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I show that the compound modified Korteweg-de Vries-Sine-Gordon equations describe pseudospherical surfaces, that is, these
equations are the integrability conditions for the structural equations of such surfaces. I obtain the self-Bäcklund transformations
for these equations by a geometrical method and apply the Bäcklund transformations to these solutions and generate new traveling
wave solutions. Conservation laws for the latter ones are obtained using a geometrical property of these pseudospherical surfaces.

1. Introduction

A differential equation (DE) for a real-valued function 𝑢(𝑥, 𝑡)

is said to describe pseudospherical surfaces (pss) if it is the
necessary and sufficient condition for the existence of smooth
functions 𝑓

𝑖𝑗
, 1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 2, depending on 𝑢 and its

derivatives, such that the 1-forms 𝜔
𝑖

= 𝑓
𝑖1
𝑑𝑥 + 𝑓

𝑖2
𝑑𝑡, 1 ≤

𝑖 ≤ 3 satisfy the structure equations of a surface of a constant
Gaussian curvature equal to −1, that is,

𝑑𝜔
1
= 𝜔
3
∧ 𝜔
2
, 𝑑𝜔

2
= 𝜔
1
∧ 𝜔
3
, 𝑑𝜔

3
= 𝜔
2
∧ 𝜔
1
.

(1)

It is equivalent to say that the DE for 𝑢(𝑥, 𝑡) is necessary and
sufficient for the integrability of the linear system [1–6]

𝑑𝜙 = Ω𝜙, 𝜙 = (

𝜙
1

𝜙
2

) , (2)

where 𝑑 denotes exterior differentiation, 𝜙 is a column vector,
and the 2 × 2 matrix Ω (Ω

𝑖𝑗
, 𝑖, 𝑗 = 1, 2) is traceless

Ω =

1

2

(

𝜔
2

𝜔
1
− 𝜔
3

𝜔
1
+ 𝜔
3

−𝜔
2

) . (3)

Take

Ω = (

𝜂

2

𝑑𝑥 + 𝐴𝑑𝑡 𝑞𝑑𝑥 + 𝐵𝑑𝑡

𝑟𝑑𝑥 + 𝐶𝑑𝑡 −

𝜂

2

𝑑𝑥 − 𝐴𝑑𝑡

)

= 𝑃𝑑𝑥 + 𝑄𝑑𝑡,

(4)

from (2) and (4), we obtain

𝜙
𝑥
= 𝑃𝜙, 𝜙

𝑡
= 𝑄𝜙, (5)

where 𝑃 and 𝑄 are two 2 × 2 null-trace matrices

𝑃 = (

𝜂

2

𝑞

𝑟 −

𝜂

2

) , 𝑄 = (

𝐴 𝐵

𝐶 −𝐴
) . (6)

Here, 𝜂 is a parameter, independent of 𝑥 and 𝑡, while 𝑞 and 𝑟

are functions of 𝑥 and 𝑡. Now,

0 = 𝑑
2
𝜙 = 𝑑Ω𝜙 − Ω ∧ 𝑑𝜙 = (𝑑Ω − Ω ∧ Ω) 𝜙, (7)
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which requires the vanishing of the two forms:

Θ ≡ 𝑑Ω − Ω ∧ Ω = 0, (8)

or in the component form:

𝐴
𝑥
= 𝑞𝐶 − 𝑟𝐵,

𝑞
𝑡
− 2𝐴𝑞 − 𝐵

𝑥
+ 𝜂𝐵 = 0,

𝐶
𝑥
= 𝑟
𝑡
+ 2𝐴𝑟 − 𝜂𝐶.

(9)

Many partial differential equations (PDEs) which are of
interest to study and investigate due to the role they play in
various areas of mathematics and physics are included in this
category [7–25].

The formulation of classical theory of surfaces in a
form is familiar to the soliton theory, which makes possible
an application of the analytical methods of this theory to
integrable cases [26].

The results of [27] were obtained by inverse spectral
method. The results of [28] were obtained using algorithm
for constructing certain exact solutions, such as solutions
describing the interaction of two traveling waves.

The Fokas transform method for solving boundary value
problems for linear and integrable nonlinear PDEs can be
viewed as an extension of the Fourier transform method,
and, indeed, how in simple cases it reduces to the Fourier
transform.The unifying character of the steps involved in the
Fokas method makes it attractive from the theoretical and
formal point of view. For nonlinear integrable problems, this
approach is, at present, the only existing method yielding
results in a general context [29–32].

The Fokas method has a much broader domain of appli-
cability than it is possible to present in [30–33]. For example,
elliptic problems can also be treated by this general approach.
In this case, the analysis of the global relation, which is the
crucial step in the methodology, may involve the solution of
additional Reimann-Hilbert problems. As regards numerical
approximations, preliminary results indicate that, using this
approach, the Dirichlet-to-Neumann map for linear elliptic
problems can also be evaluated, at least for some important
examples, with exponential accuracy [34, 35].

The current paper directions include the implementation
of the geometrical properties and the Bäcklund transforma-
tions (BTs) to generate a new soliton solution and conser-
vation laws for the compound modified Korteweg-de Vries-
sine-Gordon (cmKdV-SG) equations.

The paper is organized as follows. In Section 2, I show
that the cmKdV-SG equations describe pss. In Section 3,
we find the BTs for the cmKdV-SG equations. Exact soliton
solution class from a known constant solution is obtained for
the cmKdV-SG equations. On the other hand, a new exact
traveling wave solutions for the cmKdV-SG equations are
obtained by using the BTs to generate a new soliton solution
class in Section 4. In Section 5, I obtain an infinite number
of conserved densities for the cmKdV-SG equations which
describe pss using a theorem of Khater et al. [18] and Sayed et
al. [23–25]. Finally, I give some conclusions in Section 6.

2. The cmKdV-SG Equations which
Describe pss

The notion of a DE describing pss was first introduced by
Chern and Tenenblat [2], who observed that most of the non-
linear evolution equations (NLEEs) solvable by the method
of inverse scattering [3–5], such as the KdV and mKdV
equations, have the property of describing pss. They also
showed that if 𝑓

21
= 𝜂 and the functions 𝑓

11
and 𝑓

31
do

not depend on 𝜂, then the linear system (2) reduces to the
inverse scattering problem (ISP) considered by Ablowitz et al.
in [3], with 𝜂 corresponding to the spectral parameter. Let𝑀2
be a two-dimensional differentiable manifold parameterized
by coordinates 𝑥, 𝑡. We consider a metric on 𝑀

2 defined
by 𝜔
1
, 𝜔
2
. The first two equations in (1) are the structure

equations which determine the connection from 𝜔
3
, and

the last equation in (1), the Gauss equation, determines that
the Gaussian curvature of 𝑀

2 is −1, that is, 𝑀2 is a pss.
Moreover, the one-forms

𝜔
1
= 𝑓
11
𝑑𝑥 + 𝑓

12
𝑑𝑡, 𝜔

2
= 𝑓
21
𝑑𝑥 + 𝑓

22
𝑑𝑡,

𝜔
3
= 𝑓
31
𝑑𝑥 + 𝑓

32
𝑑𝑡

(10)

satisfy the structure equations (1) of a pss. It has been known,
for a long time, that the SG equation describes a pss. In this
paper, we extend the same analysis to include the cmKdV-SG
equations:

𝛽𝑢
𝑟𝜃

+

1

16

ℎ
4
(𝑢
𝑟
)
2
𝑢
𝑟𝑟

+

1

24

ℎ
4
𝑢
𝑟𝑟𝑟𝑟

− 𝛼 sin 𝑢 = 0, (11)

where 𝛼, 𝛽, ℎ are constants. This equation can be thought
of as a generalization of the mKdV and SG equations. As
particular cases:

(i) when 𝛼 = 0, (11) becomes the mKdV equation in 𝑢
𝑟

which is retrieved,
(ii) while the neglect of the terms in ℎ

4 leads to the SG
equation. Moreover, the introduction of the variables

𝑥 = (24)
1/4 𝑟

ℎ

, 𝑡 = (24)
−1/4 ℎ𝜃

𝛽

, (12)

reduces (11) to the form

𝑢
𝑥𝑡

+ 𝑢
𝑥𝑥𝑥𝑥

+

3

2

𝑢
2

𝑥
𝑢
𝑥𝑥

− 𝛼 sin 𝑢 = 0. (13)

Let 𝑀2 be a differentiable surface, parameterized by coordi-
nates 𝑥, 𝑡. Consider that

𝜔
1
= (𝜂𝑢

𝑥𝑥
+

𝛼

𝜂

sin 𝑢)𝑑𝑡,

𝜔
2
= 𝜂𝑑𝑥 + (

𝛼

𝜂

cos 𝑢 − 𝜂
3
−

𝜂

2

𝑢
2

𝑥
)𝑑𝑡,

𝜔
3
= 𝑢
𝑥
𝑑𝑥 + (−𝑢

𝑥𝑥𝑥
− 𝜂
2
𝑢
𝑥
−

1

2

𝑢
3

𝑥
)𝑑𝑡,

(14)

then 𝑀
2 is a pss if and only if 𝑢 satisfies the cmKdV-SG

equations (13).
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3. The Self-Bäcklund Transformation for
the cmKdV-SG Equations

In this section, we show how the geometrical properties of a
pssmay be applied to obtain analytical results for the cmKdV-
SG equations which describe pss.

The classical Bäcklund theorem originated in the study
of pss, relating solutions of the SG equation. Other trans-
formations have been found relating solutions of specific
equations in [6–9]. Such transformations are called BTs after
the classical one. A BT which relates solutions of the same
equation is called a self-Bäcklund transformation (sBT). An
interesting fact which has been observed is that DEs which
have sBT also admit a superposition formula.The importance
of such formulas is due to the following: if 𝑢

0
is a solution

of the NLEE and 𝑢
1
, 𝑢
2
are solutions of the same equation

obtained by the sBT, then the superposition formula provides
a new solution 𝑢

󸀠 algebraically. By this procedure, one
obtains the soliton solutions of an NLEE. In what follows, we
show that geometrical properties of pss provide a systematic
method to obtain the BTs for someNLEEswhich describe pss.

Proposition 1. Given a coframe {𝜔
1
, 𝜔
2
} and corresponding

connection one-form𝜔
3
on a smooth Riemannian surfaces𝑀2,

there exists a new coframe {𝜔
󸀠

1
, 𝜔
󸀠

2
} and new connection one-

form 𝜔
󸀠

3
satisfying the equations

𝑑𝜔
󸀠

1
= 0, 𝑑𝜔

󸀠

2
= 𝜔
󸀠

2
∧ 𝜔
󸀠

1
, 𝜔

󸀠

3
+ 𝜔
󸀠

2
= 0, (15)

if and only if the surface 𝑀
2 is pss. For the sake of clarity, one

gives a revised proof of [10].

Proof. Assume that the orthonormal dual to the coframes
{𝜔
1
, 𝜔
2
} and {𝜔

󸀠

1
, 𝜔
󸀠

2
} possess the same orientation. The one-

forms 𝜔
𝑖
and 𝜔

󸀠

𝑖
(𝑖 = 1, 2, 3) are connected by means of

𝜔
󸀠

1
= 𝜔
1
cos𝜓 − 𝜔

2
sin𝜓, 𝜔

󸀠

2
= 𝜔
1
sin𝜓 + 𝜔

2
cos𝜓,

𝜔
󸀠

3
= 𝜔
3
− 𝑑𝜓.

(16)

It follows that𝜔󸀠
1
, 𝜔󸀠
2
, 𝜔󸀠
3
satisfying (15) exist if and only if the

Pfaffian system

𝜔
3
− 𝑑𝜓 + 𝜔

1
sin𝜓 + 𝜔

2
cos𝜓 = 0, (17)

on the space of coordinates (𝑥, 𝑡, 𝜓) is completely integrable
for 𝜓(𝑥, 𝑡), and this happens if and only if 𝑀2 is pss.

Geometrically, (15) and (17) determine geodesic coordi-
nates on 𝑀

2. Now, if 𝑢
𝑡
= 𝐹(𝑢, 𝑢

𝑥
, . . . , 𝑢

𝑥
𝑘) (𝑢
𝑥
𝑘 = 𝜕
𝑘
𝑢/𝜕𝑥
𝑘
)

describes pss with associated one-forms 𝜔
𝑖
= 𝑓
𝑖1
𝑑𝑥 + 𝑓

𝑖2
𝑑𝑡,

(15) and (17) imply that the Pfaffian system,

𝜔
3
− 𝑑𝜓 + 𝜔

1
sin𝜓 + 𝜔

2
cos𝜓 = 0, (18)

is completely integrable for 𝜓(𝑥, 𝑡) whenever 𝑢(𝑥, 𝑡) is a local
solution of 𝑢

𝑡
= 𝐹(𝑢, 𝑢

𝑥
, . . . , 𝑢

𝑥
𝑘) [2, 11].

Proposition 2. Let 𝑢
𝑡
= 𝐹(𝑢, 𝑢

𝑥
, . . . , 𝑢

𝑥
𝑘) be an NLEE which

describes a pss with associated one-forms (10). Then, for each

solution 𝑢(𝑥, 𝑡) of 𝑢
𝑡

= 𝐹(𝑢, 𝑢
𝑥
, . . . , 𝑢

𝑥
𝑘), the system of

equations for 𝜓(𝑥, 𝑡),

𝜓
𝑥
− 𝑓
31

+ 𝑓
11
sin𝜓 + 𝜂 cos𝜓 = 0,

𝜓
𝑡
− 𝑓
32

+ 𝑓
12
sin𝜓 + 𝑓

22
cos𝜓 = 0,

(19)

is completely integrable. Moreover, for each solution of 𝑢(𝑥, 𝑡)
of 𝑢
𝑡
= 𝐹(𝑢, 𝑢

𝑥
, . . . , 𝑢

𝑥
𝑘) and corresponding solution 𝜓,

(𝑓
11
cos𝜓 − 𝜂 sin𝜓) 𝑑𝑥 + (𝑓

12
cos𝜓 − 𝑓

22
sin𝜓) 𝑑𝑡, (20)

is a closed one-form [2].

Eliminating 𝜓(𝑥, 𝑡) from (19), by using the substitution

cos𝜓 =

2Γ

1 + Γ
2
, (21)

where

Γ =

𝜙
1

𝜙
2

, (22)

then (19) is reduced to the Riccati equations:

𝜕Γ

𝜕𝑥

= 𝜂Γ +

1

2

𝑓
11

(1 − Γ
2
) −

1

2

𝑓
31

(1 + Γ
2
) , (23)

𝜕Γ

𝜕𝑡

= 𝑓
22
Γ +

1

2

𝑓
12

(1 − Γ
2
) −

1

2

𝑓
32

(1 + Γ
2
) . (24)

The procedure in the following is that one constructs a
transformation Γ

󸀠 satisfying the same equation as (24) with
a potential 𝑢󸀠(𝑥), where

𝑢
󸀠
(𝑥) = 𝑢 (𝑥) + 𝑓 (Γ, 𝜂) . (25)

Thus eliminating Γ in (23), (24), and (25), we have a BT to a
desiredNLEE.We consider the following example (BT for the
cmKdV-SG equations).

For (13), we consider the functions defined by

𝑓
11

= 0, 𝑓
12

= 𝜂𝑢
𝑥𝑥

+

𝛼

𝜂

sin 𝑢,

𝑓
21

= 𝜂, 𝑓
22

=

𝛼

𝜂

cos 𝑢 − 𝜂
3
−

𝜂

2

𝑢
2

𝑥
,

𝑓
31

= 𝑢
𝑥
, 𝑓

32
= −𝑢
3𝑥

− 𝜂
2
𝑢
𝑥
−

1

2

𝑢
3

𝑥
,

(26)

for any solution 𝑢(𝑥, 𝑡) of (13), the above functions satisfy (8).
Then, (23) becomes

𝜕Γ

𝜕𝑥

= 𝜂Γ −

𝑢
𝑥

2

(1 + Γ
2
) . (27)

If we choose Γ
󸀠 and 𝑢

󸀠 as

Γ
󸀠
=

1

Γ

,

𝑢
󸀠
= 𝑢 + 4 tan−1Γ,

(28)
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then Γ
󸀠 and 𝑢

󸀠 satisfy (27). If we eliminate Γ in (27) and (24)
with (28), we get the BT

(𝑢
󸀠
+ 𝑢)
𝑥
= −2𝜂 sin 1

2

(𝑢 − 𝑢
󸀠
) ,

(𝑢 − 𝑢
󸀠
)
𝑡
=2𝑓
32

−2𝑓
12
cos 1

2

(𝑢−𝑢
󸀠
)+2𝑓
22
sin 1

2

(𝑢−𝑢
󸀠
).

(29)

Equation (29) is the BT for the cmKdV-SG equations (13)with
𝑓
12
, 𝑓
22
, and 𝑓

32
given in (26).

4. A New Traveling Wave Solutions for
the cmKdV-SG Equations

For any solution 𝑢(𝑥, 𝑡) of the cmKdV-SG equations (13), the
matrices 𝑃 and 𝑄 are

𝑃 = (

𝜂

2

−

𝑢
𝑥

2

𝑢
𝑥

2

−

𝜂

2

) ,

𝑄 = (

1

2

(−𝜂
3
−

𝜂𝑢
2

𝑥

2

+

𝛼

𝜂

cos 𝑢) 1

2

(𝜂𝑢
𝑥𝑥

+ 𝑢
𝑥𝑥𝑥

+

𝑢
3

𝑥

2

+ 𝜂
2
𝑢
𝑥
+

𝛼

𝜂

sin 𝑢)

1

2

(𝜂𝑢
𝑥𝑥

− 𝑢
𝑥𝑥𝑥

−

𝑢
3

𝑥

2

− 𝜂
2
𝑢
𝑥
+

𝛼

𝜂

sin 𝑢) −

1

2

(−𝜂
3
−

𝜂𝑢
2

𝑥

2

+

𝛼

𝜂

cos 𝑢)
).

(30)

Substitute 𝑢 = 𝑛Π, 𝑛 = 0, ±1, ±2, ±3, . . . into the matrices 𝑃

and 𝑄 in (30), then by (5) we have

𝑑𝜙 = 𝜙
𝑥
𝑑𝑥 + 𝜙

𝑡
𝑑𝑡 = 𝑃𝜙𝑑𝜌

𝑛
, (31)

where

𝑃 = (

𝜂

2

0

0 −

𝜂

2

) ,

𝜌
𝑛
= 𝑥 − 𝑘𝑡, 𝑘 = 𝜂

2
−

𝛼

𝜂
2
(−1)
𝑛
.

(32)

The solution of (31) is

𝜙
𝑛
= 𝑒
𝜌𝑛𝑃

𝜙
0
= (𝐼 + 𝜌

𝑛
𝑃 +

𝜌
2

𝑛
𝑃
2

2!

+

𝜌
3

𝑛
𝑃
3

3!

+ ⋅ ⋅ ⋅) 𝜙
0
, (33)

where 𝜙
0
is a constant column vector. The solution of (33) is

𝜙
𝑛
=(

cosh
𝜂

2

𝜌
𝑛
+sinh

𝜂

2

𝜌
𝑛

0

0 cosh
𝜂

2

𝜌
𝑛
−sinh

𝜂

2

𝜌
𝑛

)𝜙
0
. (34)

Now, we choose 𝜙
0
= (1, 1)

𝑇 in (34), then we have

𝜙
𝑛
= (

𝑒
𝜂𝜌𝑛/2

𝑒
−𝜂𝜌𝑛/2

) . (35)

Substitute (35) into (22), then, by (28), we obtain the new
solutions of the cmKdV-SG equations (13):

𝑢
󸀠
(𝑥, 𝑡) = 𝑛Π + 4 tan−1 (𝑒𝜂𝜌𝑛) , 𝑛 = 0, ±1, ±2, ±3, . . . .

(36)

Consequently, the solution of (11) is

𝑢
󸀠
(𝑟, 𝜃) = 𝑛Π + 4 tan−1 (𝑒𝜂𝜌𝑛) ,

𝜌
𝑛
= (24)

1/4 𝑟

ℎ

− (24)
−1/4 ℎ𝜃

𝛽

𝑘,

𝑘 = 𝜂
2
−

𝛼

𝜂
2
(−1)
𝑛

𝑛 = 0, ±1, ±2, ±3, . . . .

(37)

By means of the same procedures above, we obtain the solu-
tion of mKdV equation:

(i) when 𝛼 = 0 in (13), we obtain the mKdV equation in
𝑢
𝑥

(𝑢
𝑥
)
𝑡
+ (𝑢
𝑥
)
𝑥𝑥𝑥

+

3

2

(𝑢
𝑥
)
2
(𝑢
𝑥
)
𝑥
= 0, (38)

and its solutions is

𝑢
󸀠
(𝑥, 𝑡) = 4

𝜕

𝜕𝑥

tan−1 (𝑒𝜂𝜌) , 𝜌 = 𝑥 − 𝜂
2
𝑡, (39)

(ii) when 𝛼 = 0 in (11), we obtain the mKdV equation in
𝑢
𝑟

𝛽(𝑢
𝑟
)
𝜃
+

1

16

ℎ
4
(𝑢
𝑟
)
2
(𝑢
𝑟
)
𝑟
+

1

24

ℎ
4
(𝑢
𝑟
)
𝑟𝑟𝑟

= 0, (40)

and its solutions is

𝑢
󸀠
(𝑟, 𝜃) = 4

𝜕

𝜕𝑟

tan−1 (𝑒𝜂𝜌) ,

𝜌 = (24)
1/4 𝑟

ℎ

− (24)
−1/4 ℎ𝜃

𝛽

𝜂
2
.

(41)
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Now, we use a known traveling wave solutions for the
cmKdV-SG equations to generate a new solution for the
cmKdV-SG equations by means of the BTs.

We will find a new traveling wave solutions 𝑢󸀠(𝑥, 𝑡) of the
cmKdV-SG equations (13) and substitute these solution into
the corresponding matrices 𝑃 and 𝑄. Next we solve (22) for
𝜙
1
and 𝜙

2
. Then by (22) and the corresponding BTs (28) we

will obtain the new solution classes. We take

𝑢 = 4 tan−1 (𝑒𝜂𝜌) , 𝜌 = 𝑥 − 𝑘𝑡, 𝑘 = 𝜂
2
−

𝛼

𝜂
2
, (42)

as a traveling wave solution class of the cmKdV-SG equations
(13). The traveling wave known solution of the cmKdV-SG
equations takes the form

𝑢 = 𝑢 (𝜌) , 𝜌 = 𝑥 − 𝑘𝑡. (43)

In this case the AKNS system (5) and (6) has a general
solution. Let us consider the more general case. Suppose that

the components 𝑞 and 𝑟 of the matrix 𝑃 are function of 𝜌

[8, 12]:

𝑞 = 𝑞 (𝜌) , 𝑟 = 𝑟 (𝜌) ; (44)

then the components 𝐴, 𝐵 and 𝐶 of the matrix 𝑄 as deter-
mined by (6) are also functions of 𝜌:

𝐴 = 𝐴 (𝜌) , 𝐵 = 𝐵 (𝜌) , 𝐶 = 𝐶 (𝜌) . (45)

Under these assumptions, the following result holds, which is
crucial in the subsequent exact solution. The quantity

𝛽
1
= (𝐴 + 𝑘

𝜂

2

)

2

+ (𝐵 + 𝑘𝑞) (𝐶 + 𝑘𝑟) , (46)

is constant with respect to 𝜌 (or 𝑥 and 𝑡). Using the result of
[13] and the constant 𝛽

1
defined by (46) is greater than zero

and therefore the corresponding solution of theAKNS system
(5) and (6) is:

[

𝜙
1

𝜙
2

] =
[

[

𝑐
1(
𝐶 + 𝑘𝑟)

−1/2
[(𝐴 + 𝑘

𝜂

2

) sinh𝜔 (𝜉 + 𝑐
2
) + 𝜔 cosh𝜔 (𝜉 + 𝑐

2
)]

𝑐
1(
𝐶 + 𝑘𝑟)

1/2 sinh𝜔 (𝜉 + 𝑐
2
)

]

]

, when 𝛽
1
> 0, 𝜔

2
= 𝛽
1
, (47)

where 𝑐
1
and 𝑐
2
are constants and

𝜉 = 𝑡 + ∫

𝑟 𝑑𝜌

𝐶 + 𝑘𝑟

.
(48)

Now applying the results obtained here and the known
traveling wave solutions for the cmKdV-SG equations respec-
tively to construct new solution class of the corresponding
cmKdV-SG equations by means of the BTs. The constant 𝛽

1

and 𝜉 defined by (46), (48) can be determined by using (42)

𝜉 = 𝑡 − [

𝜂
2

2𝜂
4
+ 2𝛼

−

8𝜂
10

9𝜂
12

+ 3𝜂
8
𝛼 − 5𝛼

2
𝜂
4
+ 𝛼
3
] 𝜌

− (

𝜂

12𝜂
4
− 4𝛼

) 𝑒
−2𝜂𝜌

− [

4𝜂
9

9𝜂
12

+ 3𝜂
8
𝛼 − 5𝛼

2
𝜂
4
+ 𝛼
3
]

× ln(𝑒
2𝜂𝜌

+

𝛼 − 3𝜂
4

𝛼 + 𝜂
4
) .

(49)

Consequently, we obtain Γ from (47) for 𝛽
1
> 0

Γ = (𝐶 + 𝑘𝑟)
−1

[(𝐴 + 𝑘

𝜂

2

) + 𝜔 coth𝜔 (𝜉 + 𝑐
2
)] , (50)

then substituting this Γ into the BTs (28) and using (42), we
arrive at the new solution 𝑢

󸀠 of the cmKdV-SG equations
(13) corresponding to the known travelingwave solution class
(42), then

𝑢
󸀠
(𝑥, 𝑡) = 4 [tan−1 (𝑒𝜂𝜌) + tan−1Γ] . (51)

Consequently, the solution of (11) is

𝑢
󸀠
(𝑟, 𝜃) = 4 [tan−1 (𝑒𝜂𝜌) + tan−1Γ] ,

𝜌=(24)
1/4 𝑟

ℎ

−(24)
−1/4 ℎ𝜃

𝛽

𝑘, 𝑘=𝜂
2
−

𝛼

𝜂
2
.

(52)

By means of the same procedures above,
(i) we obtain the solution of mKdV equation (38),

𝑢
󸀠
(𝑥, 𝑡) = 4

𝜕

𝜕𝑥

[tan−1 (𝑒𝜂𝜌) + tan−1Γ] ,

𝜌 = 𝑥 − 𝜂
2
𝑡,

𝜉 = 𝑡 +

7

9𝜂
2
𝜌 −

1

12𝜂
3
𝑒
−2𝜂𝜌

−

4

9𝜂
3
ln (𝑒
2𝜂𝜌

− 3) ,

(53)

(ii) we obtain the solution of mKdV equation (40),

𝑢
󸀠
(𝑟, 𝜃) = 4

𝜕

𝜕𝑥

[tan−1 (𝑒𝜂𝜌) + tan−1Γ] ,

𝜌 = (24)
1/4 𝑟

ℎ

− (24)
−1/4 ℎ𝜃

𝛽

𝜂
2
,

𝜉 = (24)
−1/4 ℎ𝜃

𝛽

+

7

9𝜂
2
𝜌 −

1

12𝜂
3
𝑒
−2𝜂𝜌

−

4

9𝜂
3
ln (𝑒
2𝜂𝜌

− 3) .

(54)

5. Conservation Laws for
the cmKdV-SG Equations

One of the most widely accepted definitions of integrability
of PDEs requires the existence of soliton solutions, that is,
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of a special kind of traveling wave solutions that interact
“elastically,” without changing their shapes. The analytical
construction of soliton solutions is based on the general ISM.
In the formulation of Zakharov and Shabat [14], all known
integrable systems supporting solitons can be realized as
the integrability condition of a linear problem of the form
(5). Thus, an equation (5) is kinematically integrable if it is
equivalent to the curvature condition

𝑃
𝑥
− 𝑄
𝑡
+ [𝑃, 𝑄] = 0. (55)

Asmentioned in the previous sections, Sasaki [15], Chern and
Tenenblat [2], and Cavalcante and Tenenblat [16] have given
a geometrical method for constructing conservation laws of
equations describing pss. The formal content of this method
is contained in the following theorem, which may be seen
as generalizing the classical discussion on conservation laws
appearing in Wadati et al. [17].

Theorem 3. Suppose that 𝑢
𝑡

= 𝐹(𝑢, 𝑢
𝑥
, . . . , 𝑢

𝑥
𝑘) or more

generally 𝐹(𝑥, 𝑡, 𝑢, 𝑢
𝑥
, . . . , 𝑢

𝑥
𝑛
𝑡
𝑚) = 0 is an NLEE describing

pss. The systems

𝐷
𝑥
𝜙
1
= 𝑞𝑟 + (

𝐷
𝑥
𝑞

𝑞

− 𝜂)𝜙
1
− 𝜙
2

1
, (56)

𝐷
𝑡
(

𝜂

2

+ 𝜙
1
) = 𝐷

𝑥
(𝐴 +

𝐵

𝑞

𝜙
1
) , (57)

𝐷
𝑥
𝜙
2
= −𝑞𝑟 + (

𝐷
𝑥
𝑟

𝑟

+ 𝜂) 𝜙
2
+ 𝜙
2

2
, (58)

𝐷
𝑡
(

𝜂

2

+ 𝜙
2
) = 𝐷

𝑥
(𝐴 +

𝐶

𝑟

𝜙
2
) , (59)

in which 𝐷
𝑥
and 𝐷

𝑡
are the total derivative operators defined

by

𝐷
𝑥
=

𝜕

𝜕𝑥

+

∞

∑

𝑘=0

𝑢
𝑘+1

𝜕

𝜕𝑢
𝑘

,

𝐷
𝑡
=

𝜕

𝜕𝑡

+

∞

∑

𝑘=0

𝐷
𝑘

𝑥
(𝑓)

𝜕

𝜕𝑢
𝑘

,

(60)

are integrable on solutions of the equation 𝑢
𝑡

= 𝐹(𝑢, 𝑢
𝑥
, . . . ,

𝑢
𝑥
𝑘) or generally 𝐹(𝑥, 𝑡, 𝑢, 𝑢

𝑥
, . . . , 𝑢

𝑥
𝑛
𝑡
𝑚) = 0 [18].

This theorem provides one with at least one 𝜂-dependent
conservation law of the NLEE 𝑢

𝑡
= 𝐹(𝑢, 𝑢

𝑥
, . . . , 𝑢

𝑥
𝑘) or

𝐹(𝑥, 𝑡, 𝑢, 𝑢
𝑥
, . . . , 𝑢

𝑥
𝑛
𝑡
𝑚) = 0, to wit, (56) and (57) or ((58) and

(59)). One obtains a sequence of 𝜂-independent conservation
laws by expanding 𝜙

1
or 𝜙
2
in inverse powers of 𝜂 [19, 22].

Moreover,

𝜙
2
=

∞

∑

𝑛=1

𝜙
(𝑛)

2
𝜂
−𝑛

, (61)

and the consideration of (58) yields the recursion relation

𝜙
(1)

2
= −𝑞𝑟,

𝜙
(𝑛+1)

2
=

𝐷
𝑥
𝑟

𝑟

𝜙
(𝑛)

2
+ 𝐷
𝑥
𝜙
(𝑛)

2
+

𝑛−1

∑

𝑖=1

𝜙
(𝑖)

2
𝜙
(𝑛−𝑖)

2
, 𝑛 ≥ 1,

(62)

which in turn, by replacing into (59), yields the sequence of
conservation laws of equations integrable by AKNS inverse
scattering found by Wadati et al. [17]. This section ends with
the example.

For (13), we consider the functions of 𝑢(𝑥, 𝑡) defined by

𝑟 =

𝑢
𝑥

2

, 𝑞 = −

𝑢
𝑥

2

, (63)

𝐴 =

1

2

(−𝜂
3
−

𝜂𝑢
2

𝑥

2

+

𝛼

𝜂

cos 𝑢) ,

𝐵 =

1

2

(𝜂𝑢
𝑥𝑥

+ 𝑢
𝑥𝑥𝑥

+

𝑢
3

𝑥

2

+ 𝜂
2
𝑢
𝑥
+

𝛼

𝜂

sin 𝑢) ,

(64)

𝐶 =

1

2

(𝜂𝑢
𝑥𝑥

− 𝑢
𝑥𝑥𝑥

−

𝑢
3

𝑥

2

− 𝜂
2
𝑢
𝑥
+

𝛼

𝜂

sin 𝑢) . (65)

Equation (58) becomes

𝐷
𝑥
𝜙
2
=

1

4

𝑢
2

𝑥
+ (

𝑢
𝑥𝑥

𝑢
𝑥

+ 𝜂)𝜙
2
+ 𝜙
2

2
. (66)

Assume that 𝜙
2
can be expanded in a series of the form (61).

Equation (64) implies that 𝜙
2
is determined by the

recursion relation

𝜙
(1)

2
=

1

4

𝑢
2

𝑥
,

𝜙
(𝑛+1)

2
=

𝑢
𝑥𝑥

𝑢
𝑥

𝜙
(𝑛)

2
+𝐷
𝑥
𝜙
(𝑛)

2
+

𝑛−1

∑

𝑖=1

𝜙
(𝑖)

2
𝜙
(𝑛−𝑖)

2
, 𝑛≥1,

(67)

whenever 𝑢(𝑥, 𝑡) is a solution of the the cmKdV-SG equa-
tions. This recursion relation yields a sequence of conserved
densities given by the coefficients of the series in 𝜂

𝜂

2

+

∞

∑

𝑛=1

𝜙
(𝑛)

2
𝜂
−𝑛

, (68)

which one obtains from (59).

6. Conclusions

In this paper, I show how the geometrical properties of a pss
may be applied to obtain analytical results for the cmKdV-
SG equations which describe pss. It has been shown that the
implementation of certain BTs for a class of NLEE requires
the solution of the underlying linear differential equation
whose coefficients depend on the known solution 𝑢(𝑥, 𝑡) of
the NLEE. I obtain a new traveling wave solutions for the
cmKdV-SG equations by using BTs. Next, an infinite number
of conservation laws is derived for the cmKdV-SG equations
justmentioned using a theorembyKhater et al. [18] and Sayed
et al. [23–25].
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