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The steady flowof an incompressible, third-grade fluid in helical screw rheometer (HSR) is studied by “unwrapping or flattening” the
channel, lands, and the outside rotating barrel. The geometry is approximated as a shallow infinite channel, by assuming that the
width of the channel is large as compared to the depth. The developed second-order nonlinear coupled differential equations are
reduced to single differential equation by using a transformation. Using Adomian decomposition method, analytical expressions
are calculated for the the velocity profiles and volume flow rates.The results have been discussed with the help of graphs as well. We
observed that the velocity profiles are strongly dependant on non-Newtonian parameter ( ̃𝛽), and with the increase in ̃

𝛽, the velocity
profiles increase progressively, which conclude that extrusion process increases with the increase in ̃

𝛽. We also observed that the
increase in pressure gradients in x- and z-direction increases the net flow inside the helical screw rheometer, which increases the
extrusion process. We noticed that the flow increases as the flight angle increase.

1. Introduction

In real life, there are many materials that exhibit the mechan-
ical characteristics of both elasticity and viscosity. These
materials are known as non-Newtonian fluids. These fluids
cannot be described satisfactorily by the theory of elasticity or
viscosity but by a combination of both. Due to the rheological
behavior of these fluids, many constitutive equations are pro-
posed [1]. In most fluid food products, the shear stress is
dependent on the share rate; hence, nonlinear flow curve
results and a unique viscosity are no longer adequate to char-
acterize the fluid. Many fluids such as molten plastics, poly-
mers, and slurries are non-Newtonian in their flow behav-
ior. The basic governing equations for such fluids motion
are highly nonlinear differential equations having no general
solution, and only a limited number of exact solutions have
been established for particular problems. To solve practi-
cal problems in engineering and mathematics, researchers
and scientists have developed numerous numerical tech-
niques, that is, finite difference method (FDM), finite vol-
ume approach, control-volume-based finite element method
(CVFEM), lattice Boltzmann method (LBM), and analytical

techniques, that is, variational iteration method (VIM),
perturbation method (PM), homotopy perturbation method
(HPM), HPM-Pade technique, homotopy analysis method
(HAM), optimal homotopy analysis method (OHAM), opti-
mal homotopy perturbation method (OHPM), and some
other techniques, to overcome nonlinearity and get numer-
ical and analytical solutions [2–10]. A brief review on ana-
lytical techniques is presented by [11]. In recent years in
the area of series solutions, an iterative technique Adomian
decomposition method [12, 13] has received much attention.
A considerable amount of research work has been invested
in the application of this method to a wide class of linear,
nonlinear, and partial differential equations and integral
equations. Many interesting problems in applied science and
engineering have been successfully solved by using ADM
to their higher degree of accuracy. A useful quality of the
ADM is that it has proved to be a competitive alternative to
the Taylor series method and other series techniques. This
method has been used in obtaining analytic and approximate
solutions to a wide class of linear and nonlinear, differ-
ential and integral equations, homogeneous or inhomoge-
neous, with constant coefficients or with variable coefficients.
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The Adomian decomposition method is comparatively eas-
ier to program in engineering problems than other series
methods and provides immediate and visible solution terms
without linearization, perturbation, or discretization of the
problem, while the physical behavior of the solution remains
unchanged. It provides analytical solution in the form of an
infinite series in which each term can be easily determined
[14–16]. If an exact solution exists for the problem, then
the obtained series converges very rapidly to the solution.
For concrete problems, where a closed-form solution is not
obtainable, a truncated number of terms are usually used for
numerical purposes [17].

The Helical Screw Rheometer (HSR) consists of a helical
screw in a tight fitting cylinder, with the inlet and outlet parts
closing the inner screw. Rotation of screw creates a pressure
gradient along the axis of the screw. The HSR is being used
for rheological measurements of fluid food suspensions. The
geometry of an HSR is similar to a single-screw extruder [18].
Extrusion process is widely used in multigrade oils, liquid
detergents, paints, polymer solutions and polymer melts [19],
the injection molding process for polymeric materials, the
production of pharmaceutical products, food extrusion, and
processing of plastics [20]. Various food items in daily life,
such as cookie dough, sevai, pastas, breakfast cereals, french
fries, baby food, ready to eat snacks, and dry pet food, are
most commonly manufactured using the extrusion process.

Knowledge of rheological properties is essential in the
processing of fluid foods since these affect the flow behavior.
During processing, physical and chemical changes can occur
so it is desirable to monitor the process to achieve excellent
output and quality control [21]. On-line rheological measure-
ments in the food industry have been limited [22].

Bird et al. [23] presented an asymptotic solution and
arbitrary values of the flow behavior index, for the power-
law fluid in a very thin annulus. A brief discussion is given
byMohr andMallouk [24] for the same problem considering
Newtonian fluid in a screw extruder. Tamura et al. [18] also
investigated the flow of Newtonian fluid in helical screw
rheometer.

The objective of this paper is to study the flow of third-
grade fluid in helical screw rheometer (HSR)where the effects
of curvature and also of flights are neglected by assuming
that the helical channel is “unwrapped.” The geometry is
approximated as a shallow infinite channel, with ℎ/𝐵 ≪ 1,
where 𝐵 denotes the channel width and ℎ is gap [18]. The
formulation results in second-order nonlinear coupled dif-
ferential equations which are reduced to first-order nonlinear
differential equations by integrating and combined in single
first-order differential equation using a transformation, the
solution is obtained by using ADM. Analytical expressions
are given for the velocity components in 𝑥-, 𝑧-directions
and in direction of the screw axis. Volume flow rates are
also obtained for all three types of velocities. The paper
is organized as follows. Section 2 contains the governing
equations of the fluid model. In Section 3, the problem
under consideration is formulated. In Section 4, description
of Adomian decompositionmethod is given. In Section 5, the
governing equation of the problem is solved. In Section 6,
results are discussed. Section 7 contains conclusion.

2. Basic Equations

The basic equations governing the motion of an incompress-
ible fluid are

divV = 0, (1)

𝜌

𝐷V
𝐷𝑡

= 𝜌f + divT, (2)

where 𝜌 is the constant fluid density,V is the velocity vector, f
is the body force per unitmass, the𝐷/𝐷𝑡 denotes thematerial
time derivative defined as

𝐷 (∗)

𝐷𝑡

=

𝜕

𝜕𝑡

(∗) + (V ⋅ ∇) (∗) ,
(3)

and T is the Cauchy stress tensor, given as

T = −𝑃I + S, (4)

where 𝑃 denotes the dynamic pressure, I denotes unit tensor,
and S denotes the extra stress tensor. The constitutive equa-
tion for third-grade fluid is defined as

S = 𝜇A
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where 𝜇 is the viscosity, 𝛼
1
, 𝛼
2
, 𝛽
1
, 𝛽
2
, and 𝛽

3
are the material

constants, A
1
, A
2
, and A

3
are the first three Rivlin-Ericksen

tensors defined as [19]

A
1
= (gradV) + (gradV)𝑇,

A
𝑛+1

=

𝐷A
𝑛

𝐷𝑡

+ [A
𝑛
(gradV) + (gradV)𝑇A

𝑛
] , (𝑛 = 1, 2) .

(6)

3. Problem Formulation

Consider the steady flow of an isothermal, incompressible
and homogeneous third-grade fluid in helical screw rheome-
ter (HSR) in such a way that the curvature of the screw chan-
nel is ignored, unrolled and laid out on a flat surface. The
barrel surface is also flattened. Assume that the screw surface,
the lower plate, is stationary, and the barrel surface, the upper
plate, is moving across the top of the channel with velocity
𝑉 at an angle 𝜙 to the direction of the channel Figure 1. The
phenomena is the same as the barrel held stationary and the
screw rotates. The geometry is approximated as a shallow
infinite channel, by assuming that the width 𝐵 of the channel
is large compared with the depth ℎ; edge effects in the fluid
at the land are ignored. The coordinate axes are positioned
in such a way that the 𝑥-axis is perpendicular to the wall
and 𝑧-axis is in down channel direction. The liquid wets all
the surfaces and moves by the shear stresses produced by the
relative movement of the barrel and channel. For simplicity,
the velocity of the barrel relative to the channel is broken up
into two components:𝑈 is along 𝑥-axis and𝑊 is along 𝑧-axis
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Figure 1:The geometry of the “unwrapped” screw channel and bar-
rel surface.

[24]. Under these assumptions the velocity field and cauchy
stress tensor can be written as

V = [𝑢 (𝑦) , 0, 𝑤 (𝑦)] , T = T (𝑦) . (7)

On substituting (7) in (4) and (5), we obtain nonzero compo-
nents of Cauchy stress T,

𝜏
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= −𝑃 + 𝛼

2
(

𝑑𝑢

𝑑𝑦

)

2

,

𝜏

𝑥𝑦
= 𝜏

𝑦𝑥
= 𝜇

𝑑𝑢

𝑑𝑦

+ 2 (𝛽

2
+ 𝛽

3
) {(

𝑑𝑢

𝑑𝑦

)

2

+ (

𝑑𝑤

𝑑𝑦

)

2

}

𝑑𝑢

𝑑𝑦

,

𝜏

𝑥𝑧
= 𝜏

𝑧𝑥
= 𝛼

2

𝑑𝑢

𝑑𝑦

𝑑𝑤

𝑑𝑦

,

𝜏

𝑦𝑦
= −𝑃 + (2𝛼

1
+ 𝛼

2
) [(

𝑑𝑢

𝑑𝑦

)

2

+ (

𝑑𝑤

𝑑𝑦

)

2

] ,

𝜏

𝑦𝑧
= 𝜏

𝑧𝑦
= 𝜇

𝑑𝑤

𝑑𝑦

+ 2 (𝛽

2
+ 𝛽

3
) {(

𝑑𝑢

𝑑𝑦

)

2

+ (

𝑑𝑤

𝑑𝑦

)

2

}

𝑑𝑤

𝑑𝑦

,

𝜏

𝑧𝑧
= −𝑃 + 𝛼

2
(

𝑑𝑤

𝑑𝑦

)

2

,

(8)

where T = [𝜏

𝑖𝑗
].

Using (7), (1) is identically satisfied, and (2) in the absence
of body forces results in
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Define the modified pressure ̂𝑃 as
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which implies that ̂𝑃 =
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The associated boundary conditions can be taken as (see
Figure 1)

𝑢 = 0, 𝑤 = 0, at 𝑦 = 0,

𝑢 = 𝑈, 𝑤 = 𝑊, at 𝑦 = ℎ,
(12)

where

𝑈 = −𝑉 sin𝜙, 𝑊 = 𝑉 cos𝜙. (13)

Introducing nondimensionalized parameters
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=
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in (11)-(12), takes the form

𝑑

2
𝑢

∗

𝑑𝑦

∗2
+

̃

𝛽

∗ 𝑑

𝑑𝑦

∗
[{(

𝑑𝑢

∗

𝑑𝑦

∗
)

2

+ (

𝑑𝑤

∗

𝑑𝑦

∗
)

2

}

𝑑𝑢

∗

𝑑𝑦

∗
] =

𝜕𝑃

∗

𝜕𝑥

∗
,

𝑑

2
𝑤

∗

𝑑𝑦

∗2
+

̃

𝛽

∗ 𝑑
∗

𝑑𝑦

∗
[{(

𝑑𝑢

∗

𝑑𝑦

∗
)

2

+ (

𝑑𝑤

∗

𝑑𝑦

∗
)

2

}

𝑑𝑤

∗

𝑑𝑦

∗
] =

𝜕𝑃

∗

𝜕𝑧

∗
,

𝑢

∗
= 0, 𝑤

∗
= 0, at 𝑦∗ = 0,

𝑢

∗
=

𝑈

𝑊

, 𝑤

∗
= 1, at 𝑦∗ = 1.

(15)

Dropping "∗" from (15) onward and defining

𝐹 = 𝑢 + 𝜄𝑤, 𝑉

0
=

𝑈

𝑊

+ 𝜄1, 𝐺 = 𝑃

,𝑥
+ 𝜄𝑃

,𝑧
, (16)

where 𝜕𝑃/𝜕𝑥 = 𝑃
,𝑥
, 𝜕𝑃/𝜕𝑧 = 𝑃

,𝑧
in (15) reduce to
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where 𝐹 is the complex conjugate of 𝐹.
The boundary conditions become

𝐹 = 0 at 𝑦 = 0,

𝐹 = 𝑉

0
at 𝑦 = 1.

(18)

Equation (17) is second-order nonlinear ordinary differential
equation, and the exact solution seems to be difficult. In the
following section, we use Adomian decomposition method
to obtain the approximate solution. To obtain the expressions
for the velocity components in 𝑥- and 𝑧-directions, (17)
together with the boundary conditions (18) is solved up to
the second component approximations by using the symbolic
computation software Wolfram Mathematica 7.

4. Description of Adomian
Decomposition Method

Consider equation 𝐽[𝐹(𝑦)] = 𝑔(𝑦), where 𝐽 represents a
general nonlinear ordinary or partial differential operator
including both linear and nonlinear terms. The linear terms
are decomposed into 𝐿 + 𝑅, where 𝐿 is invertible. 𝐿 is taken
as the highest-order derivative to avoid difficult integrations,
and 𝑅 is the remainder of the linear operator. Thus, the
equation can be written as

𝐿 (𝐹) + 𝑅 (𝐹) + 𝑁 (𝐹) = 𝑔 (𝑦) , (19)

where𝑁(𝐹) indicates the nonlinear term and 𝑔(𝑦) is forcing
function. Since 𝐿 is invertible, so 𝐿−1 exist. The above equa-
tion can be written as

𝐿

−1
𝐿 (𝐹) = 𝐿

−1
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𝑅 (𝐹) − 𝐿
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2
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where 𝐶
1
and 𝐶

2
are constants of integration and can be

determined by using boundary or initial conditions. ADM
assumes that the solution 𝐹 can be expanded into infinite
series as 𝐹 = ∑

∞
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𝐹

𝑛
; also, the nonlinear term 𝑁(𝐹) will be
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finally, the solution can be written as
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and (25) is 𝑛th-order solution. The practical solution will be
the 𝑛-term approximation

𝜙
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and by definition [25–27],
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𝑖
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5. Solution of the Problem

Adomian decomposition method describes that in the oper-
ator form (17) can be written as
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where 𝐿 is the differential operator taken as the highest-order
derivative to avoid difficult integrations, assuming that 𝐿 is
invertible, which implies that 𝐿−1 = ∫∫(∗)𝑑𝑦 𝑑𝑦 exist.

On applying 𝐿−1 to both sides of (28) results in
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where 𝐴 and 𝐵 are constants of integration and can be deter-
mined by using boundary conditions. According to proce-
dure of Adomian decomposition method 𝐹 and 𝐹 can be
written in component form as:
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∞
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∞

∑

𝑛=0

𝐹

𝑛
= 𝐴 + 𝐵𝑦 + 𝐿

−1
(𝐺) −

̃

𝛽𝐿

−1

× {(

𝑑

𝑑𝑦

(

∞

∑

𝑛=0

𝐹

𝑛
))

2

(

𝑑

2

𝑑𝑦

2
(

∞

∑

𝑛=0

𝐹

𝑛
))

+ 2(

𝑑

𝑑𝑦

(

∞

∑

𝑛=0

𝐹

𝑛
))(

𝑑

2

𝑑𝑦

2
(

∞

∑

𝑛=0

𝐹

𝑛
))

× (

𝑑

𝑑𝑦

(

∞

∑

𝑛=0

𝐹

𝑛
))} .

(31)

Adomian also suggested that the nonlinear terms can be
explored in the form of Adomian polynomials, say, 𝐴

𝑛
and

𝐵

𝑛
as
∞

∑

𝑛=0

𝐴

𝑛
= (

𝑑

𝑑𝑦

(

∞

∑

𝑛=0

𝐹

𝑛
))

2

(

𝑑

2

𝑑𝑦

2
(

∞

∑

𝑛=0

𝐹

𝑛
)) ,

∞

∑

𝑛=0

𝐵

𝑛
= 2(

𝑑

𝑑𝑦

(

∞

∑

𝑛=0

𝐹

𝑛
))(

𝑑

2

𝑑𝑦

2
(

∞

∑

𝑛=0

𝐹

𝑛
))(

𝑑

𝑑𝑦

(

∞

∑

𝑛=0

𝐹

𝑛
)) .

(32)

Equation (31) yields
∞

∑

𝑛=0

𝐹

𝑛
= 𝐴 + 𝐵𝑦 + 𝐿

−1
(𝐺) −

̃

𝛽𝐿

−1
(

∞

∑

𝑛=0

𝐴

𝑛
+

∞

∑

𝑛=0

𝐵

𝑛
) .

(33)

The associated boundary conditions (18) will be
∞

∑

𝑛=0

𝐹

𝑛
= 0, 𝑦 = 0,

∞

∑

𝑛=0

𝐹

𝑛
= 𝑉

0
, 𝑦 = 1.

(34)

The recursive relation in (33) and (34) gives the component
problems

𝐹

0
= 𝐴 + 𝐵𝑦 + 𝐿

−1
(𝐺) , (35)

along with boundary conditions

𝐹

0
= 0, 𝑦 = 0,

𝐹

0
= 𝑉

0
, 𝑦 = 1,

(36)

𝐹

𝑗+1
= −

̃

𝛽𝐿

−1
(𝐴

𝑗
+ 𝐵

𝑗
) , 𝑗 ≥ 0 (37)

together with the boundary conditions

∞

∑

𝑛=1

𝐹

𝑛
= 0, 𝑦 = 0,

∞

∑

𝑛=1

𝐹

𝑛
= 0, 𝑦 = 1.

(38)

The ADM solution to (33) along with the boundary condi-
tions (34) will be

𝐹 =

∞

∑

𝑛=0

𝐹

𝑛
. (39)

5.1. Zeroth Component Solution. The relations (35) and (36)
give the zeroth component problem

𝐹

0
= 𝐴 + 𝐵𝑦 + 𝐿

−1
(𝐺) , (40)

and the boundary conditions are

𝐹

0
= 0 at 𝑦 = 0,

𝐹

0
= 𝑉

0
at 𝑦 = 1,

(41)

which gives the solution

𝑢

0
=

𝑈

𝑊

𝑦 +

1

2

𝑃

,𝑥
(𝑦

2
− 𝑦) , (42)

𝑤

0
= 𝑦 +

1

2

𝑃

,𝑧
(𝑦

2
− 𝑦) , (43)

which are the linearly viscous solutions to the problem.

5.2. First Component Solution. Equations (37) and (38) give

𝐹

1
= −

̃

𝛽𝐿

−1
(𝐴

0
+ 𝐵

0
) , (44)

𝐹

1
= 0 at 𝑦 = 0,

𝐹

1
= 0 at 𝑦 = 1,

(45)

where the remainder term 𝑅 of the linear part is zero and

𝐴

0
= (

𝑑𝐹

0

𝑑𝑦

)

2
𝑑

2
𝐹

0

𝑑𝑦

2
,

𝐵

0
= 2(

𝑑𝐹

0

𝑑𝑦

𝑑

2
𝐹

0

𝑑𝑦

2

𝑑𝐹

0

𝑑𝑦

)

(46)

are Adomian polynomials. Using (45)-(46) in (44) results in

𝑢

1
= −

̃

𝛽 {𝐿

11
(𝑦

2
− 𝑦) + 𝐿

12
(𝑦

3
− 𝑦) + 𝐿

13
(𝑦

4
− 𝑦)} ,

(47)

𝑤

1
= −

̃

𝛽 {𝑇

11
(𝑦

2
− 𝑦) + 𝑇

12
(𝑦

3
− 𝑦) + 𝑇

13
(𝑦

4
− 𝑦)} ,

(48)

where 𝐿
11
, 𝐿
12
, 𝐿
13
, 𝑇
11
, 𝑇
12
, and 𝑇

13
are constants given in

appendix.
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5.3. Second Component Solution. The relations (37) and (38)
give

𝐹

2
= −

̃

𝛽𝐿

−1
(𝐴

1
+ 𝐵

1
) ,

𝐹

2
= 0 at 𝑦 = 0,

𝐹

2
= 0 at 𝑦 = ℎ,

(49)

𝐴

1
= (

𝑑𝐹

0

𝑑𝑦

)

2
𝑑

2
𝐹

1

𝑑𝑦

2
+ 2

𝑑𝐹

0

𝑑𝑦

𝑑𝐹

1

𝑑𝑦

𝑑

2
𝐹

0

𝑑𝑦

2
,

𝐵

1
= 2(

𝑑𝐹

0

𝑑𝑦

𝑑

2
𝐹

0

𝑑𝑦

2

𝑑𝐹

1

𝑑𝑦

+

𝑑𝐹

0

𝑑𝑦

𝑑

2
𝐹

1

𝑑𝑦

2

𝑑𝐹

0

𝑑𝑦

+

𝑑𝐹

1

𝑑𝑦

𝑑

2
𝐹

0

𝑑𝑦

2

𝑑𝐹

0

𝑑𝑦

) ,

(50)

where 𝐴
1
and 𝐵

1
are Adomian polynomials.

Using (50) in (49), we get

𝑢

2
=

̃

𝛽

2
{𝐿

14
(𝑦

2
− 𝑦) + 𝐿

15
(𝑦

3
− 𝑦) + 𝐿

16
(𝑦

4
− 𝑦)

+ 𝐿

17
(𝑦

5
− 𝑦) + 𝐿

18
(𝑦

6
− 𝑦)} ,

(51)

𝑤

2
=

̃

𝛽

2
{𝑇

14
(𝑦

2
− 𝑦) + 𝑇

15
(𝑦

3
− 𝑦) + 𝑇

16
(𝑦

4
− 𝑦)

+ 𝑇

17
(𝑦

5
− 𝑦) + 𝑇

18
(𝑦

6
− 𝑦)} ,

(52)

where 𝐿
14
, 𝐿
15
, 𝐿
16
, 𝐿
17
, 𝐿
18
, 𝑇
14
, 𝑇
15
, 𝑇
16
, 𝑇
17
, and 𝑇

18
are

constants mentioned in appendix.

5.4. Velocity Profiles

5.4.1. Velocity Profile in 𝑥-Direction. Equations (42), (47),
and (51) give the ADM solution for the velocity profile in the
transverse plane

𝑢 =

𝑈

𝑊

𝑦 + (

1

2

𝑃

,𝑥
+

̃

𝛽𝐿

11
+

̃

𝛽

2
𝐿

14
) (𝑦

2
− 𝑦)

+ (

̃

𝛽𝐿

12
+

̃

𝛽

2
𝐿

15
) (𝑦

3
− 𝑦) + (

̃

𝛽𝐿

13
+

̃

𝛽

2
𝐿

16
) (𝑦

4
− 𝑦)

+

̃

𝛽

2
𝐿

17
(𝑦

5
− 𝑦) +

̃

𝛽

2
𝐿

18
(𝑦

6
− 𝑦) .

(53)

5.4.2. Velocity Profile in 𝑧-Direction. Equations (43), (48) and
(52) give the ADM solution for the velocity profile in the
down channel direction

𝑤 = 𝑦 + (

1

2

𝑃

,𝑧
+

̃

𝛽𝑇

11
+

̃

𝛽

2
𝑇

14
) (𝑦

2
− 𝑦)

+ (

̃

𝛽𝑇

12
+

̃

𝛽

2
𝑇

15
) (𝑦

3
− 𝑦) + (

̃

𝛽𝑇

13
+

̃

𝛽

2
𝑇

16
) (𝑦

4
− 𝑦)

+

̃

𝛽

2
𝑇

17
(𝑦

5
− 𝑦) +

̃

𝛽

2
𝑇

18
(𝑦

6
− 𝑦) .

(54)

5.4.3. Velocity in the Direction of the Axis of Screw. The veloc-
ity in the direction of the axis of the screw at any depth in the
channel can be computed from (53) and (54) as

𝑠 = 𝑤 sin𝜙 + 𝑢 cos𝜙, (55)

𝑠 = {𝑦 + (

1

2

𝑃

,𝑧
+

̃

𝛽𝑇

11
+

̃

𝛽

2
𝑇

14
) (𝑦

2
− 𝑦)

+ (

̃

𝛽𝑇

12
+

̃

𝛽

2
𝑇

15
) (𝑦

3
− 𝑦)

+ (

̃

𝛽𝑇

13
+

̃

𝛽

2
𝑇

16
) (𝑦

4
− 𝑦) +

̃

𝛽

2
𝑇

17
(𝑦

5
− 𝑦)

+

̃

𝛽

2
𝑇

18
(𝑦

6
− 𝑦)} sin𝜙

+ {

𝑈

𝑊

𝑦 + (

1

2

𝑃

,𝑥
+

̃

𝛽𝐿

11
+

̃

𝛽

2
𝐿

14
) (𝑦

2
− 𝑦)

+ (

̃

𝛽𝐿

12
+

̃

𝛽

2
𝐿

15
) (𝑦

3
− 𝑦)

+ (

̃

𝛽𝐿

13
+

̃

𝛽

2
𝐿

16
) (𝑦

4
− 𝑦) +

̃

𝛽

2
𝐿

17
(𝑦

5
− 𝑦)

+

̃

𝛽

2
𝐿

18
(𝑦

6
− 𝑦) } cos𝜙,

(56)

which shows the resultant velocity of the flow.

5.5. Volume Flow Rates. Volume flow rate in 𝑥-direction per
unit width is

𝑄

∗

𝑥
= ∫

1

0

𝑢 𝑑𝑦,
(57)

where 𝑄∗
𝑥
= 𝑄

𝑥
/𝑊ℎ𝐵, and (57) gives

𝑄

∗

𝑥
=

𝑈

2𝑊

−

1

6

(

1

2

𝑃

,𝑥
+

̃

𝛽𝐿

11
+

̃

𝛽

2
𝐿

14
) −

1

4

(

̃

𝛽𝐿

12
+

̃

𝛽

2
𝐿

15
)

−

3

10

(

̃

𝛽𝐿

13
+

̃

𝛽

2
𝐿

16
) −

1

3

̃

𝛽

2
𝐿

17
−

5

14

̃

𝛽

2
𝐿

18
.

(58)

Volume flow rate in 𝑧-direction per unit width is

𝑄

∗

𝑧
= ∫

1

0

𝑤𝑑𝑦,
(59)

where 𝑄∗
𝑧
= 𝑄

𝑧
/𝑊ℎ𝐵, and (59) gives

𝑄

∗

𝑧
=

1

2

−

1

6

(

1

2

𝑃

,𝑧
+

̃

𝛽𝑇

11
+

̃

𝛽

2
𝑇

14
) −

1

4

(

̃

𝛽𝑇

12
+

̃

𝛽

2
𝑇

15
)

−

3

10

(

̃

𝛽𝑇

13
+

̃

𝛽

2
𝑇

16
) −

1

3

̃

𝛽

2
𝑇

17
−

5

14

̃

𝛽

2
𝑇

18
.

(60)

Equation (56) gives the resultant volume flow rate forward in
the screw channel, which is the product of the velocity and
cross-sectional area integrated from the root of the screw to
the barrel surface

𝑄

∗
=

𝑛

sin𝜙
∫

1

0

𝑠 𝑑𝑦, (61)
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Figure 2: Profile of the nondimensional velocity 𝑢(𝑦) for different
values of ̃𝛽, keeping 𝑃

,𝑥
= −2.0, 𝑃

,𝑧
= −2.0, and 𝜙 = 45∘.

where𝑄∗ = 𝑄/𝑊ℎ𝐵 and 𝑛 is the number of parallel flights in
a multiflight screw.

Equation (61) gives

𝑄

∗
=

𝑛

sin𝜙
[{

1

2

−

1

6

(

1

2

𝑃

,𝑧
+

̃

𝛽𝑇

11
+

̃

𝛽

2
𝑇

14
)

−

1

4

(

̃

𝛽𝑇

12
+

̃

𝛽

2
𝑇

15
) −

3

10

(

̃

𝛽𝑇

13
+

̃

𝛽

2
𝑇

16
)

−

1

3

̃

𝛽

2
𝑇

17
−

5

14

̃

𝛽

2
𝑇

18
} sin𝜙

+ {

𝑈

2𝑊

−

1

6

(

1

2

𝑃

,𝑥
+

̃

𝛽𝐿

11
+

̃

𝛽

2
𝐿

14
)

−

1

4

(

̃

𝛽𝐿

12
+

̃

𝛽

2
𝐿

15
) −

3

10

(

̃

𝛽𝐿

13
+

̃

𝛽

2
𝐿

16
)

−

1

3

̃

𝛽

2
𝐿

17
−

5

14

̃

𝛽

2
𝐿

18
} cos𝜙] ,

(62)

which can be written as

𝑄

∗
=

𝑛

sin𝜙
{𝑄

∗

𝑧
sin𝜙 + 𝑄∗

𝑥
cos𝜙} . (63)

6. Results and Discussion

In the present work, we have considered the steady flow
of an incompressible, isothermal, and homogeneous third-
grade fluid in helical screw rheometer (HSR). UsingAdomian
decomposition method, solutions are obtained for velocity
profiles in 𝑥-, 𝑧-directions and also in the direction of the axis
of the screw 𝑠(𝑦). The volume flow rates are also calculated
by using the velocities in 𝑥, 𝑧 and in the direction of the axis
of the screw. Here we discussed the effect of dimensionless
parameters ̃

𝛽, 𝑈/𝑊 = − tan𝜙, 𝑃
,𝑥
, and 𝑃

,𝑧
where 𝜙 = 45

∘,
on the velocity profiles given in (53), (54), and (56) with the
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Figure 3: Profile of the nondimensional velocity 𝑤(𝑦) for different
values of ̃𝛽, keeping 𝑃
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= −2.0, 𝑃

,𝑧
= −2.0, and 𝜙 = 45∘.
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Figure 4: Profile of the nondimensional velocity 𝑠(𝑦) for different
values of ̃𝛽, keeping 𝑃

,𝑥
= −2.0, 𝑃

,𝑧
= −2.0, and 𝜙 = 45∘.

help of graphical representation. Figures 2, 3, and 4 for the
velocities in𝑥-direction𝑢(𝑦), 𝑧-direction𝑤(𝑦), and the resul-
tant velocity 𝑠(𝑦) are plotted against 𝑦 for different values of
non-Newtonian parameter ̃𝛽 and constant pressure gradients
𝑃

,𝑥
= −2.0, 𝑃

,𝑧
= −2.0, respectively. From these figures, it is

seen that the velocity profiles are strongly dependant on the
non-Newtonian parameter ̃𝛽, as we increase the value of ̃𝛽 in
the interval 0 to 0.9, the progressive increase in velocities in
𝑥-, 𝑧-direction and in the direction of the axis of screw found.
It is worthwhile to note that the extrusion process increases
with the increase of the non-Newtonian parameter ̃𝛽.

Figures 5, 7, and 9 are sketched for the velocity profiles
𝑢(𝑦), 𝑤(𝑦), and 𝑠(𝑦) against 𝑦 for different values of 𝑃

,𝑥
,

keeping ̃

𝛽 = 0.3 and 𝑃
,𝑧
= −2.0 fixed; enlightened escalation
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,𝑥
= −2.0, and 𝜙 = 45∘.

is noted in the velocity profiles with increase in pressure
gradient in 𝑥-direction.

Figures 6, 8, and 10 are sketched for the velocity profiles
𝑢(𝑦), 𝑤(𝑦), and 𝑠(𝑦) against 𝑦 for different values of 𝑃

,𝑧
,

keeping ̃

𝛽 = 0.3 and 𝑃

,𝑥
= −2.0 fixed, it is observed that

parabolicity of the velocity profiles increases with increase in
pressure gradient in 𝑧-direction.

Figure 11 is plotted for the velocity 𝑠(𝑦) against 𝑦 for dif-
ferent values of 𝜙, keeping ̃𝛽 = 0.3,𝑃

,𝑥
= −2.0, and𝑃

,𝑧
= −2.0.

It is observed that flow increases as the flight angle increases
up to 𝜙 = 45∘.

7. Conclusion

The steady flow of an isothermal, homogeneous and incom-
pressible third-grade fluid is investigated in helical screw
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rheometer (HSR). The geometry of the problem under con-
sideration gives second-order nonlinear coupled differential
equations which are reduced to single differential equation
by using a transformation. Adomian decomposition method
is used to obtain analytical expressions for the flow profiles,
volume flow rate. It is noticed that the zeroth component
solution matches with solution of the linearly viscous fluid
in HSR, and it is also found that the net velocity of the fluid
is due to the pressure gradient as the expression for the net
velocity is free from the drag term. Graphical representation
shows that the velocity profiles are strongly dependant on
non-Newtonian parameter ( ̃𝛽) and pressure gradients in 𝑥-
and 𝑧-direction.Thus, the extrusion process strongly depends
on the involved parameters.
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