Hindawi Publishing Corporation
Journal of Applied Mathematics

Volume 2013, Article ID 595897, 13 pages
http://dx.doi.org/10.1155/2013/595897

Research Article

Hindawi

A Model Reduction Method for Parallel Software Testing

Tao Sun and Xinming Ye

College of Computer Science, Inner Mongolia University, Hohhot 010021, China
Correspondence should be addressed to Tao Sun; cssunt@imu.edu.cn
Received 1 February 2013; Accepted 9 June 2013

Academic Editor: Guiming Luo

Copyright © 2013 T. Sun and X. Ye. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modeling and testing for parallel software systems are very difficult, because the number of states and execution sequences expands
significantly caused by parallel behaviors. In this paper, a model reduction method based on Coloured Petri Net (CPN) is shown,
which could generate a functionality-equivalent and trace-equivalent model with smaller scale. Model-based testing for parallel
software systems becomes much easier after the model is reduced by the reduction method. Specifically, a formal model for software
system specification is constructed based on CPN. Then the places in the model are divided into input places, output places, and
internal places; the transitions in the model are divided into input transitions, output transitions, and internal transitions. Internal
places and internal transitions could be reduced if preconditions are matching, and some other operations should be done for
functionality equivalence and trace equivalence. If the place and the transition are in a parallel structure, then many execution
sequences will be removed from the state space. We have proved the equivalence and have analyzed the reduction effort, so that we
could get the same testing result with much lower testing workload. Finally, some practices and a performance analysis show that

the method is effective.

1. Introduction

Many software applications are parallel software systems. For
example, most of cloud computing software systems contain
parallel behaviors. However, parallel behaviors lead to the
number of states and execution sequences expanding signifi-
cantly. As a result, it is very difficult to validate correctness of
this kind of software.

Software testing technology is the primary means of
software correctness validation. Recently, the size of software
is rising significantly, so model-based software testing tech-
nology becomes a focus in software testing area [1, 2].

However, model-based testing technology for parallel
software systems has not been solved well. Many traditional
testing technologies cannot work effectively for parallel sys-
tems with masses of states.

Many formal languages, like Finite State Machine (FSM),
are not suitable for parallel software modeling. FSM describes
system states and system messages directly, and it is very
difficult to build an FSM model for a parallel system, because
of its numerous states. Although testing methods based on
FSM models have been studied in depth [3], there is almost
no existing literature addresses on parallel system testing

based on FSM. To solve this problem, utilizing Coloured
Petri Net (CPN) models for software testing is a good choice.
CPN is better than many other formal languages for parallel
behaviors modeling. In CPN modeling, firing of transitions
and moving of tokens directly express parallel behavior of the
system.

Many formal languages, like CPN and Input Output
Symbolic Transition System (IOSTS), could model parallel
software; however, testing methods based on these languages
could not work well because the number of states in the model
is too large. In CPN modeling, state space diagram of the
model can be calculated automatically. The CPN model of a
parallel software system is usually simple, but the number of
states in its state space diagram is still very large, so traditional
testing methods on CPN could not work well because of the
large number of states.

In this paper, a model reduction method based on CPN
is shown, which could generate a function-equivalent and
trace-equivalent model with smaller scale. The aim of the
method is to get an external behavior equivalent model and
remove many internal places and transitions from the model,
cutting down the number of states, so that the number and
the size of execution sequences become much smaller. So that

model-based testing for parallel software systems becomes
much easier after the model is reduced by the method.

Specifically, a formal model for parallel software system
under testing is constructed by CPN tools, called system
model. In the model, places which match with input and
output ports are recorded, called input and output places,
or visible places; other places are called internal places.
Transitions which match with input and output behaviors
are recorded, called input and output transitions, or visible
transitions; other transitions are called internal transitions.
Internal places and internal transitions could be reduced
if preconditions are matching. In the process of reduction,
the place and the transition will be removed from the
model, and some arcs should be removed or redirected,
while some expression or function should be modified, so
that the reduced model is functionality equivalent and trace
equivalent to the original model.

There are three basic structures in CPN models, including
sequence structure, fork and joint structure, and parallel
and synchronization structure. The method is effective for
all of these structures. After reduction, the trace is equiv-
alent with the original model; the fork joint structure and
the parallel synchronization structure are reserved. Some
internal places and internal transitions will be removed
from the sequence structure model fragment or branches
of the fork joint structure and the parallel synchronization
structure model fragment. As a result, the number of states
of the model is reduced largely, so the number and the
size of execution fragments become much smaller. If the
place and the transition being removed are in a parallel
synchronization structure, then many execution sequences
will be removed from the state space, so that we could get
the same testing result with much lower testing workload.
So the reduction method is particularly effective for parallel
software testing.

The major contribution of this paper is to propose a CPN
model-based reduction method for parallel software testing,
which could reduce the model automatically. Model-based
testing for a parallel software system becomes much easier
after the model is reduced by the method. We have proved
the equivalence and have analyzed the reduction effort, so
that we could get the same testing result with much lower
testing workload. The method is effective for all kinds of
CPN models, including sequence structure, fork and joint
structure, and parallel and synchronization structure.

The rest of this paper is organized as follows. Section 2
shows the related work. Section 3 will give some definition
of key terms. Section 4 focuses on the model reduction
algorithm based on trace-equivalence principle, including
the description of the algorithm, the proof of the algorithm,
examples, and effort analysis of the algorithm. Section 5
describes some practical applications of the algorithm, and
we conclude the paper in last section.

2. Related Work

In recent years, there are many studies concerning model-
based software testing technology [1, 2]. However, there are

Journal of Applied Mathematics

few notable studies about model-based testing for paral-
lel software, because the number of states and execution
sequences are very large caused by parallel behaviors. Many
formal languages, like FSM, are not suitable for parallel
software modeling. Although testing methods based on FSM
models have been studied in depth [3], there is almost
no existing literature that addresses parallel system testing
based on FSM. Many formal languages could model parallel
software; however, testing methods based on these languages
could not work because the number of states in the model is
too large. Overall, there are only a few literatures addressing
testing methods for parallel system, and the testing effect in
these literatures is not very good. For example, the literature
[4] is based on activity diagram of UML and shows a method
to test parallel behaviors about critical resource. However,
this method ignores the interleaving path coverage between
concurrent processes and only requires each process to cover
every resource for once. The testing coverage is relatively low,
so it is hard to get good testing results.

This paper argues model-based testing for parallel soft-
ware based on CPN, because CPN is very suitable for parallel
behaviors modeling. In some literatures, CPN is used in
modeling and analysis of railway network control logic, and
railway network is a typical parallel system.

There are some researches addressing testing based on
CPN; however, few of them are for parallel software, so their
testing effect for parallel software is not very good. Literature
[5] gives a relatively simple test case generation method,
which directly calculates the state reachable tree of system
model and generates test sequences based on traversal of tree;
literature [6] is based on a simple CPN model, constructs a
causal relationship net which is made up of key transitions,
and extracts test input and output to form a complete test
case; literature [7] shows sequence coverage criteria (branch
coverage, edge cover, etc.) and parallel coverage criteria
(interleaving node or edge coverage, etc.), and test sequences
are generated from random walk algorithm on the state space
of CPN model. Overall, these methods are based on simply
searching or traversal for the state space of CPN models. But
state spaces of parallel software systems are often large, so
these methods will generate many useless test sequences.

Modeling and testing for a parallel software system is
very difficult for all kinds of modeling languages. CPN is
suitable for parallel behavior modeling, but testing based
on CPN is very difficult too. The reason is that although
the CPN model of a parallel software system is usually with
small scale, but its state space is also very big caused by
parallel behaviors. To solve this problem, model reduction
technology becomes breakthrough. Model reduction process
generates an external behavior equivalent model with smaller
scale, so the number of system states and execution sequences
are reduced. There are some researches about reduction
method of Petri Nets models, and there are some researches
about reduction method of other formal modeling language
[8, 9], but there are few studies about reduction method of
CPN models. CPN is much more complex than Petri Nets, so
reduction method of CPN models is much more difficult.

In this paper, a CPN model reduction approach for
parallel software testing is proposed. In CPN-based testing

Journal of Applied Mathematics

for a parallel software system, many testing methods could
not work because its state space is too big; if the system
model is reduced by the reduction method of this paper, then
some testing methods will work well. So a trace-equivalent
reduction method is advantageous for model-based parallel
software testing.

3. Preliminaries

This section presents some key concepts in the CPN model
reduction approach for parallel software testing.

Definition 1. A Colored Petri Net is a nine-tuple CPN =
(P,T,A,%,V,C,G,E,I), where

(1) P is a finite set of places;

(2) T is a finite set of transitions such that PN T = @;
(3) ACPxTUT x Pisa set of directed arcs;

(4) X is a finite set of nonempty color sets;

(5) V is a finite set of typed variables, Type[v] € X for all
variables v € V;

(6) C: P — Xisacolor set function that assigns a color
set to each place;

(7) G : T — EXPRy is a guard function that assigns a
v g g
guard to each transition ¢ such that Type[G(t)] = Bool;

(8) E: A — EXPRy, is an arc expression function that
assigns an arc expression to each arc a such that
Type[E(a)] = C(p)ys> Where p is the place connected
to the arc a;

(9) I: P — EXPRg, isaninitialization function that assi-
gns an initialization expression to each place p such

that Type[I(p)] = C(p)s-

In parallel software testing, the system is often divided
into two parts: implementation under test (IUT) and simulat-
ing test environment. Ports between the two parts are called
points of control and observation (PCOs), including input
PCOs which send data to IUT and output PCOs which receive
data from IUT.

Definition 2. In CPN models, input places are corresponding
to input PCOs; output places are corresponding to output
PCOs; other places are all internal places. Input transitions
are successor of input places in the IUT part, so that firing
behavior of input transitions will move tokens out of input
places, representing input behaviors; output transitions are
successor of output places in the simulating test environment
part, so that firing behavior of output transitions will move
tokens out of output places, representing output behaviors;
other transitions are all internal transitions.

As shown in Figure 1, the system model called M is
divided into two parts by a dotted line. The right part is IUT
and the left part is simulating test environment. The place
named a is an input place and its input transition is TA; the
place named b is an output place and its output transition is

INT

INT INT, INT INT
I

TD

INT INT

FIGURE 1: Example of system model.

TB. When TA is firing, tokens of a will moving into IUT; when
TB is firing, tokens of b will moving out of IUT.

Definition 3. A testing-oriented Coloured Petri Net (ToCPN)
is a nine-tuple ToCPN = (P,T,A,%,V,C,G,E,I), whose
definitions are all same as CPN.

(1) P is partitioned into three sets P = PInput U POutput
U PlInternal, where Plnput is the set of places rep-
resenting input places, POutput is the set of places
representing output places, Plnternal is the set of
places representing internal and invisible places, and
Plnput U POutput is also called visible places.

(2) T is partitioned into three sets T' = TInput U T'Output
U TInternal, where TInput is the set of transitions
representing input actions, TOutput is the set of tran-
sitions representing output actions, TInternal is the
set of transitions representing internal and invisible
actions, and TInput U TOutput is also called visible
transitions.

(3) An input place in Plnput must be a predecessor
of an input transition in TInput; an output place
in POutput must be a predecessor of an output
transition in TOutput.

CPN Tools is a tool for editing, simulating, and analyzing
CPNs, which is originally developed by the CPN Group at
Aarhus University from 2000 to 2010. A CPN model will
be saved as an xml file by CPN tools. A ToCPN model is
also a CPN model. However, six sets should be recorded
additionally, including PInput, POutput, Plnternal, TInput,
TOutput, and TInternal. We can edit a model in CPN Tools
and record these six sets in an additional file. Algorithms
in this paper will act on the xml file of CPN tools and the
addition file. TOCPN models of parallel software system are
called system models.

Journal of Applied Mathematics

18

Example_1'a 1:1'1
Example_1'f 1:1'2
Example_1'g 1: empty
Example_1'b 1: empty
Example_1'h 1: empty
Example_1'i 1: empty
Example_1'd 1: empty
Example_1'c 1: empty
Example_1'e 1: empty

3:

Example_1'a 1: empty
Example_1'f 1:1'2
Example_1'g 1: empty
Example_1'b 1: empty
Example_1'h1:1'1
Example_1'i 1:1'1
Example_1'd 1: empty
Example_1'c 1: empty
Example_1'e 1: empty

58

Example_1'a 1: empty
Example_1'f 1:1'2
Example_1'g 1: empty
Example_1'b 1: empty
Example_1'h 1: empty
Example_1'i 1: empty
Example_1'd 1:1'2
Example_1'c 1: empty
Example_1'e 1: empty

74

Example_1'a 1: empty
Example_1'f 1: empty
Example_1'g 1: empty
Example_1'b 1: empty
Example_1'h 1: empty
Example_1'i 1: empty
Example_1'd 1: empty
Example_1'c 1: empty
Example_1'e1:1'1

2:223Example_1’TE 1:{n = 1} ||

4:4 > 5 Example 1'TB 1: {n = 2}

|| 6:6> 7Example_1'TC 1:{n=2,m=2} |

~

KS w (1?1

1:1> 2 Example_1'TA 1: {n = 1} I

3:3> 4 Example 1'TF L: fn =1} ||

5:5> 6Example_l’TD 1: {n =2} |

2:

Example_1'a 1: empty
Example_1'f 1:1'2
Example_1'g 1: empty
Example_1'b 1: empty
Example_1'h 1: empty
Example_1'i 1: empty
Example_1'd 1: empty
Example_1'c 1:1'1
Example_1'e 1: empty

4:

Example_1'a 1: empty
Example_1'f 1:1'2
Example_1'g 1: empty
Example_1'b 1: 12
Example_1'h 1: empty
Example_1'i 1: empty
Example_1'd 1: empty
Example_1'c 1: empty
Example_1'e 1: empty

6:

Example_1'a 1: empty
Example_1'f 1:1'2
Example_1'g 1: 12
Example_1'b 1: empty
Example_1'h 1: empty
Example_1'i 1: empty
Example_1'd 1: empty
Example_1'c 1: empty
Example_1'e 1: empty

FIGURE 2: State space of model in Figure 1.

Definition 4. For a place p € P, the set of predecessor transi-
tions of p is called pred(p); the set of successor transitions of
p is called succ(p). Similarly, for a transition t € T, the set of
predecessor places of t is called pred(t); the set of successor
places of ¢ is called succ(t).

As shown in Figure 1, pred(b) = {TF}, succ(b) = {TB},
pred(TF) = {h, i}, succ(TF) = {b}.

Definition 5. A marking of CPN model is a function marking
that maps each place p € P into a multiset of tokens Mark-
ing(p) € C(p),s- Marking describes tokens distribution in all
places at a time, that is, the system state at a time.

Definition 6. A transition firing behavior removes tokens
from its predecessor places and adds tokens to its successor
places. When a firing behavior ¢’ occurs in a marking M,,
producing a new marking M,, we say that the marking M, is
directly reachable from M, by the firing behavior ¢'.

Definition 7. The state space of a CPN model is a directed
graph with a node for each reachable marking and an arc for
each occurring firing behavior.

The state space of model in Figure 1 is shown in Figure 2.
Nodes named 1 to 7 are all of markings of the model; arcs
named 1to 6 are all of transition firing behaviors of the model.
Information of nodes and arcs is shown in rectangular boxes.

For example, in marking 1, only place a and place f have
tokens; arcl represents the firing of TA with variable n = 1,
leading to marking 1 transferring to marking 2.

Definition 8. An execution fragment of a model is a sequence
of alternating markings and firing behaviors. So any sequence
in the directed graph of state space is an execution fragment.
An execution is an execution fragment starting in an initial
marking.

In a state space diagram, if we denote nodes as M, denote
transitions as ¢, and denote transition firing behaviors as ¢,
then all executions and execution fragments appear as form
M@ M)*. All executions are in state space of the model.

As shown in Figure 2, there is only one execution in the
state space as follows:

p =M, TA'M,TE'M;TF' M, TB' M, TD' M,TC'M,. (1)

Definition 9. The transition firing behavior sequence of an
execution p is the projection of p on the set of transition firing
behaviors, called transition(p).

As shown in Figure 2, transition(p) = TA'TE'TF TB'
TD'TC'.

Definition 10. A transition firing behavior is an input firing
behavior if its transition is in TInput, and it leads to token-
losing of places in PInput. A firing behavior is an output firing

Journal of Applied Mathematics

FIGURE 3: Effect of the reduction algorithm.

behavior if its transition is in TOutput, and it leads to token-
losing of places in POutput. Input firing behaviors and output
firing behaviors are visible firing behaviors, and other firing
behaviors are invisible firing behaviors.

As shown in Figure 1, the firing of TA and the firing of TB
are visible firing behaviors; other firings are invisible firing
behaviors.

Definition 11. The trace of an execution p is the projection of
p on the set of visible firing behaviors, called trace(p). The
set of traces of a CPN model M is the set of all traces of all
executions of M and is denoted by traces(M).

As shown in Figure 2, trace(p) = TA'TB'. There is only
one execution in the state space, so traces(M) = {TA'TB'}.

4. Model Reduction Method

In model-based parallel software testing, input and output
firing behaviors of the IUT are visible firing behaviors, and
other firing behaviors are all internal transitions, which are
invisible firing behaviors. So only visible firing behaviors
should be cared about when the software system is tested.
That is, we should input data to IUT according to input firing
behaviors and compare whether outputs of IUT are same as
output firing behaviors.

When an execution p is tested, the trace(p) represents
all input and output information flow of p, so the trace
of an execution is the key content of software testing. In the
example, input and output information of TA'TB' is the
tested content when execution M,TA'M,TE M,TF' M,
TB'MTD' M TC' M, is tested.

In CPN-based software testing, executions of the model
are sequences to be tested. If we could give testing sequences
by any generation method, like depth first search algorithm,
then traces of these testing sequences are content of testing.

However, for parallel software testing, the number of states
and executions are very large, so it is very difficult to get and
test all executions.

In this section, a CPN model reduction method based on
trace-equivalence principle is shown and applied on system
model M. The aim of the method is to get an external behav-
ior equivalent model RM with smaller scale. Specifically,
RM is gained from M by many internal places and internal
transitions are removed, and traces(RM) = traces(M). So the
number of states and executions will be cut down, and we
could complete the testing process with lower workload. The
testing result on RM is same as testing result on M, because
traces(RM) = traces(M). Before parallel software testing, we
could apply this model reduction method on system model,
and then the testing workload will be cut down and testing
result will be unchanged. In other words, testing for parallel
software systems becomes much easier after the model is
reduced by the method.

In a CPN model, there are three kinds of structures that
should be discussed, including sequence structure, fork and
joint structure, and parallel and synchronization structure.
If places and transitions are single-input and single-output,
it is sequence structure; if a place is multioutput, it is fork
structure; if a place is multi-input, it is fork and joint
structure; if a transition is multioutput, it is concurrency
structure; if a transition is multi-input, it is parallel and syn-
chronization structure. These structures should be discussed
when reduction.

When we reduce the model, the following four principles
should be complied.

(i) The connectivity of the model should be conformed
after reduction, so some arcs should be redirected.

(ii) The executability of the model should be conformed
after reduction, so variables of some arcs should be
changed.

(iii) Functions of places and transitions which are remov-
ed should be reserved in the model, so these functions
should be added to other places and transitions which
are reserved. Some internal places or transitions
should not be removed. For example, fork points, joint
points, parallel points, synchronization points, and
transitions with guard should be reserved; otherwise,
some behaviors of the model may be changed.

(iv) After reduction, traces of the model should be equiv-
alent to the original model, and many internal places
and transitions should be removed, so the size of state
space should be cut down, and the number of states
and executions should be decreased.

In this section, the reduction algorithm and the proof of
the algorithm will be shown; some examples of the algorithm
will be given; effort analysis of the algorithm for three
structures will be discussed too.

4.1. Reduction Algorithm and Proof of the Algorithm. As
shown in Figure 3, the left part is a model fragment, and the
right part is the reduction result. We will reduce the model

fragment complying with the four previous principles. The
aim of the reduction is that internal places and transitions
are removing, and the state space of the model is reduced the
number of states and executions are decreased, but traces of
the model are same as the original model. The algorithm is
shown in Algorithm 12.

Algorithm 12. Reduction algorithm based on trace-equiva-
lence.

Symbols. In the model fragment as shown in left part of
Figure 3, suppose that

places are called pl, p2,..., p5;

transitions are called T1,T2,...,T5;

arcs are called arcl, arc2, ..., arc9.

Variables of arcx are called v(x), and arc expression of
arcx is defined as function called Fx(v(x)), where x is a
number between 1 and 9.

Variables of transition Tx are called v(Tx), and guard of
transition Tx is defined as function called GTx(),where x is a
number between 1 and 5.

Initialization of place px is defined as function called
Ipx(), where x is number between 1 and 5.

Preconditions. T3 is an internal transition and p2 is an internal
place; T'3 and p2 are single-input and single-output; guard of
T3 is empty.

Step 1. Transition T3, place p2, arc5, and arc6 should be
removed; arc3 should start from T'5.

Step 2.Operation v'(3) = v(6) should be done, where symbol
" represents the new version after reduction algorithm. In
other words, variables of arc3 should be changed to variables
of arc6 after reduction.

Step 3. Two operations should be done, as follows.

(1) Arc expression of arc3 should be changed as follows:

F3' (v 3)) = F3' (v(6))
(2)
=F3(v(3) | F5(v(5)) := F6 (v (6)));

(2) initialization of place p2 should be changed as follows:

Ip1' = Ip1()++F3(v(3) | F5(v(5)) = Ip2() . (3)
Operator “|’represent that variables in left operand and
the same variables in right operand should have the same
value; operator “:="represent that left operand and right
operand should have the same value.

Theorem 13. Reduction algorithm in Algorithm 12 is trace-
equivalent.

In other words, if CPN model M is reduced by Algorithm 12,
and RM is the result, then traces(M) = traces(RM).

If a fragment of the model matches the precondition of
Algorithm 12, then the algorithm will work, until no fragment
in the model matches the precondition. In other words, the

Journal of Applied Mathematics

algorithm may be executed for many times, and many internal
places and transitions in M are removed.

Proof of Theorem 13. There are four properties that should
be proved: the connectivity of RM; the executability of
RM; the functionality-equivalence of M and RM; the trace-
equivalence of M and RM.

(1) Proof of the Connectivity. The connectivity is the precon-
dition of other properties.

In the reduction algorithm, an internal transition T3
and an internal place p2 will be removed. T3 and p2 are
single-input and single-output, specifically, pred(p2) = {T'5},
succ(p2) = {T3}, pred(T3) = {p2}, succ(T3) = {p1}.

In Step 1, the transition T'3, the place p2, the arc5, and the
arc6 are removed, and the arc3 is changed to be from T'5 to
pl. So the connectivity of RM is conformed.

(2) Proof of the Executability. In Step 1, the start of the arc3 is
changed from T'3 to T'5, so the arc3 will take part in the firing
of T5.

In Step 2, v'(3) = w(6), variables of the arc3 in RM
are same as variables of the arc6 in M, so that T'5 could be
banding, enabling, and firing in RM. So the executability of
RM is conformed.

(3) Proof of the Functionality Equivalence of RM and M. In
Step 1, the place p2 is removed, so tokens of the p2 should be
further processed, including two aspects: tokens gaining from
the firing of T'5; initialization tokens of p2. So in the proof of
the functionality equivalence, there are two properties that
should be proved: tokens gaining from the firing of T5 are
equivalent; initialization tokens of p2 are equivalent.

(a) Proof of tokens gained from the firing of T5 are
equivalent.

In model M, T3 and p2 are single-input and single-
output, and the guard of T'3 is empty, so tokens gain from the
firing of T'5 will move to p1 by three steps.

(i) Tokens will move into the place p2 when T'5 is firing,
according to expressions of arc6.

(ii) Tokens will move out of the place p2 when T'3is firing,
according to expressions of arc5.

(iii) Tokens will move into the place pl when T'3 is firing,
according to expressions of arc3.

In model RM, the place pl is successor of the transition
T'5 by the arc3. In Step 3, arc expression of the arc3 is changed
as F3'(v/(3)) = F3'(v(6)) = F3(v(3) | F5(v(5)) := F6(v(6))).
When T'5 is firing, F 3'(v/(3)) is calculated as follows.

(i) F6(v(6)) is calculated, and the result is the set of
tokens moving into the place p2 in M.

(ii) F5(v(5)) := F6(v(6)) is calculated, and the result is the
set of tokens moving out of the place p2 in M.

(iii) F3(v(3) | F5(v(5)) := F6(v(6))) is calculated, and the
result is the set of tokens moving into pl in M.

So F3'(v'(3)) = F3(»(3) | F5(»(5)) := F6(v(6))) makes
that when T'5 is firing in RM, the result is same as expressions

Journal of Applied Mathematics

of arc6, arc5, and arc3 are all calculated in M. So tokens
gained from the firing of T'’5 are equivalent.

(b) Proof of initialization tokens of p2 is equivalent.

In model M, T3 and p2 are single-input and single-
output, and the guard of T3 is empty, so initialization tokens
of p2 will move to pl by two steps.

(i) Tokens will move out of the place p2 when T3 is firing,
according to expressions of arc5.

(ii) Tokens will move into the place pl when T3 is firing,
according to expressions of arc3.

In model RM, initialization of place pl should be changed
as Ip1'() = Ip1() + +F3(v(3) | F5(v(5)) := Ip2()). Ip1'() is
calculated as follows.

(i) F5(v(5)) := Ip2() is calculated, and the result is the
set of initialization tokens moving out of p2 in M.

(if) F3(v(3) | F5(v(5)) := Ip2()) is calculated, and the
result is the set of tokens moving into pl in M.

So Ipl'() = Ipl() + +F3(v(3) | F5(v(5)) := Ip2())
makes that initialization tokens of pl in RM are same as
initialization tokens of pl and tokens of pl gaining from
initialization tokens of p2 in M. So initialization tokens of
p2 are equivalent.

(4) Proof of the Trace Equivalence of RM and M. In model M,
ifan execution E, contains a firing of T'3, then a firing of T'5 is
a must in the execution and before the firing of T'3. Suppose
that E, is as follows:

E = MT,---M,T,M,,,T,. --M

piptip+t1iip ptn—1
X Tp+n—lMp+nTp+nMp+n+lTp+n+1 o
Transition (E;) = Ty - Ty Tpe1 ** Tppnoi TpsnTpiner -+ -

(4)

In E,, p,n, and e are positive integers, p > 1, n > 1, e >
p + n + 1; the firing of T3 is Tp+n, and the firing of T5 is
T,. After T, T3 is enabling, and some other transitions may
be enabling too. So there may be firings of other transitions
between T, and T}, ,, whichare T, ... Tp,,, ;.

In model RM, T'5 moves tokens into place p1 directly, so
token gain of pl in M,,,,, will be acting in M,,,, which
will not change the enabling and firing of T, ... Tp,,,_;. The
reason is T3 and p2 are single-input and single-output. So the
execution E; will be changed as follows:

Transition (E;) =Ty TpTp Toin1 Tpiner - ()

prp

The number of places in model RM is less than the
number of places in model M, so all markings of RM are
different from M, but firings of transitions are the same. T},
is removed from E,, and other firings of transitions exist in
the original order. T3 is internal transition, so trace(Ei) =
trace(El).

So trances(RM) = trances(M), and the trace equivalence
of RM and M is conformed. O

In model M, there may be several executions that are
similar. In these executions, only the position of T,,, is
different from each other. After reduction, these executions
are reduced into an execution. For example, in the following
sequences, T, is a firing of T'5, and T}, 5 is a firing of T'3:

Transition (E,) = T - - - T Ty TpiaTpus- s

Transition (E;) = Ty -+ Ty Ty Tpy3Tpia -+ »

Transition (E;) = Ty -+ Ty T3 Ty Tpya -+ -
(6)

After reduction algorithm,
Transition (E'l) = Transition (E;) = Transition (E;)

= Ty T, Ty Ty -

So the reduction algorithm makes all markings of the
model become smaller; makes some markings be not in
the state space; makes some executions become shorter;
especially makes some executions be not in the state space.

4.2. Examples of the Reduction Algorithm. In this section,
two simple examples will show the execution process of the
algorithm and the effect of the algorithm on the state space.

4.2.1. Example to Show the Execution Process of the Algorithm.
In the model fragment of Figure 3 left, take the calculation of
F3'(v/(3)), for example, as follows.

Precondition. Consider
v(6)={a}, v(5)={b}, v(3)={b},
F6 (v(6)) = F6 ({a}) = if (a > 0)a"2 else a*10,
F5(v(5)) = F5({b}) = b,
F3(v(3)) =F3({b}) =if (b>5)b"2 else b"10.

7)

Calculation of F3'(v'(3)). Consider

v (3) = v(6) = {a},
F3'(v' (3)) = F3(v(3) | F5(v(5)) := F6 (v(6)))
= F3({b} | F5({b}) := F6 ({a}))
F3({b} | F5({b}) :=if (a > 0) (8)
a*2 else a*10)
F3({b} | b:=if (a>0)a"2 else a“10)
=if (b>5)b"2 else b" 10,

where b := if (a > 0)a*2 else a”10.
Result of F3'(v'(3)). Consider
F3'(v' (3)) = F3' ({a}) = if (b>5) b*2 else b"10, (9)

where b:=if (a > 0)a*2 else a”10.
So in model RM, if T’5 is firing with a = 10, then pl will
get 1000, and the result is same as model M. Variables of arc3

FIGURE 5: The state space diagrams of models in Figure 4.

changed from {b} to {a}. Both {a} and {b} are in the function
of F3'({a}); however, {a} is the real variable of the arc, and {b}
is the temporary local variable of the function which is not
variable of arc for binding when transition firing.

The reduction algorithm could remove the internal place
and internal transition. After reduction, the connectivity and
executability of RM and the functionality equivalence of RM
and M are conformed.

4.2.2. Example to Show the Effect of the Algorithm on the State
Space. As shown in Figure 4, a simple software model M is
on the left of Figure 4, and the model after reduction is called
RM which is on the right of Figure 4. The transition TB is
internal transition; the place b is internal place; the guard of
TB is empty. After reduction, TB and b and arc4 and arc2 are
removed.

Journal of Applied Mathematics

As shown in Figure 5, the state space diagram of M is
on the left, and the state space diagram of RM is on the
right. In Figure 5, a node represents a marking; letters in a
node represent names of places with token at the marking;
letters on an arc represent the firing transition between two
markings. For example, the firing of transition TA transforms
the marking a into the marking b; in the marking a, only the
place a has token; in the marking bc, place b and place ¢ have
tokens.

There are 4 executions in the state space of M as follows:

Transition (E,) = TA"TB'TD'TC'TD/,

Transition (E,) = TA'TB'TC'TD'TD’,
(10)
Transition (E;) = TA'TC'TB'TD'TD/,

Transition (E,) = TA'TC'TD'TB'TD".
There are 2 executions in the state space of RM as follows:

Transition (E,) = TA'TD'TC'TD,
(1)
Transition (E;) = TA'TC'TD'TD'.

The transition TB is internal transition, so trace(E,)
= trace(Ei), trace(E,) = trace(E;), trace(E;) = trace(E,),
trace(E,) = trace(E;), and traces(M) = traces(RM).

4.3. Effect Analysis of the Reduction Algorithm. In a CPN
model, there are three kinds of basic structures that should
be discussed, including sequence structure, fork and joint
structure, and parallel and synchronization structure. If
places and transitions are single-input and single-output, it
is sequence structure; if a place is multioutput, it is fork
structure; if a place is multi-input, it is joint structure; if
a transition is multioutput, it is concurrency structure; if a
transition is multi-input, it is synchronization structure.

The effects of the reduction algorithm used in all three
kinds of basic structures are good.

(1) Reduction of Sequence Structure. As shown in Figure 6,
a sequence structure model fragment is on the left. The
transition TB is internal transition; the place ¢ is internal
place; the guard of TB is empty. All preconditions of the
algorithm are matching, so the sequence structure model
fragment could be reduced by the algorithm and the result
is on the right on Figure 6.

If the sequence structure model fragment is not in a
branch of a parallel structure, and then some executions in the
state space will become shorter, but the number of executions
will be unchanged; if the sequence structure model fragment
is in a branch of a parallel structure, then some executions
in the state space will become shorter, and the number of
executions will be smaller, like the example in Figure 4.

So the algorithm is effective for sequence structure model
fragment, and the effect of the reduction is determined by
whether the model fragment is in a parallel structure or

Journal of Applied Mathematics

FIGURE 7: Reduction of parallel and synchronization structure
model fragment.

not. The algorithm is especially effective for parallel structure
model.

(2) Reduction of Parallel and Synchronization Structure. As
shown in Figure 7, a parallel and synchronization structure
model fragment is shown on the left. TC is multioutput and
TA is multi-input; TB1, TB2, c1, and ¢2 are all internal; guards
of TB1 and TB2 are empty. Each of the two branches matches
the precondition of the algorithm, and two branches could
be reduced, respectively. The reduction result is shown on the
right of Figure 7.

4

2-1 2-2 i1 32
G
1-1 1-2
TCI TC2 TCI TC2
0-1 0-2 0-1 0-2

FIGURE 8: Reduction of fork and joint structure model fragment.

If visible places and transitions exist in a branch, then
visible places and transitions will be reserved after reduced;
if there is no visible place or transition in a branch, then only
a single place will be reserved in the branch after reduced, as
shown on the right of Figure 7.

The internal transitions and places in a parallel and
synchronization structure model fragment are removed, then
some executions in the state space will become shorter, and
the number of executions will be smaller, like the example in
Figure 4. Particularly, if there is no visible place or transition
in a branch, then only a single place will be reserved in the
branch after reduction, as shown on the right of Figure 7, and
then the number of executions in the model will be 1. In other
words, the parallel behaviors are invisible outside, so we could
reduce it to be happening at the same time, when TC is firing.

So the algorithm is especially effective for parallel and
synchronization structure model fragment, especially many
internal transitions and places matching the precondition
of the algorithm being in a branch of the parallel and
synchronization structure model.

(3) Reduction of Fork and Joint Structure. As shown in
Figure 8, a fork and joint structure model fragment is shown
on the left. The place d is multioutput and b is multi-
input; TBI, TB2, cl, and ¢2 are all internal; guards of TBI
and TB2 are empty. Each of the two branches matches the
precondition of the algorithm, and two branches could be
reduced, respectively. The reduction result is shown on the
right of Figure 8.

If visible places and transitions exist in a branch, then
visible places and transitions will be reserved after reduced; if
there is no visible place or transition in a branch, then only a
single transition will be reserved in the branch after reduced,
as shown on the right of Figure 7.

10

The internal transitions and places in a fork and joint
structure model fragment are removed, and then some
executions in the state space will become shorter. If the
sequence structure model fragment is in a branch of a parallel
structure, then some executions in the state space will become
shorter, and the number of executions will be smaller, like the
example in Figure 4.

So the algorithm is effective for fork and joint structure
model fragment, and the effect of the reduction is determined
by whether the model fragment is in a parallel structure or
not. The algorithm is especially effective for parallel structure
model.

Three kinds of basic structures have been discussed, the
algorithm could be used in all of three situations, and its
effect on reduction is good. The reduction algorithm makes
all markings of the model become smaller; makes some mark-
ings be not in the state space; makes some executions become
shorter; especially makes some executions be removed from
the state space, when the reduction is in a parallel structure
model. So the reduction algorithm is especially effective for
parallel software system testing.

5. Practical Applications of the Algorithm

In practice, a software tool has been built based on the
reduction algorithm. When the CPN model of the system
under testing is given, the tool could give a reduced model
automatically.

Several systems are tested based on the original model
and the reduced model, and practices show that testing based
on the reduced model is much more efficient.

In this section, a simple introduction of the tool is
given, and a testing performance contrast analysis is given,
and a BitTorrent (BT) software practical application of the
algorithm is shown.

5.1. Practices of the Algorithm. The processing of model
reduction and software testing is as follows.

(i) Before testing, the system model is built by CPN tools,
and all information of the model is saved as an xml file
by CPN tools.

(ii) Our software tool reads information from the xml
file and reconstructs all information into its own data
structure.

(iii) The tool will show all places and transitions of the
model in text areas, and user should divide the set
of PInput, POutput, Plnternal, TInput, TOutput, and
TlInternal. And the six sets are recorded in another
additional xml file.

(iv) The tool will traverse the model automatically, to
judge whether a transition and its predecessor place
are matching preconditions of the algorithm; if true,
the algorithm will be performed to the transition and
the place.

(v) Then the reduced model is calculated automatically,
and the state space diagram of the model is calculated
too.

Journal of Applied Mathematics

See
Seed

:

PACKET PACKET

PACKET

© B

PACKET

Peerl P1to P2
i PACKET

:

ErwED
PACKET

FIGURE 9: The top page of the BT software system.

(vi) The testing sequence generation algorithm is executed
on the state space diagram of the reduced model. In
the tool, the depth first algorithm is used as the testing
sequence generation algorithm.

The tool could give the testing sequences automatically,
and every testing sequence is an execution in the reduced
model. We could test the system according to the input and
output information in the testing sequence.

5.2. Testing Performance Analysis. For parallel software test-
ing, the reduction algorithm is very effective, because the
number of executions will be greatly reduced, and the traces
are equivalent. In other words, we could get the same test
effort with much lower workload.

Supposing that only one internal transition called TT
is reduced, and TT is in a parallel structure, when TT is
enabling, there are m transitions that are enabling too, where
m is a positive integer. If m transitions are enabling in turn,
then m executions will be reduced by the reduction of TT; if m
transitions are enabling at the same time, then m! executions
will be reduced by the reduction of TT. In practice, two types
of cases usually mixed, and then the effort is between m and
ml.

For one reduced transition, the more parallel behaviors
occurring at the same time, the more executions being
reduced by the reduction. For the system model, the more
transitions are reduced, the more executions will be reduced.
The effort of reduction is determined by the following two
factors:

(i) the number of transitions and places which match
preconditions of the algorithm;
(ii) the number of transitions which are enabled at the

same time of the reduced transition is enabled.

In practice of parallel system testing, the two numbers are
always big, so the effort of reduction is very good.

5.3. A BT Software Practical Application of the Algorithm.
BT protocol is a p2p file transfer protocol, which is typical

Journal of Applied Mathematics 1

1'(p2, p1, LBITMAP(Ibit i 1'[((#1 piece), “+”, p1
(p2, p (lmap))@ Ibitmap @ [((#1 piece) ‘Jr 23] ~
LBITII;/i[eACE'MSG piece [#1 piece= ﬁlenurr;)]iece 1' (2} “world”)

forward sendfile getpiece sendfnum pl_piece

1'(p2, p1, PIECE(piece)) ~—— e /D

PACKET T PIECE-MSG PIECE|MSG
(pch, peerid, LBITMAP(Ibitmap))

sendindexp2
piece
LBITMAP(Ibitmap) filenum

If MSG.of LBITMAP(#3 packet)

then 1'(#3 packet)
else empty

If MSG.of REQUEST (#3 packet)

then 1'(#3 packet)

[(#1 request) >0]
else empty

#
@ REQUEST (request) sendrequest (#1 request) —

NG FILENUM
If MSG.of_PIECE(#3 packet)

then 1’ (#3 packet)
par@ else empty @ PIECE(piece)
MSG

PACKET
FIGURE 10: The receive page of a client in BT software system.
1'(p2, p1, LBITMAP([((#1 piece, “+", p1)]))
1'(2, “world”)
PACKET [#1 piece= filenum]
; 1'(p2, p1, PIECE(piece)) i
forwe}@ il P endfnum plece @
If MSG.of . LBITMAP(#3 packet) PIECELMSG
then 1’ (pch, peerid, #3 packet) piece
else empty filenum
If MSG.of REQUEST(#3 packet) Eldps
!
tl;en 1 (#13 packet) [(#1 request>0)]
clse empty REQUEST (request #1 request
@ Q (request) sendrequest (quest) filenum
(" NG
If MSG.of_PIECE(#3 packet) ~ MSG FILENUM
then 1’ (#3 packet)
else empty
PIECE(piece)
MSG
packet
revpckl
PACKET

FIGURE 11: The receive page after reduction.

12 Journal of Applied Mathematics
TaBLE 1: The reduction results of every page.
Peerl Peerl-send Peerl-receive Peer2 Peer2-send Peer2-receive
Places reduced 2 1 3 2 1 3
Transition reducted 2 1 3 2 1 3

TaBLE 2: The comparison of state reports before and after reduction.

Number of Number of
. . . Status of state
markings in arcs in state space
state space space P
Before reduction 3409 9414 Full
After reduction 1329 3620 Full
Markings reduced 2080
Arcs reduced 5794
Markings About 61%
reduction rate
Arcs reduction rate About 61.5%

parallel system. In the protocol, many clients download files
from each other. A software system based on BT protocol is
built, which is under testing.

First of all, a hierarchical CPN model based on the
requirement specification of the software is built. There are
3 layers and 7 pages in the model. For example, the top page
of the software system is shown in Figure 9, and the receive
page of a client in BT software system is shown in Figure 10.

Secondly, a test sequence generation method based on the
state space diagram of the model will be used [10], by which
test sequences related to a test purpose will be generated
automatically. However, the scale of state space diagram for
a parallel system is always big, so that the number and size
of testing sequences will be big too, and it is hard to get good
testing results.

The reduction algorithm is used for the model. Many
places and transitions and arcs are removed from the model,
which are matching preconditions of the algorithm. For
example, the receive page after reduction is shown in Fig-
ure 11. Transition bitmap and sendfile and sendindexp2 have
been removed; place gbitmap and getpiece and bitmap have
been removed; several arcs have been removed too. Other
transitions and places could not match preconditions of the
algorithm.

Several model elements are reduced in these model pages
except for the top page. Table 1 shows the reduction results of
every page, and Table 2 shows the comparison of state reports
before and after reduction.

Behaviors in the model are parallel with each other. As a
result, the number of model-elements being reduced is not
big, but the number of states is reduced very much. In other
words, the effect of reduction is good.

After reduction, the scale of state space diagram is
reduced, so that the number and size of testing sequences will
be small, and it is easy to get good testing results. We have
proved that traces of the reduced model are equivalent to the
original model, so we could get the same testing result with
much lower testing workload.

6. Conclusion

Model-based testing of parallel software systems plays a
significant role in software testing, which is quite difficult,
because the number of executions in the system is too big.
Many traditional testing methods cannot work effectively for
this kind of software.

In this paper, a CPN model reduction method based
on trace-equivalence principle is shown and applied on
system model. It could remove many internal transitions
and places and cut down the number of executions. The
method is effective for all kinds of CPN models, including
sequence structure, fork and joint structure, and parallel and
synchronization structure. The method makes all markings
of the model become smaller; makes some markings be not
in the state space; makes some executions become shorter;
especially makes some executions be removed from the state
space, when the reduction is in a parallel structure model.
So the reduction algorithm is especially effective for parallel
software system testing.

We have proved that traces of the reduced model are
equivalent to the original model, and the number of exe-
cutions is significantly reduced after reduction when the
reduction is in a parallel structure model fragment, and some
practices and a performance analysis have shown the effort
of reduction. So model-based testing for a parallel software
system becomes much easier after the model is reduced by
the method.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grant no. 61163011; the National
Natural Science Foundation of China under Grant no.
61262017; the Natural Science Foundation of Inner Mongolia
of China under Grant no. 2012MS0922; the Natural Science
Foundation of Inner Mongolia of China under Grant no.
2011MS0912; the Research Foundation of University Doctoral
Program under Grant no. 20101501110003.

References

[1] S.R. Dalal, A. Jain, N. Karunanithi et al., “Model-based testing
in practice,” in Proceedings of the International Conference on
Software Engineering, pp. 285-294, May 1999.

[2] J. Yan,]. Wang, and H. Chen, “Survey of model-based software
testing,” Computer Science, vol. 31, no. 2, pp. 184-187, 2004.

[3] M. Broy, B. Jonsson, J. P. Katoen et al., Model-Based Testing
of Reactive Systems, vol. 3472 of LNCS, Springer, Heidelberg,
Germany, 2005.

[4] Y. Zeng, L. Zhang, Y. Zhang et al., “Activity diagram-based
method to generate test sequence of concurrent software,
Computer Science, vol. 34, no. 12, pp. 286-290, 2007.

Journal of Applied Mathematics

(5]

(10]

H. Watanabe and T. Kudoh, “Test suite generation methods for
concurrent systems based on coloured petri nets,” in Proceedings
of the 2nd Asia-Pacific Software Engineering Conference, pp.
242-251,1995.

J. Desel, A. Oberweis, T. Zimmer, and G. Zimmermann, “Val-
idation of information system models: petri nets and test case
generation,” in Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics, pp. 3401-3406, October 1997.

U. Farooq, C. P. Lam, and H. Li, “Towards automated test
sequence generation,” in Proceedings of the 19th Australian
Software Engineering Conference (ASWEC °08), pp. 441-450,
Perth, Australia, March 2008.

V.Rusu, H. Marchand, and V. Tschaen, “From safety verification
to safety testing,” in Proceedings of the IFIP 16th International
Conference on Testing Communicating Systems, pp. 160-176,
2004.

C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Integrating
formal verification and conformance testing for reactive sys-
tems,” IEEE Transactions on Software Engineering, vol. 33, no.
8, pp. 558-574, 2007,

T. Sun, X. Ye, J. Liu et al., “CPN based protocol testing sequence
generating method,” Journal of PLA University of Science and
Technology (Natural Science Edition), vol. 13, no. 2, pp. 165-170,
2012.

13

-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization

