = 1,

𝐿
1
(𝑧) = 𝑧,

𝐿
𝑚+1

(𝑧) =
2𝑚 + 1

𝑚 + 1
𝑧 𝐿
𝑚
(𝑧) −

𝑚

𝑚 + 1
𝑧 𝐿
𝑚−1

(𝑧) ,

𝑚 = 1, 2, . . . .

(4)

These polynomials on the interval 𝑧 ∈ [0, 1], so-called
shifted Legendre polynomials, can be defined by introducing
the change of variable 𝑧 = 2𝑥 − 1. The shifted Legendre
polynomials 𝐿

𝑚
(2𝑥 − 1) denoted by 𝑃

𝑚
(𝑥) can be obtained

as

𝑃
𝑚+1

(𝑥) =
(2𝑚 + 1) (2𝑥 − 1)

(𝑚 + 1)
𝑃
𝑚
(𝑥) −

𝑚

𝑚 + 1
𝑃
𝑚−1

(𝑥) ,

𝑚 = 1, 2, . . . ,

(5)

where 𝑃
0
(𝑥) = 1 and 𝑃

1
(𝑥) = 2𝑥 − 1. The analytic form of the

shifted Legendre polynomial 𝑃
𝑚
(𝑥) of degree𝑚 is given by

𝑃
𝑚
(𝑥) =

𝑚

∑

𝑖=1

(−1)
𝑚+𝑖 (𝑚 + 𝑖)!𝑥

𝑖

(𝑚 − 𝑖) (𝑖!)
2
. (6)

Note that 𝑃
𝑚
(0) = (−1)

𝑚 and 𝑃
𝑚
(1) = 1 satisfy the

orthogonality condition

∫

1

0

𝑃
𝑚
(𝑥) 𝑃
𝑗
(𝑥) 𝑑𝑥 =

{

{

{

1

2𝑚 + 1
for 𝑚 = 𝑗,

0 for 𝑚 ̸= 𝑗.

(7)

A function 𝑢(𝑥) square integrable in [0, 1] may be
expressed in terms of shifted Legendre polynomials as

𝑢 (𝑥) =

∞

∑

𝑗=0

𝑐
𝑗
𝑃
𝑗
(𝑥) , (8)

where the coefficients 𝑐
𝑗
are given by

𝑐
𝑗
= (2𝑗 + 1) ∫

1

0

𝑢 (𝑥) 𝑃
𝑗
(𝑥) 𝑑𝑥, 𝑗 = 1, 2 . . . . (9)

In practice, we consider the (𝑚 + 1)-term-shifted Legendre
polynomial so that

𝑢 (𝑥) =

𝑚

∑

𝑗=0

𝑐
𝑗
𝑃
𝑗
(𝑥) = 𝐶

𝑇
𝜙 (𝑥) , (10)

where the shifted Legendre coefficient vector 𝐶 and the
shifted Legendre vector 𝜙(𝑥) are given by

𝐶
𝑇
= [𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑚
] ,

𝜙 (𝑥) = [𝑃
0
(𝑥) , 𝑃

1
(𝑥) , . . . , 𝑃

𝑚
(𝑥)]
𝑇

.

(11)

The derivative of the vector 𝜙(𝑥) can be expressed as

𝑑𝜙 (𝑥)

𝑑𝑥
= 𝐷
1
𝜙 (𝑥) ,

𝑑
2
𝜙 (𝑥)

𝑑𝑥
2
= (𝐷
1
)
2

𝜙 (𝑥) , . . . ,

𝑑
𝑛
𝜙 (𝑥)

𝑑𝑥
𝑛
= (𝐷
1
)
𝑛

𝜙 (𝑥) ,

(12)

where 𝐷1 is the (𝑚 + 1) × (𝑚 + 1) operational matrix of
derivative. A general method of constructing such opera-
tional matrix of derivative could be presented as follows.

(1) Differentiate analytically some polynomials of first
degree,

(2) express these derivatives as a linear combination of
polynomials of lower degree, and

(3) find a general formula.

Now, the general formula of the operational matrix of
derivative𝐷1 is given by

𝐷
1
= (𝑑
𝑖𝑗
) =

{{

{{

{

2 (2𝑗 − 1) , for 𝑗 = 𝑖 − 𝑘, {𝑘 = 1, 3, . . . , 𝑚, if 𝑚 odd,
𝑘 = 1, 3, . . . , 𝑚 − 1, if 𝑚 even,

0 Otherwise.
(13)

For example, for odd𝑚 we have

(
(

(

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0

2 0 0 0 ⋅ ⋅ ⋅ 0 0 0

0 6 0 0 ⋅ ⋅ ⋅ 0 0 0

...
...

...
...

...
...

...
...

2 0 10 0 ⋅ ⋅ ⋅ (2𝑚 − 3) 0 0

0 6 0 14 ⋅ ⋅ ⋅ 0 (2𝑚 − 1) 0

)
)

)

. (14)

3. Applications of the Operational Matrix of
Derivative

To solve (1) and (2) by means of the operational matrix of
derivative method [6], we approximate (𝑢(𝑥))𝑛 and 𝑔(𝑥) by
the shifted Legendre polynomials as

(𝑢 (𝑥))
𝑛
≃ (𝐶
𝑇
𝜙 (𝑥))

𝑛

, (15)

𝑔 (𝑥) ≃ 𝐺
𝑇
𝜙 (𝑥) , (16)
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where the vector 𝐺𝑇 = [𝑔
0
(𝑥), . . . , 𝑔

𝑚
(𝑥)]
𝑇 represents the

nonhomogenous term. By using (12), (15), and (16) we have

𝑢


(𝑥) ≃ 𝐶
𝑇
(𝐷
1
)
2

𝜙 (𝑥) , (17)

𝑢


(𝑥) ≃ 𝐶
𝑇
𝐷
1
𝜙 (𝑥) . (18)

Employing (15)–(18), the residual R(𝑥) for (1) can be
written as

R (𝑥) ≃
1

𝑝 (𝑥)
𝐶
𝑇
(𝐷
1
)
2

𝜙 (𝑥) +
1

𝑞 (𝑥)
𝐶
𝑇
𝐷
1
𝜙 (𝑥)

+
1

𝑟 (𝑥)
(𝐶
𝑇
𝜙 (𝑥))

𝑛

− 𝐺
𝑇
𝜙 (𝑥) .

(19)

Now, finding the solution 𝑢(𝑥) given in (10) can be
divided into two cases: linear and nonlinear.

3.1. Linear Case. For 𝑛 = 1, we generate𝑚−1 linear equations
as in a typical tau method [9] by applying

∫

1

0

R (𝑥) 𝑃
𝑗
(𝑥) 𝑑𝑥 = 0, 𝑗 = 0, 1, . . . , 𝑚 − 2. (20)

Also, by substituting boundary conditions (2) and (3) into (15)
and (18) we have

𝑢 (0) = 𝐶
𝑇
𝜙 (0) = 𝛼

1
, 𝑢 (1) = 𝐶

𝑇
𝜙 (1) = 𝛽, (21)

or

𝑢


(0) = 𝐶
𝑇
𝐷
1
𝜙 (0) = 𝛼

2
, 𝑢 (1) = 𝐶

𝑇
𝜙 (1) = 𝛽, (22)

Equations (20)–(22) generate (𝑚 + 1) set of linear equa-
tions, respectively. These linear equations can be solved for
unknown coefficients of the vector 𝐶. Consequently, 𝑢(𝑥)
given in (15) can be easily calculated.

3.2. Nonlinear Case. For 𝑛 = 2, 3, . . ., we first collocate
(19) at (𝑚 − 1) points. For suitable collocation points, we
use the first (𝑚 − 1) shifted Legendre roots of 𝑃

𝑚+1
(𝑥).

These equations together with (21) or (22) generate (𝑚 +

1) nonlinear equations which can be solved using Newton’s
iterative method. Consequently, 𝑢(𝑥) given in (10) can be
calculated.

To illustrate the effectiveness of the presentedmethod, we
will consider the following examples of singular two-point
BVPs.

Example 1. We first consider the linear singular two-point
BVP [1, 10],

𝑢


(𝑥) +
1

𝑥
𝑢


(𝑥) + 𝑢 (𝑥) = 𝑔 (𝑥) , 0 < 𝑥 ≤ 1, (23)

subject to the boundary conditions of the form (2)

𝑢 (0) = 0, 𝑢 (1) = 0. (24)

The exact solution of (23) subject to (24) in the case of 𝑔(𝑥) =
4 − 9𝑥 + 𝑥

2
− 𝑥
3 is

𝑢 (𝑥) = 𝑥
2
− 𝑥
3
. (25)

To solve (23) and (24) we apply the technique described
in Section 3.1. With𝑚 = 3, we approximate the solution as

𝑢 (𝑥) = 𝑐
0
𝑃
0
(𝑥) + 𝑐

1
𝑃
1
(𝑥)

+ 𝑐
2
𝑃
2
(𝑥) + 𝑐

3
𝑃
3
(𝑥)

= 𝐶
𝑇
𝜙 (𝑥) .

(26)

According to (14), we have

𝐷
1
= (

0 0 0 0

2 0 0 0

0 6 0 0

2 0 10 0

) , (𝐷
1
)
2

= (

0 0 0 0

0 0 0 0

12 0 0 0

0 60 0 0

) .

(27)

Therefore, using (20) we obtain

19

20
+
1

2
𝑐
0
+
13

6
𝑐
1
+ 6𝑐
2
+ 12𝑐
3
= 0,

49

60
+
1

6
𝑐
0
+
1

6
𝑐
1
+
61

15
𝑐
2
+ 10𝑐
3
= 0.

(28)

Now, from (21) we have

𝑐
0
− 𝑐
1
+ 𝑐
2
− 𝑐
3
= 0,

𝑐
0
+ 𝑐
1
+ 𝑐
2
+ 𝑐
3
= 0.

(29)

Solving the linear system (28)-(29) yields

𝑐
0
=
1

12
, 𝑐

1
=
1

20
, 𝑐

3
= −

1

12
, 𝑐

4
= −

1

20
. (30)

Thus,

𝑢 (𝑥) = (
1

12

1

20
−
1

12
−
1

20
)(

1

2𝑥 − 1

6𝑥
2
− 6𝑥 + 1

20𝑥
3
− 30𝑥

2
+ 12𝑥 − 1

)

= 𝑥
2
− 𝑥
3
,

(31)

which is the exact solution (25).

Example 2. Consider the linear singular two-point BVPs [1],

(1 −
𝑥

2
) 𝑢


(𝑥) +
3

2
(
1

𝑥
− 1) 𝑢



(𝑥) + (
𝑥

2
− 1) 𝑢 (𝑥) = 𝑔 (𝑥) ,

0 < 𝑥 ≤ 1,

(32)

subject to the boundary conditions of the form (3)

𝑢


(0) = 0, 𝑢 (1) = 0. (33)
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The exact solution of (32) subject to (33) in the case

𝑔 (𝑥) = 5 −
29𝑥

2
+
13𝑥
2

2
+
3𝑥
3

2
−
𝑥
4

2
, (34)

is

𝑢 (𝑥) = 𝑥
2
− 𝑥
3
. (35)

By the same manipulations as in the previous example
and assuming𝑚 = 3, we have

𝑐
0
=
1

12
, 𝑐
1
=
1

20
, 𝑐
3
= −

1

12
, 𝑐
4
= −

1

20
. (36)

Thus,

𝑢 (𝑥) = (
1

12

1

20
−
1

12
−
1

20
)(

1

2𝑥 − 1

6𝑥
2
− 6𝑥 + 1

20𝑥
3
− 30𝑥

2
+ 12𝑥 − 1

)

= 𝑥
2
− 𝑥
3
,

(37)

which is the exact solution (35).

Example 3. We next consider the linear singular two-point
BVPs [11],

𝑢


(𝑥) +
1

𝑥
𝑢


(𝑥) = 𝑔 (𝑥) , 0 < 𝑥 ≤ 1, (38)

subject to the boundary conditions

𝑢


(0) = 0, 𝑢 (1) = cos 1. (39)

The exact solution of (38) subject to (39) in the case

𝑔 (𝑥) = − cos𝑥 − 1
𝑥

sin𝑥, (40)

is

𝑢 (𝑥) = cos𝑥. (41)

By using the technique described in Section 3.1, with𝑚 =
9 and 𝑚 = 8, the values of the unknown matrix 𝐶𝑇 are
given in Table 1. Figure 1 shows the absolute errors of 𝑢(𝑥) in
the interval 𝑥 ∈ [0, 1] for different values of 𝑚. Obviously,
increasing the number of terms of the Legendre polynomials
has the effect of increasing the solution accuracy.

4. Numerical Experiments

Example 4. Finally, consider the nonlinear singular two-
point BVP [12]

𝑢


(𝑥) +
2

𝑥
𝑢


(𝑥) + (𝑢 (𝑥))
5
= 𝑔 (𝑥) , 0 < 𝑥 < 1 (42)

Ab
so

lu
te

 er
ro

r

10.80.60.40.20

0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

0

𝑥

𝑚 = 9

𝑚 = 8

Figure 1: Absolute errors of 𝑢(𝑥) in the interval 𝑥 ∈ [0, 1] for
different values of𝑚 of Example 3.

Table 1:The values of the unknownmatrix 𝐶𝑇 for𝑚 = 8 and𝑚 = 9
of Example 3.

𝑐
𝑖

𝑚 = 9 𝑚 = 8

𝑐
0

0.8414709848 0.8414709848

𝑐
1

−0.2337732110 −0.233773211

𝑐
2

−0.718349800𝐸 − 1 −0.7183498𝐸 − 1

𝑐
3

0.394000000𝐸 − 2 0.394000000𝐸 − 2

𝑐
4

0.512000000𝐸 − 3 0.512000000𝐸 − 3

𝑐
5

0.0000000000 0.0000000000

𝑐
6

0.0000000000 0.0000000000

𝑐
7

−0.100000000𝐸 − 2 0.100000000𝐸 − 3

𝑐
8

0.0000000000 0.0000000000

𝑐
9

0.0000000000

subject to the boundary conditions

𝑢 (0) = 1, 𝑢 (1) =
√3

2
. (43)

The exact solution of (42) subject to (43) in the case 𝑔(𝑥) = 0
is

𝑢 (𝑥) =
1

√1 + (𝑥
2
/3)

. (44)

We approximate the solution as

𝑢 (𝑥) =

10

∑

𝑗=0

𝑐
𝑗
𝑃
𝑗
(𝑥) = 𝐶

𝑇
𝜙 (𝑥) . (45)

Here,𝐷1 and (𝐷1)2 are as given in (27). Using (19), we have

𝐶
𝑇
(𝐷
1
)
2

𝜙 (𝑥) +
2

𝑥
𝐶
𝑇
𝐷
1
𝜙 (𝑥) + (𝐶

𝑇
𝜙 (𝑥))

5

= 0. (46)

Now, we collocate (46) at the first nine roots of 𝑃
11
(𝑥), that is

𝑥
0
≈ 0.01088567093, 𝑥

1
≈ 0.05646870012, . . . ,

𝑥
8
≈ 0.8650760028.

(47)
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Table 2: The values of the unknown matrix 𝐶𝑇 for𝑚 = 8,𝑚 = 9, and𝑚 = 10 of Example 4.

𝑐
𝑖

𝑚 = 10 𝑚 = 9 𝑚 = 8

𝑐
0

9.514261509𝐸 − 01 9.514261511𝐸 − 01 9.514261551𝐸 − 01

𝑐
1

−6.966876186𝐸 − 02 −6.966876151𝐸 − 02 −6.966879907𝐸 − 02

𝑐
2

−1.857026292𝐸 − 02 −1.857026217𝐸 − 02 −1.857018754𝐸 − 02

𝑐
3

2.743692722𝐸 − 03 2.743693272𝐸 − 03 2.743858911𝐸 − 03

𝑐
4

1.552129543𝐸 − 04 1.552138998𝐸 − 04 1.549045730𝐸 − 04

𝑐
5

−6.327914767𝐸 − 05 −6.327882993𝐸 − 05 −6.349471339𝐸 − 05

𝑐
6

1.707748370𝐸 − 06 1.708463078𝐸 − 06 1.940268030𝐸 − 06

𝑐
7

1.062085947𝐸 − 06 1.061𝐹824274𝐸 − 06 1.136868997𝐸 − 06

𝑐
8

−1.096567492𝐸 − 07 −1.092619480𝐸 − 07 −1.103651304𝐸 − 07

𝑐
9

−1.180570173𝐸 − 08 −1.275316483𝐸 − 08

𝑐
10

2.978752464𝐸 − 09

Ab
so

lu
te

 er
ro

r

10.80.60.40.20
𝑥

3𝑒−007

2.5𝑒−007

2𝑒−007

1.5𝑒−007

1𝑒−007

5𝑒−008

0

𝑚 = 7

𝑚 = 8

𝑚 = 9

𝑚 = 10

Figure 2: Absolute errors of 𝑢(𝑥) in the interval 𝑥 ∈ [0, 1] for
different values of𝑚 of Example 4.

Also (21) gives

𝐶
𝑇
𝜙 (0) = 𝑐

0
− 𝑐
1
+ 𝑐
2
− 𝑐
3
+ 𝑐
4
− 𝑐
5

+ 𝑐
6
− 𝑐
7
+ 𝑐
8
− 𝑐
9
+ 𝑐
10
= 1,

𝐶
𝑇
𝜙 (1) = 𝑐

0
+ 𝑐
1
+ 𝑐
2
+ 𝑐
3
+ 𝑐
4
+ 𝑐
5

+ 𝑐
6
+ 𝑐
7
+ 𝑐
8
+ 𝑐
9
+ 𝑐
10
=
√3

2
.

(48)

Equations (46) and (48) generate 11 nonlinear equations
which can be solved using Newton’s iterative method. The
values of the unknown matrix 𝐶𝑇 for 𝑚 = 8, 𝑚 = 9, and
𝑚 = 10 are given in Table 2. Figure 2 shows the absolute
errors of 𝑢(𝑥) in the interval 𝑥 ∈ [0, 1] for different values
of𝑚.

5. Conclusions

In this paper, the Legendre operational matrix of derivative
was applied to solve a class of linear and nonlinear singular
two-point BVPs. Different from other numerical techniques,

only a small size operational matrix is required to provide the
solution at high accuracy. It can be clearly seen in the paper
that the proposed method is working well even with a few
number of terms of the Legendre polynomials.
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