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The explicit finite-difference method for solving variable order fractional space-time wave equation with a nonlinear source term
is considered.The concept of variable order fractional derivative is considered in the sense of Caputo.The stability analysis and the
truncation error of the method are discussed. To demonstrate the effectiveness of the method, some numerical test examples are
presented.

1. Introduction

It is well known that the fractional calculus definitions are
extensions of the usual calculus definitions [1–8], where the
orders need not to be positive integers. On the other hand, the
variable order calculus is a natural extension of the constant
order (integer or fractional) calculus. In this sense, the order
may function in any variable such as time and space variables
or a system of other variables [9, 10]. In general, one can say
that this extension is introduced by Samko and Ross in [11],
whereMarchaud fractional derivative andRiemann-Liouville
derivative are extended to the variable order cases the order
in this case is a function in the space variable only. Many
authors have introduceddifferent definitions of variable order
differential operators, each of these with a specific meaning
to suit desired goals. These definitions such as Riemann-
Liouville, Grünwald, Caputo, Riesz [3, 12–16], and some notes
as Coimbra definition [17, 18].

Coimbra in [17] used Laplace transform of Caputo’s
definition of the fractional derivative as the starting point to
suggest a novel definition for the variable order differential
operator. Because of its meaningful physical interpretation,
Coimbra’s definition is better suited for modeling physical
problems. The variable order differentials are an important
tool to study some systems such as the control of nonlinear
viscoelasticity oscillator (for more details see [17–19] and

the references cited therein), where the order changes with
respect to a parameter or more parameters.

In the following, we present the basic definition for the
variable order fractional derivatives which we will use in this
paper.

Definition 1 (see [14]). The Caputo space variable order
derivative is defined as follows:

𝐷
∝(𝑥,𝑡)

𝑥
𝑢 (𝑥, 𝑡) =

1

Γ (𝑛 − ∝ (𝑥, 𝑡))

× ∫

𝑥

0

1

(𝑥 − 𝜉)
∝(𝑥,𝑡)−𝑛+1

𝜕
𝑛

𝑢 (𝜉, 𝑡)

𝜕𝜉𝑛
𝑑𝜉,

(1)

where 0 <∝ (𝑥, 𝑡) < 1.

The main aim of this work is to use the explicit finite dif-
ference method (EFDM) to study numerically the following
nonlinear space-time variable order wave equation:

𝜕
𝛽(𝑥,𝑡)

𝑢 (𝑥, 𝜏)

𝜕𝜏𝛽(𝑥,𝑡)
= 𝐵 (𝑥, 𝑡)

𝜕
∝(𝑥,𝑡)

𝑢 (𝑥, 𝜏)

𝜕𝑥∝(𝑥,𝑡)
+ 𝑓 (𝑢, 𝑥, 𝑡) ,

1 <∝ (𝑥, 𝑡) , 𝛽 (𝑥, 𝑡) ≤ 2,

(2)

subject to initial conditions
𝑢 (𝑥, 0) = 𝜑

1
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝜑

2
(𝑥) , (3)
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and the following boundary conditions

𝑢 (0, 𝑡) = Ψ
1
(𝑥) , 𝑢 (𝑎, 𝑡) = Ψ

2
(𝑥) , (4)

where 0 ≤ 𝑥 < 𝑎, 0 ≤ 𝑡 < 𝑇, 𝐵(𝑥, 𝑡) > 0 is a constant,
Ψ
1
(𝑥), Ψ

2
(𝑥) are smooth functions, and 𝑓(𝑢, 𝑥, 𝑡) is a non-

linear scour term that satisfies the Lipschitz condition, that
is,

󵄨󵄨󵄨󵄨𝑓 (𝑢
1
, 𝑥, 𝑡) − 𝑓 (𝑢

2
, 𝑥, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐿
󵄨󵄨󵄨󵄨𝑢1 − 𝑢

2

󵄨󵄨󵄨󵄨 , (5)

where the constant 𝐿 > 0 is called a Lipschitz constant for 𝑓.

2. Discretization for EFDM

In this section, EFDM is used to study the model problem
(2), then the space-time solutions domain will be discretized.
The discrete form for the pervious Caputo derivative can be
written as follows:

𝐷
∝(𝑥,𝑡)

𝑥
𝑢 (𝑥, 𝑡)

=
1

Γ (2 − ∝ (𝑥, 𝑡))

× ∫

𝑥

0

1

(𝑥 − 𝜉)
∝(𝑥,𝑡)−2+1

𝜕
2

𝑢 (𝜉, 𝑡)

𝜕𝜉2
𝑑𝜉

=
1

Γ (2 − ∝ (𝑥, 𝑡))

𝑖−1

∑

𝑘=0

∫

(𝑘+1)ℎ

𝑘ℎ

𝑧
1−∝(𝑥,𝑡)

×
𝜕
2

𝑢 (𝑥 − 𝑧, 𝜏)

𝜕𝑧2
𝑑𝑧, 𝑧 = 𝑥 − 𝜉

≈
1

Γ (2 − ∝ (𝑥, 𝑡))

×

𝑖−1

∑

𝑘=0

( (𝑢 (𝑥 − (𝑘 − 1) ℎ, 𝑡) − 2𝑢 (𝑥 − 𝑘ℎ, 𝑡)

+𝑢 (𝑥 − (𝑘 + 1) ℎ, 𝑡)) (ℎ
2

)
−1

)

× ∫

(𝑘+1)ℎ

𝑘ℎ

𝑧
1−∝

𝑑𝑧.

(6)

Then,

𝐷
∝(𝑥,𝑡)

𝑥
𝑢 (𝑥, 𝑡)

≈
ℎ
2−∝(𝑥,𝑡)

Γ (3 − ∝ (𝑥, 𝑡))

×

𝑖−1

∑

𝑘=0

( (𝑢 (𝑥 − (𝑘 − 1) ℎ, 𝑡) − 2𝑢 (𝑥 − 𝑘ℎ, 𝑡)

+𝑢 (𝑥 − (𝑘 + 1) ℎ, 𝑡)) (ℎ
2

)
−1

)

× ((𝑘 + 1)
2−∝(𝑥,𝑡)

− 𝑘
2−∝(𝑥,𝑡)

) .

(7)

Now, pick two positive integers𝑁, 𝑀 and define the step size
of space and time by ℎ, 𝜏, respectively, where ℎ = 𝑎/𝑀 and
𝜏 = 𝑇/𝑁. Also we introduce the following notations:

𝑥
𝑖
= 𝑖ℎ, for 𝑖 = 1, 2, . . . , 𝑁,

𝑡
𝑗
= 𝑗𝜏, for 𝑗 = 1, . . . ,𝑀,

(8)

𝑢
𝑗

𝑖
≈ 𝑢(𝑥

𝑖
, 𝑡
𝑗
), 𝐵
𝑗

𝑖
= 𝐵(𝑥

𝑖
, 𝑡
𝑗
), and 𝑓

𝑗

𝑖
= 𝑓(𝑢

𝑗

𝑖
, 𝑥
𝑖
, 𝑡
𝑗
). Then,

𝐷
∝(𝑥,𝑡)

𝑥
𝑢 (𝑥, 𝑡)

=
ℎ
−𝛼
𝑗

𝑖

Γ (3 − 𝛼
𝑗

𝑖
)

𝑖−1

∑

𝑘=0

(𝑢
𝑗

𝑖−𝑘+1
− 2𝑢
𝑗

𝑖−𝑘
+ 𝑢
𝑗

𝑖−𝑘−1
)

× ((𝑘 + 1)
2 −𝛼
𝑗

𝑖 − 𝑘
2 −𝛼
𝑗

𝑖 ) .

(9)

By the same way, we have

𝐷
𝛽(𝑥,𝑡)

𝑡
𝑢 (𝑥, 𝑡)

=
𝜏
−𝛽
𝑗

𝑖

Γ (3 − 𝛽
𝑗

𝑖
)

𝑗−1

∑

𝑘=0

(𝑢
𝑗−𝑘+1

𝑖
− 2𝑢
𝑗−𝑘

𝑖
+ 𝑢
𝑗−𝑘−1

𝑖
)

× ((𝑘 + 1)
2 −𝛽
𝑗

𝑖 − 𝑘
2 −𝛽
𝑗

𝑖 ) .

(10)

For simplicity, let us define

𝑅
𝑗

𝑖
=

𝐵
𝑗

𝑖
ℎ
−∝
𝑗

𝑖

Γ (3 − ∝
𝑗

𝑖
)

, 𝑄
𝑗

𝑖
=

Γ (3 − 𝛽
𝑗

𝑖
)

𝜏
−𝛽
𝑗

𝑖

,

𝐺
𝑗

𝑘
= ((𝑘 + 1)

2−∝
𝑗

𝑖 − 𝑘
2−∝
𝑗

𝑖 ) ,

𝐻
𝑘

𝑖
= ((𝑘 + 1)

2−𝛽
𝑗

𝑖 − 𝑘
2−𝛽
𝑗

𝑖 ) .

(11)

Then, we can rewrite (2) in the following form:
𝑗−1

∑

𝑘=0

(𝑢
𝑗−𝑘+1

𝑖
− 2𝑢
𝑗−𝑘

𝑖
+ 𝑢
𝑗−𝑘−1

𝑖
)𝐻
𝑘

𝑖

≈ 𝑄
𝑗

𝑖
𝑅
𝑗

𝑖

𝑖−1

∑

𝑘=0

(𝑢
𝑗

𝑖−𝑘+1
− 2𝑢
𝑗

𝑖−𝑘
+ 𝑢
𝑗

𝑖−𝑘−1
)𝐺
𝑗

𝑘
+ 𝑄
𝑗

𝑖
𝑓
𝑗

𝑖
,

(12)

that is,

𝑢
𝑗+1

𝑖
= 2𝑢

𝑗

𝑖
− 𝑢
𝑗−1

𝑖

−

𝑗−1

∑

𝑘=1

(𝑢
𝑗−𝑘+1

𝑖
− 2𝑢
𝑗−𝑘

𝑖
+ 𝑢
𝑗−𝑘−1

𝑖
)𝐻
𝑘

𝑖

+ 𝑄
𝑗

𝑖
𝑅
𝑗

𝑖

𝑖−1

∑

𝑘=0

(𝑢
𝑗

𝑖−𝑘+1
− 2𝑢
𝑗

𝑖−𝑘
+ 𝑢
𝑗

𝑖−𝑘−1
)𝐺
𝑗

𝑘
+ 𝑄
𝑗

𝑖
𝑓
𝑗

𝑖
,

𝑢
𝑗+1

𝑖
= (2 − 𝐻

1

𝑖
) 𝑢
𝑗

𝑖

−

𝑀−2

∑

𝑘=2

(𝐻
𝑘−2

𝑖
− 2𝐻
𝑘−1

𝑖
+ 𝐻
𝑘

𝑖
) 𝑢
𝑗−𝑘+1

𝑖

− (𝐻
𝑗−2

𝑖
− 2𝐻
𝑗−1

𝑖
) 𝑢
1

𝑖
− 𝐻
𝑗−1

𝑖
𝑢
0

𝑖

+ 𝑄
𝑗

𝑖
𝑅
𝑗

𝑖

𝑖−1

∑

𝑘=0

(𝑢
𝑗

𝑖−𝑘+1
− 2𝑢
𝑗

𝑖−𝑘
+ 𝑢
𝑗

𝑖−𝑘−1
)𝐺
𝑗

𝑘
+ 𝑄
𝑗

𝑖
𝑓
𝑗

𝑖
.

(13)
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The previous equation can be expressed in the following
matrix form:

𝑈
0

𝑖
= 0
1
, 𝑈

1

𝑖
= 𝑈
0

𝑖
+ 𝜏0
2
, (14)

and for 𝑗 ≥ 2

𝑈
𝑗+1

𝑖
= 𝐴
𝑗

𝑈
𝑗

𝑖

−

𝑀−2

∑

𝑘=2

(𝐻
𝑘−2

𝑖
− 2𝐻
𝑘−1

𝑖
+ 𝐻
𝑘

𝑖
)𝑈
𝑗−𝑘+1

𝑖

− (𝐻
𝑗−2

𝑖
− 2𝐻
𝑗−1

𝑖
)𝑈
1

𝑖
− 𝐻
𝑗−1

𝑖
𝑈
0

𝑖
+ 𝐹
𝑗

,

(15)

where 𝐹𝑗 = (𝑄
𝑗

𝑖
𝑓(𝑢
𝑗

𝑚−1
, 𝑥
𝑚−1

, 𝑡
𝑗
), . . . , 𝑄

𝑗

𝑖
𝑓(𝑢
𝑗

1
, 𝑥
1
, 𝑡
𝑗
))
𝑇

, 𝑈𝑗 =

(𝑢
𝑗

𝑀−1
, 𝑢
𝑗

𝑀−2
, . . . , 𝑢

𝑗

1
)
𝑇

,

0
1
= (𝜑
1
(𝑥
1
) , 𝜑
1
(𝑥
2
) , . . . , 𝜑

1
(𝑥
𝑁
))
𝑇

,

0
2
= (𝜑
2
(𝑥
1
) , 𝜑
2
(𝑥
2
) , . . . , 𝜑

2
(𝑥
𝑁
))
𝑇

,

(16)

and 𝐴
𝑗

= (𝑎
𝑗

𝑛𝑚
) is a matrix with the following coefficients:

𝑎
𝑗

𝑛𝑚
=

{{{{{{{{{

{{{{{{{{{

{

𝑄
𝑗

𝑛
𝑅
𝑗

𝑛
𝐺
𝑗

𝑛−1
, where 𝑚 = 1,

𝑄
𝑗

𝑛
𝑅
𝑗

𝑛
(𝐺
𝑗

𝑛−𝑚
− 2𝐺
𝑗

𝑛−𝑚+1
+ 𝜃𝐺
𝑗

𝑛−𝑚+2
) , where 𝑚 ≤ 𝑛,

2 − 𝐻
𝑗

𝑛
+ 𝑄
𝑗

𝑛
𝑅
𝑗

𝑛
(𝜃𝐺
𝑗

1
− 2𝐺

𝑗

0
) , where 𝑚 = 𝑛 + 1,

𝑄
𝑗

𝑛
𝑅
𝑗

𝑛
𝐺
𝑗

0
, where 𝑚 = 𝑛 + 2,

0, where 𝑚 > 𝑛 + 2,

𝜃 = {
0, where 𝑚 = 2,

1, otherwise,
(17)

for 𝑛 = 1, 2, . . . , 𝐾 − 1, and𝑚 = 1, 2, . . . , 𝐾 − 1. Also, we note
that

‖𝐴‖
∞

= max
1≤𝑛≤𝐾

𝐾

∑

𝑚=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑚
󵄨󵄨󵄨󵄨 = max
1≤𝑛≤𝐾

{2 − 𝐻
𝑛

𝑖
} = 2 − 𝐻

0

𝑖
, (18)

then ‖𝐴‖
∞

= 1.

Lemma 2. The coefficients 𝐺
𝑗

𝑘
and 𝐻

𝑘

𝑖
satisfy the following

conditions:
(1) 𝐺𝑗
0

= 1, 𝑎𝑛𝑑 𝐻
0

𝑖
= 1,

(2) 𝐺𝑗
𝑘
> 𝐺
𝑗

𝑘+1
, 𝑎𝑛𝑑 𝐻

𝑘

𝑖
> 𝐻
𝑘+1

𝑖
, for 𝑘 = 0, 1, . . .

3. The Stability Analysis and
the Truncation Error

Let us consider 𝑊𝑗+1 and 𝑈
𝑗+1 to be two different numerical

solutions of (15) with initial values given by 𝑊
0 and 𝑈

0,
respectively.

Theorem 3. The explicit method approximation defined by
(15) to the variable order space-time wave equation (2) is
unconditionally stable, that is,

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑗+1

− 𝑈
𝑗+1

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑊
0

− 𝑈
0
󵄨󵄨󵄨󵄨󵄨
, for any 𝑗. (19)

Proof. Let us define𝑊𝑗+1 − 𝑈
𝑗+1

= 𝜀
𝑗+1.

From (15) we have

𝜀
𝑗+1

𝑖
= 𝐴
𝑗

𝜀
𝑗

𝑖

−

𝑀−2

∑

𝑘=2

(𝐻
𝑘−2

𝑖
− 2𝐻
𝑘−1

𝑖
+ 𝐻
𝑘

𝑖
) 𝜀
𝑗−𝑘+1

𝑖

− (𝐻
𝑗−2

𝑖
− 2𝐻
𝑗−1

𝑖
) 𝜀
1

𝑖
− 𝐻
𝑗−1

𝑖
𝜀
0

𝑖
+ 𝐹
𝑗

𝜀
,

(20)

where

𝐹
𝑗

𝜀
= (𝑄

𝑗

𝑚−1
𝑓 (𝑢
𝑗

𝑚−1
, 𝑥
𝑚−1

, 𝑡
𝑗
)

− 𝑄
𝑗

𝑚−1
𝑓 (𝑤
𝑗

𝑚−1
, 𝑥
𝑚−1

, 𝑡
𝑗
) , . . . , 𝑄

𝑗

1
𝑓 (𝑢
𝑗

1
, 𝑥
1
, 𝑡
𝑗
)

− 𝑄
𝑗

1
𝑓 (𝑤
𝑗

1
, 𝑥
1
, 𝑡
𝑗
))
𝑇

≤ (𝑄
𝑗

𝑚−1
𝐿
𝑗

𝑚−1
𝜀
𝑗

𝑚−1
, . . . , 𝑄

𝑗

1
𝐿
𝑗

1
𝜀
𝑗

1
)
𝑇

= Δ𝐹
𝑗

𝜀
𝑗

,

(21)

and Δ𝐹
𝑗

= diag (𝑄𝑗
𝑚−1

𝐿
𝑗

𝑚−1
, . . . , 𝑄

𝑗

1
𝐿
𝑗

1
)
𝑇

.
Noting that |𝐿𝑗

𝑖
| ≤ 𝐿, for any 𝑖, 𝑗.

Let 𝑄 = max{𝑄𝑗
𝑚−1

, . . . , 𝑄
𝑗

1
}. From (20), we have

‖𝐴
𝑗

+ Δ𝐹
𝑗

‖
𝑚

≤ (2 + 𝑄𝐿), then
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑗+1

𝑖

󵄩󵄩󵄩󵄩󵄩∞
≤

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗

+ Δ𝐹
𝑗
󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜀
𝑗

𝑖

󵄩󵄩󵄩󵄩󵄩∞

+

𝑀−2

∑

𝑘=2

(𝐻
𝑘−2

𝑖
− 2𝐻
𝑘−1

𝑖
+ 𝐻
𝑘

𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜀
𝑗−𝑘+1

𝑖

󵄩󵄩󵄩󵄩󵄩󵄩∞

+ (𝐻
𝑗−2

𝑖
− 2𝐻
𝑗−1

𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝜀
1

𝑖

󵄩󵄩󵄩󵄩󵄩∞
+ 𝐻
𝑗−1

𝑖

󵄩󵄩󵄩󵄩󵄩
𝜀
0

𝑖

󵄩󵄩󵄩󵄩󵄩∞
.

(22)

Now,we analyze the stability viamathematical induction [10].
From (14) we have ‖𝜀1

𝑖
‖
∞

≤ 𝐶‖𝜀
0

𝑖
‖
∞
, where 𝐶 is a constant.

Now, assume that ‖𝜀𝑗
𝑖
‖
∞

≤ 𝐶‖𝜀
0

𝑖
‖
∞
, then from (22), we

have
󵄩󵄩󵄩󵄩󵄩
𝜀
𝑗+1

𝑖

󵄩󵄩󵄩󵄩󵄩∞
≤ 𝐶 (2 + 𝑄𝐿)

󵄩󵄩󵄩󵄩󵄩
𝜀
0

𝑖

󵄩󵄩󵄩󵄩󵄩∞

+

𝑀−2

∑

𝑘=2

(𝐻
𝑘−2

𝑖
− 2𝐻
𝑘−1

𝑖
+ 𝐻
𝑘

𝑖
) 𝐶

󵄩󵄩󵄩󵄩󵄩
𝜀
0

𝑖

󵄩󵄩󵄩󵄩󵄩∞

+ 𝐶 (𝐻
𝑗−2

𝑖
− 2𝐻
𝑗−1

𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝜀
0

𝑖

󵄩󵄩󵄩󵄩󵄩∞

+ 𝐻
𝑗−1

𝑖

󵄩󵄩󵄩󵄩󵄩
𝜀
0

𝑖

󵄩󵄩󵄩󵄩󵄩∞
≤ 𝐶
1

󵄩󵄩󵄩󵄩󵄩
𝜀
0

𝑖

󵄩󵄩󵄩󵄩󵄩∞
.

(23)

Then, the theorem holds.

Lemma 4. Let

0
𝐷
∝(𝑥𝑖 ,𝑡𝑗)

𝑥
𝑢 (𝑥
𝑖
, 𝑡
𝑗
) =

ℎ
−∝(𝑥𝑖 ,𝑡𝑗)

Γ (3 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

×

𝑗−1

∑

𝑘=0

𝐺
𝑗

𝑖
(𝑢
𝑗

𝑖−𝑘+1
− 2𝑢
𝑗

𝑖−𝑘
+ 𝑢
𝑗

𝑖−𝑘+1
)

(24)

be a smooth function; then
󵄨󵄨󵄨󵄨󵄨󵄨
𝐷
∝(𝑥𝑖 ,𝑡𝑗)

𝑥
𝑢 (𝑥
𝑖
, 𝑡
𝑗
) − 𝐷

∝(𝑥𝑖 ,𝑡𝑗)

𝑥
𝑢 (𝑥
𝑖
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑂 (ℎ) . (25)
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Proof. In terms of standard centered difference formula, we
have

0
𝐷
∝(𝑥𝑖 ,𝑡𝑗)

𝑥
𝑢 (𝑥
𝑖
, 𝑡
𝑗
)

=
ℎ
2−∝(𝑥𝑖 ,𝑡𝑗)

Γ (3 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

×

𝑘−1

∑

𝑗=0

𝐺
𝑗

𝑖
[
𝜕
2

𝑢 (𝑥 − 𝑗ℎ, 𝑡)

𝜕𝑧2
+ 𝑂 (ℎ

2

)]

=
ℎ
2−∝(𝑥𝑖 ,𝑡𝑗)

Γ (3 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

×

𝑘−1

∑

𝑗=0

𝐺
𝑗

𝑖

𝜕
2

𝑢 (𝑥 − 𝑗ℎ, 𝑡)

𝜕𝑧2

+
ℎ
2−∝(𝑥𝑖 ,𝑡𝑗)𝑘

2−∝(𝑥𝑖 ,𝑡𝑗)

Γ (3 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

𝑂 (ℎ
2

)

=
ℎ
2−∝(𝑥𝑖 ,𝑡𝑗)

Γ (3 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

×

𝑘−1

∑

𝑗=0

𝐺
𝑗

𝑖

𝜕
2

𝑢 (𝑥 − 𝑗ℎ, 𝑡)

𝜕𝑧2

+
𝑥
2−∝(𝑥𝑖 ,𝑡𝑗)

Γ (3 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

𝑂 (ℎ
2

)

=
ℎ
2−∝(𝑥𝑖 ,𝑡𝑗)

Γ (3 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

×

𝑘−1

∑

𝑗=0

𝐺
𝑗

𝑖

𝜕
2

𝑢 (𝑥 − 𝑗ℎ, 𝑡)

𝜕𝑧2
+ 𝑂 (ℎ

2

) .

(26)

By the integral mean value theorem, we have

0
𝐷
∝(𝑥𝑖 ,𝑡𝑗)

𝑥
𝑢 (𝑥
𝑖
, 𝑡
𝑗
) =

1

Γ (2 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

×

𝑘−1

∑

𝑗=0

∫

(𝑗+1)ℎ

𝑗ℎ

𝑧
1−∝(𝑥𝑖 ,𝑡𝑗)

𝜕
2

𝑢 (𝑥 − 𝑧, 𝑡)

𝜕𝑧2
𝑑𝑧

=
ℎ
2−∝(𝑥𝑖 ,𝑡𝑗)

Γ (3 − ∝ (𝑥
𝑖
, 𝑡
𝑗
))

,

(27)

where 𝜉
𝑗
∈ [𝑗ℎ, (𝑗+1)ℎ]. Combining the pervious two formu-

lae, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝐷
∝(𝑥𝑖 ,𝑡𝑗)

𝑥
𝑢 (𝑥
𝑖
, 𝑡
𝑗
) − 𝐷

∝(𝑥𝑖 ,𝑡𝑗)

𝑥
𝑢 (𝑥
𝑖
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
2−𝛼(𝑥𝑖 ,𝑡𝑗)

Γ (3 − 𝛼 (𝑥
𝑖
, 𝑡
𝑗
))

×

𝑘−1

∑

𝑗=0

𝐺
𝑗

𝑖
[
𝜕
2

𝑢 (𝑥 − 𝑗ℎ, 𝑡)

𝜕𝑧2
−

𝜕
2

𝑢 (𝑥 − 𝜉
𝑗
, 𝑡)

𝜕𝑧2
]

+𝑂 (ℎ
2

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
2−𝛼(𝑥𝑖 ,𝑡𝑗)

Γ (3 − 𝛼 (𝑥
𝑖
, 𝑡
𝑗
))

𝑘−1

∑

𝑗=0

𝐺
𝑗

𝑖
⋅ 𝑂 (ℎ) + 𝑂 (ℎ

2

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
2−𝛼(𝑥𝑖 ,𝑡𝑗)𝑘

2−𝛼(𝑥𝑖 ,𝑡𝑗)

Γ (3 − 𝛼 (𝑥
𝑖
, 𝑡
𝑗
))

⋅ 𝑂 (ℎ) + 𝑂 (ℎ
2

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂 (ℎ) + 𝑂 (ℎ
2

) = 𝑂 (ℎ) .

(28)

Now, by using Lemma 4, we can derive the truncation error of
explicit finite difference scheme (14). It has a local truncation
error of 𝑂(𝜏) (from the left side) and 𝑂(ℎ) (from the right
side).

Remark 5. The pervious explicit method was shown to be
stable. This method is consistent with a local truncation
error which is 𝑂(𝜏) + 𝑂(ℎ). Therefore, according to the Lax
EquivalenceTheorem [2], it converges at this rate.

4. Numerical Examples

Example 1. Consider the following variable-order linear frac-
tional wave equation:

𝜕
𝛽(𝑥,𝑡)

𝑢 (𝑥, 𝑡)

𝜕𝜏𝛽(𝑥,𝑡)
= − 0.5 cos(∝ (𝑥, 𝑡) 𝜋

2
)

×
𝜕
∝(𝑥,𝑡)

𝑢 (𝑥, 𝑡)

𝜕𝑥∝(𝑥,𝑡)
+ 𝑓 (𝑢, 𝑥, 𝑡) ,

(29)
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with ∝ (𝑥, 𝑡) = 1.5 + 0.5𝑒
−(𝑥𝑡)
2
−1, 𝛽(𝑥, 𝑡) = 1.5 +

0.25 cos(𝑥) sin(2𝑡), and

𝑓 (𝑢, 𝑥, 𝑡) =
2𝑢

𝑡2 + 1
− (𝑡
2

+ 1)

× (
16𝑥
2−∝(𝑥,𝑡)

Γ (3 − ∝ (𝑥, 𝑡))
+

6𝑥
3−∝(𝑥,𝑡)

Γ (4 − ∝ (𝑥, 𝑡))
) ,

(30)

subjected to the following initial conditions:

𝑢 (𝑥, 0) = 𝜑 (𝑥) = 𝑥
2

(8 − 𝑥) ,

𝑢
𝑡
(𝑥, 0) = Ψ (𝑥) = 0,

(31)

where𝑋
𝑎
= 0,𝑋

𝑏
= 8, and 𝑇 = 1.

The exact solution of this problemwhen 𝛽 = 2 is 𝑢(𝑥, 𝑡) =
𝑥
2

(8 − 𝑥)(𝑡
2

+ 1).
In Figure 1, a comparison between the numerical and the

exact solutions when 𝛽 = 2 at 𝑡 = 0.416 is presented.
In Figures 2(a) and 2(b), we report the approximate

solutions at 𝑡 = 0.052 and 𝑡 = 0.78, respectively.
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In Figures 3, 4, and 5, respectively, we report the approx-
imate solutions in three dimensions, where the axis’s are
(𝑡, 𝑥, 𝑢), (alfa, 𝑥, 𝑢), and (beta, 𝑥, 𝑢), respectively.
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Example 2. Consider the following variable-order nonlinear
fractional wave equation:

𝜕
𝛽(𝑥,𝑡)

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛽(𝑥,𝑡)
= 2 cos 𝑡 𝜕

∝(𝑥,𝑡)

𝑢 (𝑥, 𝑡)

𝜕𝑥∝(𝑥,𝑡)
+ 𝑓 (𝑢, 𝑥, 𝑡) , (32)

with∝ (𝑥, 𝑡) = 2 − cos2(𝑥)sin2(𝑡), 𝛽(𝑥, 𝑡) = 1.8 + 0.5𝑒
−(𝑥𝑡)
2
−1

and 𝑢(𝑥, 0) = 𝜑(𝑥) = 1 + sin𝑥, 𝑢
𝑡
(𝑥, 0) = Ψ(𝑥) = 0, where

0 ≤ 𝑥 ≤ 10, 𝑇 = 1, and 𝑓(𝑢, 𝑥, 𝑡) = 𝑢
2

− sin2(𝑥) − cos2(𝑡).
This problem has the following exact solution, when

∝= 2

𝑢 (𝑥, 𝑡) = sin𝑥 + cos 𝑡. (33)

In Figure 6(a), we report the numerical solution when∝

(𝑥, 𝑡), 𝛽(𝑥, 𝑡) are variables at 𝑡 = 0.52 and the exact solutions
when∝= 𝛽 = 2.

In Figures 6(b) and 6(c), we report the approximate
solution at 𝑡 = 0.052 and 𝑡 = 0.78, respectively.
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Figures 7, 8, and 9 show the approximate solution in
three dimensions, where the axes are (𝑡, 𝑥, 𝑢), (alfa, 𝑥, 𝑢) and
(beta, 𝑥, 𝑢), respectively.
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5. Conclusions

In this paper, numerical studies using a simple explicit FDM
for solving the variable order space-time wave equation are
presented. The stability analysis and the truncation error of
the proposed method are proved. Some test examples are
given, and the results obtained by the method are compared
with the exact solutions in integer order cases. Several figures
are presented to simulate the solutions behaviors when the
variable orders change with respect to space and time. The
comparison certifies that FDM gives good results. Summa-
rizing these results, we can say that the finite difference
method in its general form gives reasonable calculations, easy
to use, and can be applied for the variable order differential
equations in general form. All results were obtained by using
MATLAB version 7.6.0 (R2008a).
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