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This paper was concerned to simulate both wet and dry bed dam break problems. A high-resolution finite volume method (FVM)
was employed to solve the one-dimensional (1D) and two-dimensional (2D) shallowwater equations (SWEs) using an unstructured
Voronoi mesh grid. In this attempt, the robust local Lax-Friedrichs (LLxF) scheme was used for the calculating of the numerical
flux at cells interfaces. The model named V-Break was run under the asymmetry partial and circular dam break conditions and
then verified by comparing the model outputs with the documented results. Due to a precise agreement between those output and
documented results, the V-Break could be considered as a reliablemethod for dealing with shallowwater (SW) and shock problems,
especially those having discontinuities. In addition, statistical observations indicated a good conformity between the V-Break and
analytical results clearly.

1. Introduction

Floods induced by dam failures can cause significant loss of
human life and property damages, especially when located
in highly populated regions. These entail numerical and
laboratory investigations of dam break flows and their
potential damage. The shallow water equations (SWEs) are
conventionally used to describe the unsteady open channel
flow such as dam break. These equations are named as Saint
Venant equations for one-dimensional (1D) problem and also
include the continuity and momentum equations for two-
dimensional (2D) studies.

Many researchers studied the dam break problem, such
as Toro [1], Wu et al. [2], Wang and Shen [3], Mohapatra et
al. [4], Zoppou and Roberts [5], Wang et al. [6], Wang and
Liu [7], Venutelli [8], Ponce et al. [9], Zhou et al. [10], Liang
et al. [11], Quecedo et al. [12], Begnudelli and Sanders [13],
Loukili and Souläımani [14], Dı́az et al. [15] and Aliparast
[16], especially using computational fluid dynamic (CFD)
methods.

Recently, Shamsai and Mousavi evaluated the dam break
parameters such as breachwidth, side slop, time of failure and
peak outflow, using 142 case studies of previous researches.
Then, using those evaluations and also the BREACH and
FLDWAV application software, the studies of Aidoghmosh
earth dam breach were examined [17]. Xia et al. developed
a 2D morphodynamic model for predicting dam break flows
over a mobile bed [18]. Shamsi et al. developed a 2D flow
model based on SWEs. They used finite volume method
(FVM), total variation diminishing (TVD), and weighted
average flux (WAF) schemes as well as Harten-Lax-van Leer-
Contact (HLLC) Riemann solver [19]. Erpicum et al. pre-
sented a 2D finite volume (FV) multiblock flow solver, which
was able to deal with the natural topography variation [20].
Baghlani utilized a combination of the robust and effective
flux-difference splitting (FDS) and flux-vector splitting (FVS)
methods to simulate dam break problems based on FVM on
a Cartesian grid.Themethod combined the effectiveness and
robustness of the FDS and FVSmethods to precisely estimate
the numerical flux at each cell interface [21]. Zhang and Wu
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developed a hydrodynamic and sediment transportmodel for
dam break flows. The 2D SWEs were solved based on the
FVMwith an unstructured quadtree mesh grid [22]. Singh et
al. developed a 2D numerical model to solve the SWEs for the
simulation of dambreak problems [23]. Chang et al. proposed
a meshless numerical model to investigate the shallow water
(SW) dam break in 1D open channel. A numerical model
was used to solve the SWEs based on smoothed particle
hydrodynamics (SPH). The concept of slice water particles
was adapted in the SPH-SWE formulation [24]. Shakibaeinia
and Jin developed a new mesh-free particle model based on
the weakly compressible MPS (WC-MPS) formulation for
modeling the dam break problem over a mobile bed [25].
Sarveram and Shamsai investigated the dam break problem
in converge and diverge rectangular channels in the unsteady
stance using Saint Venant equations and a quasi-Lagrangian
method [26].

This paper attempts to present a novel development for
1D and 2D dam break problems in both wet and dry beds.
A high-resolution FVM is employed to solve the SWEs on
unstructured Voronoi mesh.The local Lax-Friedrichs (LLxF)
scheme is used for the estimation of fluxes at cells and the
numerical approximation of hyperbolic conservation laws.

2. Research Methodology

2.1. Governing Equations. The continuity and momentum
equations of the SW can be written in different forms
depending upon the requirements of the numerical solution
of governing equations. The 2D SWEs with source terms are
given in the vector form considering a rigid bed channel [1]
as follows:
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In this study, the friction slopes were estimated using the
Manning’s formulas. In the case of the dam break flow, the
influence of bottom roughness prevailed over the turbulent
shear stress between cells. Therefore the effective stress terms
were neglected in the computation.

2.2. Numerical Modeling Algorithm. The main advantage of
the FVM is that volume integrals in a partial differential
Equation (PDE) containing a divergence term are converted
to surface integrals using the divergence theorem. These
terms are then evaluated as fluxes at the surfaces of each FV.
Because the flux entering a given volume is identical to that
leaving the adjacent volume, these methods are conservative.
Another advantage of the FVM is that it is easily formu-
lated to allow for unstructured meshes. Unstructured grid
methods utilize an arbitrary collection of elements to fill the
domain. These types of grids typically utilize triangles in 2D
and tetrahedrals in 3D, although quadrilateral, hexahedral,
Voronoi, and Delaunay meshes can also be unstructured.
In the Voronoi mesh, the chosen point has lower distance
in the devoted domain rather than other points. If one
point has the same distance from several domains, it will
be divided between domains. Indeed, these points create
Voronoi cell boundaries. Consequently, internal sections of
the Voronoi mesh consist of nodes belonging to one domain
and boundaries include nodes that belong to several domains
[27].

In this paper, the studied domain was discretized using
unstructured Voronoi meshes. Delaunay triangulation was
created and then the Voronoi mesh was established using
the Qhull program in MATLAB software. The governing
equation was discretized applying the FVM. In this approach,
the studied domainwas divided into several separated control
volumes without any overlapping. By integrating the gov-
erning differential equation over every control volume, the
system of algebraic equations was created so that each of
its formulations belonged to one control volume and each
equation linked a parameter in the control volume node to
different numbers of the parameter in adjacent nodes. This
consequently led to the computation of the parameter in each
node [28].

In order to solve discrete equations, the parameter in
each node was computed considering its discrete equation
and newest adjacent nodes’ values. Solution procedure can be
expressed as follows.

(1) Assuming an initial value in each node as an initial
condition.

(2) Calculating the value in a node considering its dis-
crete equation.

(3) Performing pervious step for all nodes over the
studied domain, one cycle is performed by repetition
this step.

(4) Verifying the convergence clause. If this clause is
satisfied, the computing will end otherwise the com-
putations will be repeated from the second step.

As exact values of boundary conditions were not distinct,
the Riemann boundary condition was utilized for computing
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the investigating parameter. Therefore, by assuming a layer
which is close to the boundary layer, 𝜕/𝜕𝑥 = 0 and 𝜕/𝜕𝑦 =

0 were defined for the investigating parameter and then
calculated values for boundary adjacent nodes transform to
related boundary nodes. This procedure will continue until
the results difference is converged to zero.

2.3. Discretization of Governing Equations

2.3.1. FV Discretization. Various methods can be used to
discretize the governing equations, among which the FVM
due to its ability to satisfy mass andmomentum conservation
is frequently adopted. In this research, the discretization of
(1) was performed using the FVMwith unstructured Voronoi
mesh, as shown in Figure 1. It should bementioned that𝑓 face
vertexes nomination direction is counterclockwise from 𝑏 to
𝑎 centering p (see Figure 1) [1] as follows:

∬
𝐴

𝜕𝑈

𝜕𝑡
𝑑𝐴 + ∬

𝐴

(∇⃗ ⋅ �⃗�) 𝑑𝐴 = ∬
𝐴

𝑆𝑑𝐴. (6)

By implementing divergence theorem, (6) is yielded to (7) as
follows:
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where �⃗� = �⃗�𝑖 + �⃗�𝑗. Equation (7) can be written as (8) by
approximating the line integral for all control volumes and
nodes, generally,
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2.3.2. Voronoi Mesh. By applying the Voronoi mesh, (8) is
yielded to (9) for an investigated control volume; however,
Figure 1 illustrates the 2D Voronoi mesh grid used for
describing these equations as follows:
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Figure 1: The 2D schematic Voronoi mesh cell used for describing
the discretization of the governing equations.
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The discrete equation can be written as followS:
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2.4. The Local Lax-Friedrichs (LLxF) High-Order Scheme. In
shock capturing schemes, the location of discontinuity is
captured automatically by the scheme as a part of the solution
procedure. These slope-limiter or flux-limiter methods can
be extended to systems of equations. In this paper, the
algorithm is based upon central differences with comparable
performance to Riemann type solvers when used to obtain a
solution for PDE’s describing systems. FV and Finite Differ-
ence (FD) methods are closely related to central schemes like
the most shock capturing schemes [29]. Rusanov scheme is
often called the LLxFmethod, because it has the same form as
the Lax-Friedrichs (LxF) method but the viscosity coefficient
is chosen locally. It can be shown that this is a sufficient
viscosity to make the method converge to the vanishing-
viscosity solution. Itmeans that it is less diffusive than normal
LxF, since it locally limits the numerical viscosity instead
of having a uniform viscosity on the entire domain. LLxF
formulates the FVM in space and the explicit Euler method
in time.

Many researchers (e.g., Lin et al. [30], van Dam and
Zegeling [31], and Lu et al. [32]) utilized LLxF splitting
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Figure 2: The V-Break flowchart.

scheme in different problems such as 2D SWEs, 1D adaptive
moving mesh method and its application to hyperbolic con-
servation laws from magnetohydrodynamics (MHD), and
the performance of the weighted essential nonoscillatory
(WENO) method.

In this research, LLxF is used as a flux calculator. By
expanding (12), (13) can be written as follows:
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Table 1: General summarization of the equipment used by some other researchers and present study.

Reference Wang and Liu [7] Liang et al. [11] Loukili and Souläımani [14] Baghlani [21] V-Break
Numerical method FVM FVM FVM FVM FVM

Riemann solver
Roe-MUSCL, Roe-upwind,
HLL-MUSCL, composite

methods (CFLF8)
HLLC Lax-Fredrichs, HLL, HLLC,

WAF FDS-FVS Local Lax-Fredrichs

Mesh grid Unstructured triangular Rectangular
(quadtree)

Unstructured triangular,
unstructured quadrilateral Rectangular Unstructured

Voronoi
Dimensional
approach 2D 1D, 2D 1D, 2D 1D, 2D 1D, 2D

ℎ
(m

)

𝑥 (m)

ℎ𝑢

DAM

0 0.5 1

ℎ𝑑

Figure 3: 1D Studied domain for verification.
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Intercell fluxes can be estimated by implementing the follow-
ing equations:
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After computing intercell fluxes by utilizing the LLxF scheme
in Voronoi mesh, equations can be solved and the final result
can be calculated for each time step.The Δ𝑡 can be computed
using the Courant Friedrichs Lewy (CFL) for each time step
as follows:
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The CFL should range over [0, 1] for achieving to the stability
(0 < CFL < 1).

2.5. Preparation and Validation of the Numerical Algorithm.
The CFD code named V-Break was prepared on the unstruc-
tured Voronoi mesh grid using MATLAB programming.
Figure 2 illustrates the running process of the V-Break as a
flowchart.

V-Break was then validated using Stoker’s analytical
solution in 1D [33], and previous results were obtained by
other researchers in 2D (e.g., Wang and Liu [7], Loukili and
Souläımani [14], Liang et al. [11], and Baghlani [21]). Table 1
presents key solvers, algorithms, and methods used in these
previous studies.

3. Results

3.1. 1D Dam Break Test. At the instant of the dam break,
water is released through the breach, forming a positive
wave that propagates downstream and a negative wave that
moves upstream. Here, Stoker’s analytical solution of dam
break problem can be used to illustrate the accuracy of the
numerical schemes. Stoker derived this theory just for the
wet bed dam break problem, but it is possible to develop
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Figure 4: 1DWater depth values obtained using V-Break and Stoker’s analytical solution. (a) 1D water depth at 𝑡 = 0.02 s, (b) 1D water depth
at 𝑡 = 0.1 s.
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Figure 5: 1D Velocity values obtained using V-Break and stoker’s analytical solution. (a) Velocities at 𝑡 = 0.02 s, (b) velocities at 𝑡 = 0.1 s.

it for dry bed considering a downstream water depth very
close to zero [33]. A 1D horizontal rectangular channel having
1m in length with wall at either ends and no roughness was
considered, however, the source term equaled to zero. The
initial velocity is zero and a barrier is present at 𝑥 = 0.5m,
which is removed at 𝑡 = 0 s.The water depths of the upstream
and downstream are 1 and 0.5m, respectively. Also, the CFL
parameter is equal to 0.9. Figure 3 illustrates the 1Ddambreak
domain [34].

Figures 4 and 5 show the water depth and velocity of the
flow obtained using V-Break and Stoker’s analytical solution
at 𝑡 = 0.02 and 0.1 s. Furthermore, Table 2 presents the
results of the Mann-Whitney test for a statistical comparison
between the obtained results using V-Break and Stoker’s
analytical solution.

In terms of comparing two groups of data statistically,
the null hypothesis (𝐻

0
) is usually a hypothesis of “nondif-

ference.” It means that there is no difference between the

ranks of the two comparing groups. These two groups can
be defined as V-Break and Stoker’s analytical results. When
computing the value of Mann-Whitney 𝑈 test, the number of
comparisons equals to the product of the number of data in
the first group (𝑁

𝐴
) times the number of data in the second

group (𝑁
𝐵
), which is equal to 𝑁

𝐴
× 𝑁
𝐵
. If the null hypothesis

is true, then the value of Mann-Whitney 𝑈 test should be
about half thit value. The smallest possible value of Mann-
Whitney 𝑈 test is zero. The largest possible value is equal
to (𝑁
𝐴

× 𝑁
𝐵
)/2. If this value is much smaller than that, the

𝑃-value will be small. The 𝑃 value or calculated probability
is the estimated probability of rejecting the null hypothesis
of a study question when that hypothesis is true, while the
significance level is usually considered as 𝛼 = 0.05. So, if the
𝑃 value is more than 0.05, the null hypothesis will be true,
especially when𝑃 value is closer to 1. Also, the null hypothesis
is true when RS1 ≤ Wilcoxon W ≤ RS2. Here, RS1 is the sum
of ranks for the first group and RS2 is the sum of ranks for
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Table 2: Mann-Whitney test parameters for comparison between V-Break and stoker’s analytical solution results.

Output result type Parameter
Mann-Whitney 𝑈 Wilcoxon 𝑊 𝑍 𝑃 value

Water depth at 𝑡 = 0.02 s 4314.500 8685.500 −0.030 0.976
Water depth at 𝑡 = 0.1 s 5200.500 10453.500 −0.004 0.997
Velocity at 𝑡 = 0.02 s 4269.500 8734.500 −0.643 0.520
Velocity at 𝑡 = 0.1 s 5904.500 11899.500 −0.082 0.934
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Figure 6: 2D studied domain for verification.

the second group. Similarly, the null hypothesis will be true
if |𝑍| ≤ 𝑍

0
, while 𝑍

0
is the critical value extracted from the

𝑍-distribution graph statistically. This value for the present
study equal to 1.96.

In this research, all the above conditions were satisfied
in Table 2. So, the null hypothesis is true and there is no
difference between V-Break and Stoker’s analytical solution
results. Consequently, V-Break results are acceptable having
a good agreement with Stoker’s analytical solutions.

3.2. 2D Partial Dam Break Test

3.2.1. V-Break. For this case study, a 2D partial dam break
problem with asymmetrical breach was considered. The
computational domain was defined in a channel with 200m
in length and 200m inwidth.Thebreach is 75m in length and
the dam is 15m in height. The initial upstream water depth is
10m. The downstream water depth is 5m in a wet bed and
0.1m in a dry bed. The roughness coefficient was assumed
zero implying a frictionless surface. In this example, a domain
with 40 × 40 node points, it was proposed and a time of 7.2 s
was considered as the total time for the calculation procedure.
Also, theCFL parameter is equal to 0.9. Figure 6 illustrates the
2D dam break domain. Figure 7 shows the results of previous
studies.

Different conditions of the domain were simulated using
V-Break. Figure 8 shows the output results of V-Break.

3.2.2. Mesh Configuration Comparison. The output results
were then compared with the previous studies. A section was
considered at 𝑦 = 130m and the leading points of water
depth contours were exported as a function of distance (𝑥).
Figure 9 shows the comparison among results obtained using
V-Break on Voronoi, results obtained by Liang et al. [11] on
rectangular, and results obtained by Loukili and Souläımani
[14] on triangular mesh grids in both wet and dry beds.

3.2.3. Riemann Solver Comparison. Aspreviouslymentioned,
Wang and Liu implemented four typical FVMs, including
the Reo-MUSCL, Reo-upwind, HLL-MUSCL, and CFLF8
composite methods on unstructured triangular meshes to
simulate a 2D dam break problem [7]. In this research, the
Riemann solver used in the current study was compared with
solvers used byWang andLiu considering the particularmesh
grids used at each study [7]. For a better visual comparison,
a section was considered at 𝑦 = 130m and the leading points
of water depth contours were exported, and then results are
shown in Figure 10.

3.3. 2D Circular Dam Break Test. In this test, 200 compu-
tational cells were used where initial conditions consist of
two states separated by a circular discontinuity. The radius
of the circle is 50m and it is centered at 𝑥 = 100m.
Both components of the velocity, u and v, were set to zero
everywhere and ℎ was set to 10m within the circle and
1m outside the circle. The computational grid consisted of
40 × 40 cells and the solution was sought after 2 s. The
domain was defined for the V-Break, and then the output
results were compared with the previous studies. Figures 11
and 12 illustrate output results of V-Break including the water
surface formation and water depth contours, respectively.
Also, Figure 13 shows results performed by Baghlani [21] in
order to use them in comparison.

Figures 11, 12, and 13 show that the V-Break can simulate
the 2D circular dam break well, as compared with previous
study by Baghlani [21].

4. Conclusions

In the current research, a novel and friendly user code named
V-Break was written showing that the LLxF scheme along
with the FVM on the unstructured Voronoi grid is a suitable
combination in order to simulate 1D/2Ddambreak problems.
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Figure 7: 2D asymmetrical partial dam break test in a frictionless, horizontal, and wet/dry bed domain at 𝑡 = 7.2 s by some other researchers.
(A1) Liang et al.; Wet bed [11], (A2) Liang et al.; dry bed at 𝑡 = 5 s [11], (B1) Loukili and Soulaı̈mani-Wet Bed [14], (B2) Loukili and Souläımani-
Dry Bed [14], and (C) Wang and Liu [7].

The advantages of this method are very promising, especially
in reconstructing the conducted tests. For 1D dam break,
Stoker’s analytical solution was considered for validation.
Illustrations and computed 𝑃 values demonstrated that there
are no significant differences between Stoker’s analytical
solution results andV-Break outputs. In addition to 1Dpartial
dam break, the 2D partial dam break tests were done. Results
were compared with some other previous studies for valida-
tion at 𝑡 = 7.2 s. Each test can be done in the wet or dry bed
conditions. In all scenarios considered here, no significant
numerical dispersion problemor nonphysical alternationwas
observed in the results. The comparison showed a good
agreement between V-Break results with previous studies. In

terms of mesh grid comparison, it was seen that the Voronoi
mesh grid results are closer to triangular mesh grid results
compared with rectangular mesh grid results. In addition,
the 2D circular dam break test was done and its results were
compared with previous studies at 𝑡 = 2 s which seems
accepted. Generally, the unstructured Voronoi mesh grid is
able to model inlet and outlet fluxes in every direction of
control volume faces.The results indicated a higher efficiency
and precision of the discrete equations resulted from the
Voronoi mesh. Thus, it could be recommended to utilize
the Voronoi mesh in the numerical discrete equations. The
Voronoi mesh grid is able to model complicated geometries,
and also it could produce the final discrete equations leading
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Figure 13: 2D Circular dam break problem at 𝑡 = 2 s by Baghlani
[21].

to accurate results within a lower computational demand
compared to other unstructured meshes. Furthermore, a
high capability of LLxF scheme was demonstrated in the 2D
dam break pneumonia evaluation compared with the other
presented Riemann solutions.

Nomenclatures

�⃗�: Adjacent surface vector of the investigated Voronoi
cell

𝐴: Area of the adjacent surface vector of the
investigated Voronoi cell (�⃗�)

𝐴
𝑥
: The component of 𝐴 in 𝑥 direction

𝐴
𝑦
: The component of 𝐴 in 𝑦 direction

𝐹, 𝐺: Flux vector functions
𝐹
𝜀
, 𝐺
𝜀
: The Voronoi cell normal flux vectors

𝑈: The vector of conserved variables
𝐻: Input and output fluxes to a Voronoi cell
𝑆: The vector of source terms
𝑆
0𝑥
: Bed slope in the 𝑥 direction

𝑆
0𝑦
: Bed slope in the 𝑦 direction

𝑎, 𝑏: Nodes of the both sides of the investigated Voronoi
cell 𝑓

𝑒
𝜉
: Unit outward normal vector in each Voronoi cell 𝑓

𝑒
𝜂
: The unit tangent vector in each Voronoi cell 𝑓

𝑓: Joint surface element between investigated cell and
other adjacent cells

�⃗�: Gravity acceleration
ℎ: The water depth
ℎ : Themean water depth
ℎ
𝑢
: The upstream water depth at 𝑡 = 0

ℎ
𝑑
: The downstream water depth at 𝑡 = 0

𝑙: The boundary of the 𝑖th control volume
𝑛: The Manning’s roughness coefficient
�⃗�: The outward unit vector normal to the boundary
nb: The central node of adjacent cells
𝑡: Time
𝑢: Velocity vector component in 𝑥 direction
𝑢: The mean velocity vector component in 𝑥 direction
V: Velocity vector component in 𝑦 direction
V: The mean velocity vector component in 𝑦 direction
𝑥: Horizontal coordinate component
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𝑦: Vertical coordinate component
∑
𝑓

: The sum over the all Voronoi cells
𝑝: Central node of investigated Voronoi cell
Δ𝑡: Time interval
Δ𝜉: The distance between the central node of

investigated Voronoi cell and the adjacent cells
𝐻
0
: The null hypothesis

𝑍: The value of 𝑍-Test
𝑍
0
: The critical value of 𝑍 extracted from the statistical

𝑍-distribution graph
RS1: Sum of ranks for the first comparing group
RS2: Sum of ranks for the second comparing group
𝛼: The significance level
𝑁
𝐴
: The number of data in the first comparing group

𝑁
𝐵
: The number of data in the second comparing
group.

Subscripts

𝑓: Denotes the parameter at the Voronoi cells
side’s area 𝑓

𝑖: Counts all central control volumes
𝑗: Counts all nodes of the central control volumes
nb: Denotes parameters at the central node of

adjacent Voronoi cells
𝑝: Denotes parameters at central node of

investigated Voronoi cell
in: Denotes the parameter outside the Voronoi

cells side’s area 𝑓

out: Denotes the parameter outside the Voronoi
cells side’s area 𝑓

𝜉: The parameter component in 𝑒
𝜉
direction

𝜂: The parameter component in 𝑒
𝜂
direction.

Superscripts

𝑛: Denotes parameters belonging to time of 𝑡

𝑛 + 1: Denotes parameters belonging to time of 𝑡 + Δ𝑡.
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