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We propose a fast and stable numerical method to evaluate two-dimensional partial differential equation (PDE) for pricing
arithmetic average Asian options. The numerical method is deduced by combining an alternating-direction technique and the
central difference scheme on a piecewise uniform mesh. The numerical scheme is stable in the maximum norm, which is true for
arbitrary volatility and arbitrary interest rate. It is proved that the scheme is second-order convergent with respect to the asset price.
Numerical results support the theoretical results.

1. Introduction

AnAsian option is a derivative productwhose payoff depends
on the average price of the underlying asset, which can be
stocks, commodities, or financial indices. A company that has
to purchase huge amount of an asset such as oil at a fixed
date, but has to sell it by small amount during some period,
could think of Asian options as an effective way to hedge the
risk that comes frommismatch of cash flows.The price of the
Asian option is less subject to price manipulation. Hence, the
averaging feature is popular in many thinly traded markets
and embedded in complex derivatives such as “refix” clauses
in convertible bonds.

Since no general analytical solution for the price of
arithmetic Asian option is known, a variety of techniques
have been proposed. Binomial lattice methods require such
enormous amounts of computer memory (owing to the
necessity of keeping track of every possible path throughout
the tree); thus, they are effectively unusable. Simulation
methods such as Monte Carlo methods have difficulty in
achieving high accuracy for Asian options. Other methods
include sharp bounds [1], closed-form approximations [2],
and Laplace transforms of Asian option prices [3]. The usual
numerical partial differential equation (PDE) methods are
inaccurate since the degeneration of the PDE for pricing
Asian options causes numerical diffusion and spurious oscil-
lation [4, 5]. Zvan et al. [5] apply a flux-limiting method

from computational fluid dynamics to tackle the problem of
spurious oscillations that arise in Asian options. Hugger [6]
proposes an artificial viscosity numerical method for Asian
options to avoid the oscillations. Večeř [7] presents that the
pricing techniques of an option on a traded account could be
applied to price the Asian option, and that the price of the
Asian option is characterized by a simple one-dimensional
PDE. Dubois and Lelièvre [8] use a characteristic method
to solve the Večeř PDE for the Asian option. Cen et al.
[9] present a robust finite difference scheme with a moving
mesh for the Večeř PDE. Mudzimbabwe et al. [10] propose
an implicit finite difference method for the one-dimensional
PDE which is obtained by the exponential transformed for
pricing Asian options. Tangman et al. [11] use the exponential
time integration scheme in combination with a dimensional
splitting technique for pricing Asian options under a variety
of pricing models.

In general, the Asian options pricing model is a
two-dimensional PDE. European-style Asian options and
American-style floating strike options may be valued using
one-dimensional PDEs by making the change of variables.
But, for the American-style fixed strike options, a two-
dimensional PDE needs to be solved. For the sake of gener-
ality, in this paper we consider the two-dimensional PDE for
pricing the Asian options.

Note that the two-dimensional PDE leads to greater
computational costs. It is very natural to consider dimension
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splitting: at each time-step, one alternately solves indepen-
dent one-dimensional problems. Such alternating-direction
implicit (ADI) scheme for classical problems is presented
in detail by, for example, Marchuk [12], Samarskĭı [13], and
Strikwerda [14]. Here, we take advantage of the compu-
tational cost reduction yielded by the use of alternating
directions and of the robust difference schemes for both the
one-dimensional Black-Scholes equation and the advection
equation.

When one uses the standard finite difference method
to solve the Black-Scholes equation, numerical difficulty
rises, especially when the volatility 𝜎 is small. The main
reason is that when the volatility 𝜎 or spatial variable 𝑥 is
small, the partial differential operator becomes a convection-
dominated operator. Hence, the implicit Euler scheme with
central spatial difference method may lead to nonphysical
oscillations in the computed solution. The implicit Euler
scheme with upwind spatial difference method does not have
this disadvantage, but this difference scheme is only first-
order convergent. Applying an Euler transformation [15] to
remove the singularity of the differential operator when the
parameters of the Black-Scholes equation are constant or
space independent, the truncation on the left-hand side of
the transformed domain to artificially remove the degeneracy
may cause computational errors. Furthermore, the uniform
mesh on the transformed interval will lead to the originally
grid points concentrating around 𝑥 = 0 inappropriately.
We have proposed robust difference schemes for the Black-
Scholes equation, which is based on a central difference
spatial discretization on a piecewise uniform mesh and an
implicit time stepping technique [16, 17].

The numerical method is deduced by combining an
alternating-direction technique and the central difference
scheme on a piecewise uniformmesh.The scheme is stable for
arbitrary volatility and arbitrary interest rate. It is proved that
the scheme is second-order convergent with respect to the
asset price. Numerical results support the theoretical results.

In this paper, we propose a fast and stable numerical
scheme to evaluate two-dimensional partial differential equa-
tion arising in pricing arithmetic average Asian options. To
avoid solving a large discrete linear system, we apply the ADI
scheme to alternately solve a one-dimensional Black-Scholes
equation and an advection equation. We apply the central
difference scheme on a piecewise uniform mesh to discrete
the one-dimensional Black-Scholes equation and apply the
implicit Euler scheme to discrete the advection equation. We
will show that the matrices associated with discrete operators
are M-matrices, which ensures that the numerical scheme
is stable in the maximum norm and free of nonphysical
oscillations whether 𝜎2/𝑟 ≤ 1 or 𝜎2/𝑟 > 1. It is proved that the
scheme is second-order convergent with respect to the asset
price. Numerical results support the theoretical results.

The rest of the paper is organized as follows. In the
next section, we describe some theoretical results on the
Asian option pricing model. In Section 3, we give the
corresponding stability and convergence property of the time
semidiscretization. The robust difference schemes for the
spatial discretization are presented in Section 4. The fully

discrete scheme is presented in Section 5. Finally, numerical
experiments are provided to support these theoretical results
in Section 6.

Notation. We always use the (pointwise) maximum norm
‖ ⋅ ‖
𝐷
, where𝐷 is a closed and bounded set.

2. The Continuous Problem

Suppose that the underlying asset price𝑥(𝑡) follows a geomet-
ric Brownian motion

𝑑𝑥 (𝑡) = 𝑟𝑥 (𝑡) 𝑑𝑡 + 𝜎𝑥 (𝑡) 𝑑𝐵 (𝑡) , (1)

where 𝑟 is risk-free interest rate, 𝜎 is the volatility, and 𝐵(𝑡) is
a standard Brownian motion under the risk-neutral measure
P. Let 𝐴(𝑡) denote the underlying asset price running sum
given by

𝐴 (𝑡) = ∫

𝑡

0

𝑥 (𝜏) d𝜏; (2)

then the arithmetically averaged price is given by 𝐴(𝑡)/𝑡. The
stochastic differential equation for evolution of (𝐴(𝑡)) is given
by

𝑑𝐴 (𝑡) = 𝑥 (𝑡) 𝑑𝑡. (3)

Thus, the Asian call option price V (𝑥, 𝐴, 𝑡) for continuous
arithmetic average strike satisfies the following PDE [15, 18]:

𝐿V (𝑥, 𝐴, 𝑡) ≡ −

𝜕V

𝜕𝑡

−

1

2

𝜎
2
𝑥
2 𝜕
2V

𝜕𝑥
2
− 𝑟𝑥

𝜕V

𝜕𝑥

− 𝑥

𝜕V

𝜕𝐴

+ 𝑟V = 0,

(4)

with the terminal condition

V (𝑥, 𝐴, 𝑇) = max (𝐴
𝑇

− 𝐸, 0) , (5)

and the left-hand boundary condition

V (0, 𝐴, 𝑡) = 𝑒
−𝑟(𝑇−𝑡)max (𝐴

𝑇

− 𝐸, 0) , (6)

where𝑇 is the expiry date and𝐸 is the strike price.Note that in
the work of Geman and Yor [3], a simple formula is obtained
for 𝐴 ≥ 𝐸𝑇:

V (𝑥, 𝐴, 𝑡) =
𝑥

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡)

) + (

𝐴

𝑇

− 𝐸) 𝑒
−𝑟(𝑇−𝑡)

. (7)

From this formula the right-hand boundary condition can be
obtained:

V (𝑥, 𝐴, 𝑡) ∼
𝑥

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡)

)

+ 𝑒
−𝑟(𝑇−𝑡)

(

𝐴

𝑇

− 𝐸) , a𝑠 𝑥 󳨀→ +∞.

(8)

See Hugger [19] for the derivation details of boundary value
conditions for Asian options.
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As the exact solution to the problem (4)–(6) for 𝐴 ≥

𝐸𝑇 is known, we only consider the solution of the PDE for
0 < 𝐴 < 𝐸𝑇 using (7) for the boundary condition at
𝐴 = 𝐸𝑇. For applying the numerical method, we truncate
the domain (0, +∞) of spatial variable 𝑥 into (0, 𝑋) for
sufficiently large 𝑋. Based on Willmott et al.’s estimate [15]
that the upper bound of the asset price is typically three
or four times the strike price, it is reasonable for us to set
𝑋 = 4𝐸. The boundary condition at 𝑥 = 𝑋 is chosen to
be V(𝑋, 𝐴, 𝑡) = (𝑋/𝑟𝑇)(1 − 𝑒

−𝑟(𝑇−𝑡)
) + (𝐴/𝑇 − 𝐸) 𝑒

−𝑟(𝑇−𝑡).
Normally, this truncation of the domain leads to a negligible
error in the value of the option [20]. Therefore, in the
remaining of this paper we will consider the following PDE:

𝐿V (𝑥, 𝐴, 𝑡) = 0, (𝑥, 𝐴, 𝑡) ∈ Ω,

V (𝑥, 𝐴, 𝑇) = max(𝐴
𝑇

− 𝐸, 0) , (𝑥, 𝐴) ∈ Ω
1
× Ω
2
,

V (0, 𝐴, 𝑡) = 𝑒
−𝑟(𝑇−𝑡)max(𝐴

𝑇

− 𝐸, 0) , (𝐴, 𝑡) ∈ Ω
2
× Ω
3
,

V (𝑋, 𝐴, 𝑡) =
𝑋

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡)

)

+ (

𝐴

𝑇

− 𝐸) 𝑒
−𝑟(𝑇−𝑡)

, (𝐴, 𝑡) ∈ Ω
2
× Ω
3
,

V (𝑥, 𝐸𝑇, 𝑡) =
𝑥

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡)

) , (𝑥, 𝑡) ∈ Ω
1
× Ω
3
,

(9)

where Ω
1
= (0,𝑋), Ω

2
= (0, 𝐸𝑇), Ω

3
= (0, 𝑇) and Ω = Ω

1
×

Ω
2
× Ω
3
.

3. The Time Semidiscretization

Note that the above problem is a two-dimensional PDEwhich
leads to greater computational costs. It is very natural to con-
sider dimension splitting: at each time-step, one alternately
solves independent one-dimensional problems in the 𝑥 and
𝐴 directions.

We discrete the above PDE in [0, 𝑇] using a uniform
mesh, which is defined by

Ω

𝐾

= {𝑡
𝑛
= 𝑛Δ𝑡, 0 ≤ 𝑛 ≤ 𝐾, Δ𝑡 = 𝑇/𝐾} . (10)

Split the spatial differential operator into the following two
operators:

𝐿
𝑥
≡ −

1

2

𝜎
2
𝑥
2 𝜕
2

𝜕𝑥
2
− 𝑟𝑥

𝜕

𝜕𝑥

+ 𝑟V, 𝐿
𝐴
= −𝑥

𝜕

𝜕𝐴

. (11)

Using the partitions, the semidiscrete scheme can be written
as follows:

(a)

V𝐾 = max (𝐴
𝑇

− 𝐸, 0) , (12)

(b)

(𝐼 + Δ𝑡𝐿
𝑥
) V𝑛+1/2 = V𝑛+1,

V𝑛+1/2 (0, 𝐴) = 𝑒
−𝑟(𝑇−𝑡

𝑛
)max (𝐴

𝑇

− 𝐸, 0) ,

V𝑛+1/2 (𝑋, 𝐴) =
𝑋

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) + (

𝐴

𝑇

− 𝐸) 𝑒
−𝑟(𝑇−𝑡

𝑛
)
,

(13)

(c)

(𝐼 + Δ𝑡𝐿
𝐴
) V𝑛 = V𝑛+1/2,

V𝑛 (𝑥, 𝐸𝑇) =
𝑥

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) .

(14)

This method gives approximations V𝑛(𝑥, 𝐴) to the solution
V(𝑥, 𝐴, 𝑡) of (9) at the time levels 𝑡

𝑛
. The operators (𝐼 + Δ𝑡𝐿

𝑥
)

and (𝐼+Δ𝑡𝐿
𝐴
) satisfy amaximumprinciple, and consequently
󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 + Δ𝑡𝐿

𝑥
)
−1󵄩󵄩
󵄩
󵄩
󵄩Ω
1
×Ω
2

≤

1

1 + 𝑟Δ𝑡

,

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 + Δ𝑡𝐿

𝐴
)
−1󵄩󵄩
󵄩
󵄩
󵄩Ω
1
×Ω
2

≤ 1.

(15)

This ensures the stability of the temporal semidiscretization
(12)–(14) and that each step of the scheme (12)–(14) has a
unique solution V𝑛(𝑥, 𝐴).

The local truncation error is defined as 𝑒
𝑛
= V(𝑡
𝑛
) − V𝑛,

where V𝑛 is the solution of

(𝐼 + Δ𝑡𝐿
𝑥
) V𝑛+1/2 = V (𝑥, 𝐴, 𝑡

𝑛+1
) , (16)

V𝑛+1/2 (0, 𝐴) = 𝑒
−𝑟(𝑇−𝑡

𝑛
)max (𝐴

𝑇

− 𝐸, 0) , (17)

V𝑛+1/2 (𝑋, 𝐴) =
𝑋

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) + (

𝐴

𝑇

− 𝐸) 𝑒
−𝑟(𝑇−𝑡

𝑛
)
, (18)

(𝐼 + Δ𝑡𝐿
𝐴
) V𝑛 = V𝑛+1/2, (19)

V𝑛 (𝑥, 𝐸𝑇) =
𝑥

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) . (20)

The following lemma gives the local error estimates.

Lemma 1. The local error for the scheme (16)–(20) satisfies
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩Ω
1
×Ω
2

≤ 𝐶(Δ𝑡)
2
. (21)

Proof. The function V𝑛 satisfies

(𝐼 + Δ𝑡𝐿
𝑥
) (𝐼 + Δ𝑡𝐿

𝐴
) V𝑛 (𝑥, 𝐴) = V (𝑥, 𝐴, 𝑡

𝑛+1
) . (22)

On the other hand, since the solution of (4) is smooth
enough, we have

V (𝑥, 𝐴, 𝑡
𝑛+1

) = V (𝑥, 𝐴, 𝑡
𝑛
) + Δ𝑡 (𝐿

𝑥
+ 𝐿
𝐴
) V (𝑥, 𝐴, 𝑡

𝑛
)

+ ∫

𝑡
𝑛+1

𝑡
𝑛

(𝑡
𝑛+1

− 𝑠)

𝜕
2V

𝜕𝑠
2
d𝑠

= (𝐼 + Δ𝑡𝐿
𝑥
) (𝐼 + Δ𝑡𝐿

𝐴
) V (𝑥, 𝐴, 𝑡

𝑛
)

+ 𝑂 ((Δ𝑡)
2
) .

(23)
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Hence, 𝑒
𝑛
satisfies

(𝐼 + Δ𝑡𝐿
𝑥
) (𝐼 + Δ𝑡𝐿

𝐴
) 𝑒
𝑛
= 𝑂 ((Δ𝑡)

2
) ,

𝑒
𝑛
(0, 𝐴) = 𝑒

𝑛
(𝑋, 𝐴) = 𝑒

𝑛
(𝑥, 𝐸𝑇) = 0.

(24)

The application of the stability results (15) proves (21).

The following theorem gives the convergence result of the
method (12)–(14).

Theorem 2. The global error associated to the method (12)–
(14), defined by 𝐸

𝑛
= V(𝑡
𝑛
) − V𝑛, satisfies

sup
0≤𝑛<𝐾

󵄩
󵄩
󵄩
󵄩
𝐸
𝑛

󵄩
󵄩
󵄩
󵄩Ω
1
×Ω
2

≤ 𝐶Δ𝑡, (25)

and therefore the time semidiscretizationmethod is a first-order
convergent scheme.

Proof. It is easy to see that

𝐸
𝑛
= 𝑒
𝑛
+ 𝑅𝐸
𝑛+1

, (26)

where

𝑅 = (𝐼 + Δ𝑡𝐿
𝑥
)
−1

(𝐼 + Δ𝑡𝐿
𝐴
)
−1

, (27)

is the transition operator and𝑅𝐸
𝑛+1

is the result obtained after
one step of scheme (13)-(14) with 𝐸

𝑛+1
as final value. Using

this recurrence, we deduce that

𝐸
𝑛
=

𝐾−1

∑

𝑖=𝑛

𝑅
𝑖−𝑛
𝑒
𝑖
. (28)

From

‖𝑅‖
Ω
1
×Ω
2

=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 + Δ𝑡𝐿

𝑥
)
−1󵄩󵄩
󵄩
󵄩
󵄩Ω
1
×Ω
2

⋅

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 + Δ𝑡𝐿

𝐴
)
−1󵄩󵄩
󵄩
󵄩
󵄩Ω
1
×Ω
2

≤

1

1 + 𝑟Δ𝑡

,

(29)

we obtain the desired result.

4. The Spatial Discretization

As discussed in Section 1, the standard finite difference
method to solve the Black-Scholes equation may cause
numerical difficulty. Here, we apply the central difference
scheme on a piecewise uniform mesh [16, 17] to discrete
problem (13) and apply the implicit Euler scheme to discrete
problem (14).Thematrices associated with discrete operators
are M-matrices, which ensure that the scheme is stable for
arbitrary volatility and arbitrary interest rate without any
extra conditions.

The use of central difference scheme on a uniform
mesh may produce nonphysical oscillations in the computed
solution. To overcome this oscillation, we use a piecewise
uniform meshΩ𝑁 on the space interval [0, 𝑋]:

𝑥
𝑖
=

{
{

{
{

{

ℎ 𝑖 = 1,

ℎ [1 +

𝜎
2

𝑟

(𝑖 − 1)] 𝑖 = 2, . . . , 𝑁,

(30)

where

ℎ =

𝑋

1 + (𝜎
2
/𝑟) (𝑁 − 1)

. (31)

For the𝐴 variable discretization, we use a uniformmeshΩ𝑀
on [0, 𝐸𝑇] with 𝑀 mesh elements. It is easy to see that the
mesh sizes ℎ

𝑥,𝑖
= 𝑥
𝑖
− 𝑥
𝑖−1

and ℎ
𝐴,𝑗

= 𝐴
𝑗
− 𝐴
𝑗−1

satisfy

ℎ
𝑥,𝑖

=

{

{

{

ℎ for 𝑖 = 1,

𝜎
2

𝑟

ℎ for 𝑖 = 2, . . . , 𝑁,

(32)

ℎ
𝐴,𝑗

=

𝐸𝑇

𝑀

, 𝑗 = 1, . . . ,𝑀, (33)

respectively. We denote by Ω

𝑁,𝑀,𝐾

= Ω

𝑁

× Ω

𝑀

× Ω

𝐾 the
corresponding mesh for 𝑥, 𝐴, and 𝑡.

Thus, we apply the central difference scheme on the
piecewise uniform mesh and the implicit Euler scheme to
approximate problem (16)–(20):

(𝐼 + Δ𝑡𝐿
𝑁

𝑥
)𝑉

𝑛+1/2

𝑖𝑗
= V𝑛+1
𝑖𝑗

, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 < 𝑀, (34)

𝑉

𝑛+1/2

0,𝑗
= 𝑒
−𝑟(𝑇−𝑡

𝑛
)max(

𝐴
𝑗

𝑇

− 𝐸, 0) , 1 ≤ 𝑖 < 𝑁, (35)

𝑉

𝑛+1/2

𝑁,𝑗
=

𝑋

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) + (

𝐴
𝑗

𝑇

− 𝐸) 𝑒
−𝑟(𝑇−𝑡

𝑛
)
,

1 ≤ 𝑖 < 𝑁,

(36)

(𝐼 + Δ𝑡𝐿
𝑀

𝐴
)𝑉

𝑛

𝑖𝑗
= 𝑉

𝑛+1/2

𝑖𝑗
, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 < 𝑀, (37)

𝑉

𝑛

𝑖,𝑀
=

𝑥
𝑖

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) , 1 ≤ 𝑖 ≤ 𝑁, (38)

where

𝐿
𝑁

𝑥
𝑉

𝑛+1/2

𝑖𝑗
≡ −

𝜎
2
𝑥
2

𝑖

ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

× (

𝑉

𝑛+1/2

𝑖+1,𝑗
− 𝑉

𝑛+1/2

𝑖𝑗

ℎ
𝑥,𝑖+1

−

𝑉

𝑛+1/2

𝑖𝑗
− 𝑉

𝑛+1/2

𝑖−1,𝑗

ℎ
𝑥,𝑖

)

− 𝑟𝑥
𝑖

𝑉

𝑛+1/2

𝑖+1,𝑗
− 𝑉

𝑛+1/2

𝑖−1,𝑗

ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

+ 𝑟𝑉

𝑛+1/2

𝑖𝑗
,

(39)

𝐿
𝑀

𝐴
𝑉

𝑛

𝑖𝑗
≡ −𝑥
𝑖

𝑉

𝑛

𝑖,𝑗+1
− 𝑉

𝑛

𝑖𝑗

ℎ
𝐴,𝑗+1

. (40)

Lemma 3 (discrete maximum principle). The operator (𝐼 +
Δ𝑡𝐿
𝑁

𝑥
) defined by (39) on the piecewise uniform mesh Ω

𝑁

satisfies a discrete maximum principle; that is, if 𝑢
𝑖
and 𝑤

𝑖

are mesh functions that satisfy 𝑢
0

≥ 𝑤
0
, 𝑢
𝑁

≥ 𝑤
𝑁
, and

(𝐼 + Δ𝑡𝐿
𝑁

𝑥
)𝑢
𝑖
≥ (𝐼 + Δ𝑡𝐿

𝑁

𝑥
)𝑤
𝑖
(1 ≤ 𝑖 < 𝑁), then 𝑢

𝑖
≥ 𝑤
𝑖

for all 𝑖.



Journal of Applied Mathematics 5

Proof. Let

𝑎
𝑖
= −

𝜎
2
𝑥
2

𝑖
Δ𝑡

(ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

) ℎ
𝑥,𝑖

+

𝑟𝑥
𝑖
Δ𝑡

ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

,

𝑏
𝑖
=

𝜎
2
𝑥
2

𝑖
Δ𝑡

ℎ
𝑥,𝑖
ℎ
𝑥,𝑖+1

+ 𝑟Δ𝑡 + 1,

𝑐
𝑖
= −

𝜎
2
𝑥
2

𝑖
Δ𝑡

(ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

) ℎ
𝑥,𝑖+1

−

𝑟𝑥
𝑖
Δ𝑡

ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

,

1 ≤ 𝑖 < 𝑁.

(41)

We can obtain

𝑎
𝑖
< −

𝜎
2
𝑥
1
𝑥
𝑖
Δ𝑡

(ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

) ℎ
𝑥,𝑖

+

𝑟𝑥
𝑖
Δ𝑡

ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

≤

(−𝛼𝑥
1
+ 𝛽
∗
ℎ
𝑥,𝑖
)

(ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

) ℎ
𝑥,𝑖

𝑥
𝑖
Δ𝑡

=

(−𝛼ℎ + 𝛽
∗
(𝛼/𝛽
∗
) ℎ)

(ℎ
𝑥,𝑖
+ ℎ
𝑥,𝑖+1

) ℎ
𝑥,𝑖

𝑥
𝑖
Δ𝑡 = 0, 2 ≤ 𝑖 < 𝑁.

(42)

Clearly,

𝑏
𝑖
> 0 for 1 ≤ 𝑖 ≤ 𝑁 − 1,

𝑐
𝑖
< 0 for 1 ≤ 𝑖 ≤ 𝑁 − 2,

𝑏
1
+ 𝑐
1
> 0,

𝑎
𝑖
+ 𝑏
𝑖
+ 𝑐
𝑖
> 0, 2 ≤ 𝑖 ≤ 𝑁 − 2,

𝑎
𝑁−1

+ 𝑏
𝑁−1

> 0.

(43)

Hence, we verify that the matrix associated with (𝐼+Δ𝑡𝐿𝑁
𝑥
) is

anM-matrix.

The local error of the difference scheme (34) is given by

𝜏
𝑖
= (𝐼 + Δ𝑡𝐿

𝑁

𝑥
) (V𝑛+1/2 (𝑥

𝑖
)) − (𝐼 + Δ𝑡𝐿

𝑥
) (V𝑛+1/2 (𝑥

𝑖
)) ,

(44)

for 1 ≤ 𝑖 < 𝑁, where the dependence on the parameter 𝐴
𝑗

is omitted. Applying the Taylor formula, we get the following
estimate for the truncation error:

󵄨
󵄨
󵄨
󵄨
𝜏
𝑖

󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑁

−2
Δ𝑡, 1 ≤ 𝑖 < 𝑁, (45)

where 𝐶 is a positive constant independent of the mesh.
Hence, applying the discrete maximum principle we can get
the following error estimates.

Lemma 4. Let V𝑛+1/2 be the solution of the problem (16)–(18)
and 𝑉𝑛+1/2 be the solution of the problem (34)–(36), then one
has the error estimates

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
V𝑛+1/2 (𝑥

𝑖
, 𝐴
𝑗
) − 𝑉

𝑛+1/2

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑁

−2
Δ𝑡,

1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀,

(46)

where 𝐶 is a constant independent of𝑁 and Δ𝑡.

In the second half step, we have problem (14), whose
discretization is

(𝐼 + Δ𝑡𝐿
𝑀

𝐴
)𝑉

𝑛

𝑖𝑗
= 𝑉

𝑛+1/2

𝑖𝑗
, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 < 𝑀,

𝑉

𝑛

𝑖,𝑀
=

𝑥
𝑖

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) , 1 ≤ 𝑖 ≤ 𝑁.

(47)

In order to find the relation between V𝑛 and𝑉𝑛, we introduce
the auxiliary problem

(𝐼 + Δ𝑡𝐿
𝑀

𝐴
) �̃�
𝑛

𝑖𝑗
= V𝑛+1/2
𝑖𝑗

, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 < 𝑀,

�̃�
𝑛

𝑖,𝑀
=

𝑥
𝑖

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) , 1 ≤ 𝑖 ≤ 𝑁.

(48)

Lemma 5. Let V𝑛 be the solution of the problem (19)-(20) and
�̃�
𝑛 the solution of the problem (48); then one has the error

estimates

󵄨
󵄨
󵄨
󵄨
󵄨
V𝑛 (𝑥
𝑖
, 𝐴
𝑗
) − �̃�
𝑛

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑀

−1
Δ𝑡, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀,

(49)

where 𝐶 is a constant independent of𝑁,𝑀, and Δ𝑡.

Proof. It is easy to see that the matrix associated with
(𝐼 + Δ𝑡𝐿

𝑀

𝐴
) is an M-matrix. Hence, applying the discrete

maximum principle we can obtain the desired results.

Since

�̃�
𝑛

𝑖𝑗
− 𝑉

𝑛

𝑖𝑗
= (𝐼 + Δ𝑡𝐿

𝑀

𝐴
)

−1

(V𝑛+1/2
𝑖𝑗

− 𝑉

𝑛+1/2

𝑖𝑗
) ,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 + Δ𝑡𝐿

𝑀

𝐴
)

−1󵄩󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁

×Ω
𝑀
≤ 1,

(50)

we can obtain

󵄨
󵄨
󵄨
󵄨
󵄨
�̃�
𝑛

𝑖𝑗
− 𝑉

𝑛

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑁

−2
Δ𝑡, (51)

where we have used Lemma 4.
Noting that

V𝑛 (𝑥
𝑖
, 𝐴
𝑗
) − 𝑉

𝑛

𝑖𝑗
= V𝑛 (𝑥

𝑖
, 𝐴
𝑗
) − �̃�
𝑛

𝑖𝑗
+ �̃�
𝑛

𝑖𝑗
− 𝑉

𝑛

𝑖𝑗
, (52)

we can get the following error estimates by (49) and (51).

Theorem 6. Let V𝑛 be the solution of the problem (16)–(20)
and 𝑉𝑛 the solution of the problem (34)–(38); then one has the
error estimates

󵄨
󵄨
󵄨
󵄨
󵄨
V𝑛 (𝑥
𝑖
, 𝐴
𝑗
) − 𝑉

𝑛

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 (𝑁

−2
+𝑀
−1
) Δ𝑡,

1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀,

(53)

where 𝐶 is a constant independent of𝑁,𝑀, and Δ𝑡.
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Table 1: Comparison of the results at mesh point (𝐸, 𝐾𝑇/2, 0) for different values of 𝑋 for fixed parameters: 𝜎 = 0.2, 𝑟 = 0.08, 𝑇 = 1, 𝐸 =

2,𝑁 = 1024, and𝑀 = 𝐾 = 256.

𝑋 𝑋 = 4𝐸 𝑋 = 5𝐸 𝑋 = 6𝐸 𝑋 = 7𝐸 𝑋 = 8𝐸

Price 0.9988279010 0.9988279011 0.9988279013 0.9988279017 0.9988279017

Table 2: Numerical results for Test 1.

𝑀 = 𝐾 𝑁 Error Rate
512 64 8.0147𝑒 − 2 —

128 3.9103𝑒 − 2 1.035
256 1.0132𝑒 − 2 1.948
512 2.1007𝑒 − 3 2.270

Table 3: Numerical results for Test 2.

𝑀 = 𝐾 𝑁 Error Rate
512 64 3.9971𝑒 − 2 —

128 1.0620𝑒 − 2 1.912
256 2.6179𝑒 − 3 2.020
512 5.3662𝑒 − 4 2.286

Table 4: Comparisons of our numerical solutionswith the analytical
solutions.

𝑀 = 𝐾 𝑁 Error Rate
64 32 8.9402𝑒 − 2 —
256 64 2.5838𝑒 − 2 1.791
1024 128 6.8437𝑒 − 3 1.917
4048 256 1.7573𝑒 − 3 1.961

5. The Fully Discrete Scheme

Combining the time semidiscretization scheme (12)–(14) and
the spatial discretization scheme (34)–(38), the following
fully discrete scheme is deduced:

𝑉
𝐾

𝑖𝑗
= max(

𝐴
𝑗

𝑇

− 𝐸, 0) , 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 < 𝑀,

(𝐼 + Δ𝑡𝐿
𝑁

𝑥
)𝑉
𝑛+1/2

𝑖𝑗
= 𝑉
𝑛+1

𝑖𝑗
, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 < 𝑀,

𝑉
𝑛+1/2

0,𝑗
= 𝑒
−𝑟(𝑇−𝑡

𝑛
)max(

𝐴
𝑗

𝑇

− 𝐸, 0) , 1 ≤ 𝑖 < 𝑁,

𝑉
𝑛+1/2

𝑁,𝑗
=

𝑋

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
)

+ (

𝐴
𝑗

𝑇

− 𝐸) 𝑒
−𝑟(𝑇−𝑡

𝑛
)
, 1 ≤ 𝑖 < 𝑁,

(𝐼 + Δ𝑡𝐿
𝑀

𝐴
)𝑉
𝑛

𝑖𝑗
= 𝑉
𝑛+1/2

𝑖𝑗
, 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 < 𝑀,

𝑉
𝑛

𝑖,𝑀
=

𝑥
𝑖

𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡

𝑛
)
) , 1 ≤ 𝑖 ≤ 𝑁,

for 𝑛 = 𝐾 − 1, . . . , 1, 0,

(54)

where the discrete operators 𝐿𝑁
𝑥
, 𝐿
𝑀

𝐴
are described in Sec-

tion 4 and 𝑉𝑛
𝑖𝑗
is the fully discrete approximation to the exact

solution of (9) at the mesh point (𝑥
𝑖
, 𝐴
𝑗
, 𝑡
𝑛
).

Theorem 7 (global error). Let V(𝑥, 𝐴, 𝑡) be the exact solution
of (9) and 𝑉 the discrete solution of the fully discrete scheme
(54). Then, there exists a positive constant 𝐶, independent of
𝑁,𝑀, and Δ𝑡, such that the global error satisfies

󵄩
󵄩
󵄩
󵄩
󵄩
V (𝑥
𝑖
, 𝐴
𝑗
, 𝑡
𝑛
) − 𝑉
𝑛

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁,𝑀,𝐾 ≤ 𝐶 (𝑁

−2
+𝑀
−1
+ Δ𝑡) . (55)

Proof. Splitting the global error in the form
󵄩
󵄩
󵄩
󵄩
󵄩
V (𝑥
𝑖
, 𝐴
𝑗
, 𝑡
𝑛
) − 𝑉
𝑛

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁,𝑀,𝐾

≤

󵄩
󵄩
󵄩
󵄩
󵄩
V (𝑥
𝑖
, 𝐴
𝑗
, 𝑡
𝑛
) − V𝑛
𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁

×Ω
𝑀

+

󵄩
󵄩
󵄩
󵄩
󵄩
V𝑛
𝑖𝑗
− 𝑉

𝑛

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁

×Ω
𝑀 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉

𝑛

𝑖𝑗
− 𝑉
𝑛

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁

×Ω
𝑀 .

(56)

From Lemma 1 andTheorem 6, we deduce
󵄩
󵄩
󵄩
󵄩
󵄩
V (𝑥
𝑖
, 𝐴
𝑗
, 𝑡
𝑛
) − 𝑉
𝑛

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁,𝑀,𝐾

≤ 𝐶 (𝑁
−2
+𝑀
−1
+ Δ𝑡) Δ𝑡 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉

𝑛

𝑖𝑗
− 𝑉
𝑛

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁

×Ω
𝑀 .

(57)

To bound the last term of (57), we take into account that {𝑉𝑛−
𝑉
𝑛
} can be written as the solution of one step of (54), taking

{V(𝑥
𝑖
, 𝐴
𝑗
, 𝑡
𝑛+1

) −𝑉
𝑛+1

𝑖𝑗
} as final value. Applying the stability of

the discrete scheme, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑉

𝑛

𝑖𝑗
− 𝑉
𝑛

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁

×Ω
𝑀 ≤

󵄩
󵄩
󵄩
󵄩
󵄩
V (𝑥
𝑖
, 𝐴
𝑗
, 𝑡
𝑛+1

) − 𝑉
𝑛+1

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩Ω
𝑁

×Ω
𝑀 . (58)

Then, from (57) and (58) a recurrence relation for the global
errors follows, and from it the result of Theorem 7 follows
immediately.

6. Numerical Experiments

In this section, we verify experimentally the theoretical
results obtained in the preceding section. Errors and conver-
gence rates for the finite difference scheme are presented for
two test problems.

Test 1. Fixed strike Asian call option with parameters: 𝜎 =

0.2, 𝑟 = 0.08, 𝑇 = 1, and 𝐸 = 2.
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Figure 1: Computed Asian option value 𝑉 for Test 1.
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Figure 2: Computed Asian option value 𝑉 for Test 2.

Test 2. Fixed strike Asian call option with parameters: 𝜎 =

0.4, 𝑟 = 0.06, 𝑇 = 1, and 𝐸 = 2.

In order to appropriately select 𝑋, we compute the value
of Asian option at one mesh point for different 𝑋. From
Table 1, we see that the value 𝑋 = 4𝐸 is large enough
to guarantee the fact that the price does not depend on
the position of 𝑋. Hence, in our numerical experiments we
choose𝑋 = 4𝐸.

For Test 1, the computed Asian option value 𝑉 at 𝑡 = 0.5

with 𝑁 = 𝑀 = 𝐾 = 64 is depicted in Figure 1 for the asset
price running sum 𝐴 between 0 and 2, since the exact option
value is given by (8) for 𝐴 ≥ 𝐸𝑇 = 2.

For Test 2, the computed Asian option value 𝑉 at 𝑡 = 0.5

with 𝑁 = 𝑀 = 𝐾 = 64 is depicted in Figure 2 for the asset
price running sum 𝐴 between 0 and 2.

To demonstrate the theoretical rates of convergence
numerically, we take 𝑀 = 𝐾 = 512 which is a sufficiently
large choice so that the error is dominated by the 𝑥 variable
discretization.The exact solutions of our test problems for the
asset price running sum𝐴 between 0 and𝐸𝑇 are not available.

We use the approximated solution of 𝑁 = 1024,𝑀 = 𝐾 =

512 as the exact solution. We present the error estimates for
different 𝑁. Because we only know “the exact solution” on
mesh points, we use the linear interpolation to get solutions
at other points. In this paper, �̂�(𝑥, 𝐴, 𝑡) denotes “the exact
solution” which is a linear interpolation of the approximated
solution𝑉1024,512,512. Wemeasure the accuracy in the discrete
maximum norm

𝑒
𝑁,𝑀,𝐾

= max
𝑖,𝑗,𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝑁,𝑀,𝐾

𝑖,𝑗,𝑛
− �̂� (𝑥

𝑖
, 𝐴
𝑗
, 𝑡
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
, (59)

and the convergence rate

𝑅
𝑁,𝑀,𝐾

= log
2
(

𝑒
𝑁,𝑀,𝐾

𝑒
2𝑁,𝑀,𝐾

) . (60)

The error estimates and convergence rates in our computed
solutions of Tests 1 and 2 are listed in Tables 1 and 2,
respectively.

From the figures, it is seen that the numerical solutions
by our method are nonoscillatory. From Tables 2 and 3, we
see that 𝑅𝑁,𝑀,𝐾 is close to 2 for sufficiently large 𝑀 and 𝐾,
which supports the convergence estimate ofTheorem 7.They
indicate that the theoretical results are fairly sharp.

Finally, in order to further confirm the accuracy of our
method we compare our numerical results with the analytical
solutions for 𝐸𝑇 ≤ 𝐴 ≤ 2𝐸𝑇. We give the absolute errors
of the option values and the analytical solutions for 𝐸𝑇 ≤

𝐴 ≤ 2𝐸𝑇 in Table 4 when 𝜎 = 0.2, 𝑟 = 0.08, 𝑇 =

1, 𝐸 = 2,𝑋 = 8, and Ω
2
= (0, 2𝐸𝑇). From Table 4, we see

that 𝑒𝑁,𝑀,𝐾/𝑒2𝑁,4𝑀,4𝐾 is close to 4, which indicates that our
method is second-order convergent with respect to the asset
price and is first-order convergent with respect to both time
variable and spatial variable 𝐴.

7. Conclusion

In this paper, a finite difference scheme to solve the two-
dimensional PDE arising in pricing arithmetic Asian options
is proposed. To avoid solving a large discrete linear system,
the ADI scheme is applied to Asian option pricing; that is,
at each time-step, a one-dimensional Black-Scholes equation
and an advection equation are alternately solved. Since the
standard finite difference method to solve the Black-Scholes
equation leads to numerical difficulty, we apply the central
difference scheme on a piecewise uniform mesh to discrete
the one-dimensional Black-Scholes equation and apply the
implicit Euler scheme to discrete the advection equation. It
is proved that the matrices associated with discrete operators
are M-matrices, which ensures that the numerical scheme
is stable in the maximum norm and free of nonphysical
oscillations whether 𝜎2/𝑟 ≤ 1 or 𝜎2/𝑟 > 1. We show that the
scheme is second-order convergent with respect to the asset
price. Numerical results support the theoretical results.
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