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A new method for computing the approximation of bivariate matrix function is introduced. It uses the construction of bivariate
Newton-Thiele type matrix rational interpolants on a rectangular grid. The rational interpolant is of the form motivated by Tan and
Fang (2000), which is combined by Newton interpolant and branched continued fractions, with scalar denominator. The matrix
quotients are based on the generalized inverse for a matrix which is introduced by C. Gu the author of this paper, and it is effective
in continued fraction interpolation. The algorithm and some other important conclusions such as divisibility and characterization
are given. In the end, two examples are also given to show the effectiveness of the algorithm. The numerical results of the second
example show that the algorithm of this paper is better than the method of Thieletype matrix-valued rational interpolant in Gu

(1997).

1. Introduction

Matrix-valued rational interpolation and approximation the-
ory have further practical application in many fields, such
as in automatic control theory, computer science, and ele-
mentary particle physics [1]. Kuchminska et al. proved an
analog of the van Vlerk theorem and constructed an inter-
polation formular of the Newton-Thiele type in [2]. Tan and
Fang in [3] put emphasis on the study of Newton-Thiele
bivariate rational interpolants. Graves-Morris provided a
practical Thiele-fraction method for rational interpolation
of vectors, based on the Samelson inverse in [4]. Gu et al.
generalized the definition of Samelson inverse to the case of
matrices and applied it to deal with the problems of rational
interpolation of matrices [5-9]. Bose and Basu gave the
existence, nonuniqueness, and recursive computation of the
two-dimensional matrix Padé approximants in [10].

In this paper, we introduce a bivariate matrix-valued
rational interpolant, with scalar denominator, in Newton-
Thiele form motivated by [3]. The construction of the
interpolant is combined by the classic methods: Newton
interpolant and branched continued fractions. As we know,
branched continued fraction has been studied by Cuyt and

Verdonk and Siemaszko [11, 12] and many other authors. The
interpolant of this paper is based on using the generalized
inverse of matrices. A new algorithm to approximate bivariate
matrix function is given and some examples are also put to
show the effectiveness of the algorithm which is much better
than the method mentioned in [9].

First, we will give the definition of the so-called gen-
eralized inverse of a matrix. Let C**" consists of all u x v
matrices with their elements in the complex plan C, and let
A = (ay),B = (b)),and A,B e C*.

Definition I (see [8]). The scalar product of matrices A and B
is defined by

A-B= Zl:zlaijbij =tr (AB"), 1)
i=1j=

where B* denotes the transpose of B and the Euclidean norm
of A is given by

" v 1/2
||A||=<ZZ|aij|2> . 2)

i=1j=1



It follows from Definition 1 and (2) that

A-A= ZZ|a’J'

i=1j=1

IAJ* = tr (AA ) 3)

where A denotes the complex conjugate matrix of A and A
denotes the complex conjugate transpose matrix of A. On the

basis of (2) and (3), the generalized inverse of the matrix A is
defined as

- A As0, accv, (4)
Al

in particular, for A € R”X“,A;l =1/A = A/|Al*, A+O0.

By means of generalized inverse A" for matrices, we want
to define bivariate Newton-Thiele rational interpolants and
give the algorithm and some properties on a rectangular grid.

2. Newton-Thiele Interpolation Formula
Let A, ={(x,y):1=0,1,...
R?}.

A matrix-valued set

,mk=0,1,...,m,(x;, y;) €

™" = {Y) 0 Yy = Y (5 yi) € C°% (3 i) € A} - (5)

We need to find a bivariate matrix rational function

Rm,n (x’ ;V) = =7\ (6)

whose numerator N(x, y) is a complex or real polynomial
matrix and denominator D(x, y) is a real polynomial, and

N (xp, vi)

=Y, s
D (xp, yx) .

Rm,n (xl’ yk) = (xl’ yk) € Am,n' (7)

First, some notations need to be given as follows:

@00 (X ¥6) = Yio V(x5 i) € Ao

Po,0 (xy )’k) Po,0 (%> yx)

‘/’1,0( J’yk) Xj =X
910 (Ko X X % 1)
= (‘PH,O (xp""’xq’ Xj yk)

= Prig (xp-- "xq’xi’yk)) x (x]- - xi)_l’
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Pr1 (xp’ ce ’xq xz’xj’yr’ys)
2,) % (@ (x5

_(PI,O (xp, seey xq

> xqa xi7 xj) ys)

50%07))

=(y, -

Pric (xp""’xq xvxj’ya""’yb’yr’ys)
= (ys _yr)
X (@rer (Xpo s X X0 X5 Yoo Vi Y5

Pt (Xpr X X0 X Yo Yo 1))
(8)

where the first subscript I of ¢ means the number of nodes
Xp».-o>Xg> X x; minus 1, and the second subscript k of ¢
means the number of nodes y,,..., ¥, ¥,» ¥, minus L

For simplicity, we let the nodes x,,...,x,x;,x; be
replaced by x,...,x;, and the nodes y,,..., ¥, ¥,,y, be
replaced by y,, ..., ¥, then we can get the following defini-
tion.

Definition 2. By means of generalized inverse (4), we define
bivariate Newton-Thiele type matrix blending differences as
follows:

Poo (x> i) = Yigo

$o,0 (%1 ¥6) = $0,0 (%05 )’k)

P10 (%0, X1, i) = PR
P (Xos > X1 i)
= (@110 (%05 - > X120 X1 Y)
~@11,0 (%o > X100 X1 W) X (= xl—l)il’
P11 (X0 - X1 Yoo 1)
_ ()’1 - ,'Vo)
Pro (Xos - %1 1) = 1o (X0 -+ > X1 )

Pok (xz) Yoo+ - ’,Vk)
= (J’k - yk—l)
X ((PO,k—l (%1 Yoo -+ > Yieas Vi)

-1
~Po,k-1 (xl, Yo+ Vi—2> )’k—l)) >

Pric (X0» X1+ X1 Yoo -+ > i)
= (k= Y1)
X (@rrr (%o -2 X1 Yoo > Yk Vi)
~Pri-1 (%05 - X1 Yoo o - ’yk—2>yk—1))_1

€)
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We assume that for all [, x; # x;_; and

Pri-1 (xo, ce Xp Yoo - -’)’k—z)yk)

(10)

F Qg (X o> X1 Yoo oo o5 Voo V1) » - Vb k.

From (9) matrix-valued Newton-Thiele type continued

fractions for two-variable function can be constructed as
follows:

Ry, (%, )
=Up (9) + Uy () (x = x0) + -+ U, () (x = %) (D)
X (x—2x;)(x=x,_1),
where for[ = 0,1,...,m

Y=
P11 (%05 -+ -5 X1 Yos 1)

U (y) = P10 (%05 -+ > X1 Yg) +

(12)
Y= Vn |

+ .
| @1 (%055 X1 Y5+ V)

4+ e

Remark 3. Because of the construction, D(x, y) in R, ,(x, y)
mentioned as (6) is actually D(y) and each U;(y) depends on
n.

We can also construct the antithetical form of bivariate
matrix continued fraction in light of Definition 4.

Definition 4. By means of generalized inverse (4), we define
bivariate antithetical Newton-Thiele type matrix blending
differences

Vo0 (o 1) = Yoo
(1//0,0 (1) = Yo,0 (%1 ¥0))

Vo1 (X1 Yo 1) =

(1= %)
Yok (X1 Yor -+ i)
= (Wos-1 (X0 Y0r -+ V2o Vi)
“Yok-1 (% Yor - - > Vezs Vi-1))
x (i = yk—l)_l’
Vi (%02 X1 Yoo -+ 5 Vi)
(31— %)

) Vok (%15 Yo -+ > Vi) = Yo (Ko Yor - i)
Y10 (X0 -+ %0 )

= (%~ x11)
> X1-2> X ;Vk)

X (1//1—1,0 (x0>---

-1
“Yi-10 (%05 > X1 V1)) >

3
Vi (X0 X1 e o2 X Yoo -0 Vi)
= (x—x14)
X (‘//l—l,k (%05 - -5 X125 X Yoo - -> Vi)
“Yierk (X0> -+ > X121 Yoo oo ,Vk))_l-
(13)

From (13) we can get the antithetical formula for two-
variable function

Ry (% 7) = Vo (%) + V1 () (¥ = )
oV, -p0) (v -p)  (14)
(Y= Yu)
where fork = 0,1,...,n

Vie (%) = Yo (%0 Yoo - > Vi)
X - X,
Yk (X0 X1 Yos -+ 5 Vi) (15)

+

X=X, |

et )
|1//m,k (xo""’xm’y()""7yk)

Now we will give two theorems about R, (x, y) as in (11)

and (12) and ﬁm,n(x, y) as in (14) and (15). First of all, some
notations need to be defined.
In (12), forl = 0,1,...,m,let

U1<S) (y) = Prs (%0s X155 X1y Yo -5 V)

— (16)
%) 5:0>1,...,n—1,
U ()

where
U™ (9) = @un (X0 X105 X0 Yoo 5 i)
U (») =Ui(y).

Similarly, in (15), for k = 0,1,...,n, let

17)

Vk(s) (%) = Yk (X0> X1+ 3 X Voo Vi)

X — X, (18)
+W’ s=0,1,...,m—l,
Vi (%)

where
Vlfm) (%) = Wpge (%0 X153 X Yoo o5 Vi) »
(19)
VO (x) = Vi ().
Theorem 5. Let
(D) @rp(xgs-- o5 X Yoo -5 )l = 0,1,...,m k = 0,

1,...,n exist and be nonzero (except for ¢y (xy,
-->x1,)’o));



W UD(D) = ouepXpoXp Ypany) + (7 -
y)IUC () satisfy US™ () 0, s = 0,1,...,n—1,
then R, (x,y) as in (11) and (12) exists such that
Ry (X yi) = Yo (5 Y1) € Ay e
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if the conditions hold, thus for [ =0, 1,...

U () = Uz(o) ()

, M, kZO,l,...,n

g+ ZTY0 L Ve Ve I
Proof. For simpleness, let ’ P11 | p10 (21
Vi = Vi |
U5 ()
Pric (X055 X1 Yoo > Vi) = Pu (20) D= 20/U;*Y () = 0,since UV () #0, then weget (]
U, (%)
Yk = Yo Yk = Yia |
= o (%gs - x5 ¥) + o
o ’ P11 (xO)-”’xl»)’o’J’l) | 9141 (xo’ ""xl’yo""’ykfl)
. Yk = Vi |
| 91k (X0s - X Yoo > Vi)
Yk =)
= @ro (X -5 X5 Yp) + bk o
P11 (%X0s -+ > %1 Yo 1)
Vi = Yi2 |
+ 22
| 9141 (xo,...,x,,yo,...,yk_l) (22)
. Yk = Vi1 |
01
| (7 = Yeer) % ((Pl,k—l (X053 X1 Yoo o> Vi Yie) = Pric-1 (X0s+ > X1 Yoo -+ > Vi)
Yk = Yo Ve~ Y2 |
= o (%gs - X ¥) + ot
o ’ P11 (%05 > %1 Yoo 1) | 911 (X0s -+ > X1 Yoo - o> Viea> Vi)
Yk =)
== (%55 X0 ) + g
P11 (X055 X1 Yoo Vi)
=P (xo’ e >xl’)’k)-
We can use (9), (11), and (22) to find that Now we give the Newton-Thiele Matrix Interpolation
Algorithm (NTMIA).
Rm,n (xl’ yk)
= Uy () + U, () (%, = %) Algo.rithm 7 (NTMIA). Input: {(xi,yj),Yi’j} @ = 0,1,...,
(23) m; j=0,1,...,n)
+- 4+ U x;=xo) (= xp) - (g — x; _
1 () (= x0) (% D (g = x) Output: R, (x, y).
=¥ (o 3e)- Step 1. Forall (x,, y;) € A, let (x;, ) = Y
ep 1. Forall (x;, y;) € A, . letp(x;, y.) =Y, .
We can similarly prove the following result. P »Yj ’ P Vi o
Step 2. For j = 0,1,...,m; p = 1,2,....,m; i = p,p+
Theorem 6. Let 1,...,m, compute
(D) via(xgs s X Yos oo Vi)l = 0,1L,...,m5 k = 0,

1,...,n exist and be nonzero (except for y,(xy,
Yor -5 Vi)

(i) V() = YKo Xpsee s X Voo i) + (X =
xs)/Vk(”l)(x)) satigny,iSH)(xs) #0,5s=0,1,...,m-1,
then R, (x,y) as in (14) and (15) exists such that
Ry 1) = Yigoo (51, 1) € Ay

Pp,0 (xo> s X1 X ;Vj)

_ Pp1,0 (xo’ s Xpos X )’j)_‘/’p—l,o (xo» oo Xps J’j)

v (24)
24
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Step 3.Fori=0,1,...,m; q=1,2,...,m j=¢q,q+1,...,n,
compute
Piq (xo"-->xi’)’0»--->)’q—1>)’j)

= ()’j - yq—l) X (‘Pi,q—1 (xoi c X Yoo >)’q—2))/j)

~Pig-1 (xo> e Xy Yoo ’yq—l))il

= (()’j - )’q—1) (S"i,q—l (xo) ces X Yos e »)’q—z»)’j)

_(Pi,qfl (xo’-"’xi’yO""’yq*I))>

X (”(p (xo,...,xi,yo,...,yq_z,yj)

_(P (xO). . ')xi’ yO" . "yQ’l)"z)_l'
(25)

Step 4. Fori = 0,1,...,m; j = 0,1,...,n, compute g; ; =

fPi,j(xo, e Xp Yo yf)‘

Step 5. Fori =0,1,...,m; j=1,...,njudgeif a;; #0; if yes
go to Step 6, otherwise exist and show “the algorithm is not
valid”

Step 6. Fori=0,1,...,m; j=n-2,n-3,...,0

Q.,=1 P, =a, Qi1 = "“i,n”z’

Pi,n—l = ai,n—lQi,n—l + (y - yn—l) F,n’

Q= ||ai,j+1'|2Qi,j+1 +2 (}’ - )’j+1) tr (ai,j+1Pi,j+2*) (26)
2
+ (J’ - J’j+1) Qi ji2s

b= ai,jQi,j + (J’ - )’j)Pi,j+1-

Step 7. Fori = 0,1,...,m; j =mnn-1,..,1letB;;(y) =
P, ;(»)/Q; j(y)s; if B; j(y;_1) #0 then go to Step 8, otherwise
exist and show “the algorithm is not valid”

Step 8. Fori = 0,1,...,m, let Bi(y) = B;o(y) = Po(y)/
Q,‘,o(}’)-

Step 9. For k = 1,...,mlet Ry(x, y) = By(y), then compute
Ri(x, y) = R (%, ¥) + -+ (x — xg) -+ (x = x3_1) B (»).

3. Some Properties

Lemma 8 (see [5]). Define Uy(y) = @go(xp, ) + (v —
Y0) /90,1 (X Yoo 1)+ + (¥ = Y1)/ @0 n (%05 Yoo - - > Y)s if we
use generalized inverse by a tail-to-head rationalization, then
a polynomial matrix E(y) and a real polynomial Fy(y) exist
such that

(1) Uy(y) = Eo(»)/Fy(), Fy(y) = 0,

« »

(i) Ey(y) | IE;)I7,“1” means the sign of divisibility.

Definition 9. R(x,y) = N(x, y)/D(x, y) is defined to be of
type [1/t] ifdeg{Nij} <lforl<i<ul<j<uv, deg{Nij} =1
for some (i, j) and deg{D} = ¢, where N(x, y) = (N,-j(x, y)) €
CMXU.

Lemma 10 (see [5]). Let Uy(y) be defined as in Lemma 8, and
Uy(y) = Eo(y)/Fy(y); if nis even, Uy(y) is of type [n/n]; if n is
odd, Uy(y) is of type [n/n — 1].

Theorem 11. Let ¢, € C*™, (x;,y,) € A, and x,y €
R. Define Uj(y) of R,,,(x,y) as in (7) by a tail-to-head
rationalization using generalized inverse and suppose every
intermediate denominator be nonzero in the operation, then
a square polynomial matrix N(x, y) and a real polynomial
D(x, y) exist such that

(i) R,,,.(x, ) = N(x, y)/D(x, y),

(ii) D(x, y) = 0,

(iii) D(x, y) | IN(x, »)I%.

Proof. Consider the following algorithm for the construction
of N(x, ), D(x, ), and R,,,,,(x, ¥).
Initialization: let Dy(x, ¥) = 1, and

Yoy Y Y

0,1 | 9o,

Ny (x%,5) =Uy (¥) = @op + 2 .- (27)

By Lemma 8, a polynomial matrix E,(y) and a real polyno-
mial F,(y) exist such that

(al) No(x, ) = Eo(y)/Fy (),
(a2) Fy(y) =2 0,
(a3) Fy(») | IE;()II.

Recursion: for j = 1,2,...,mlet

SV (x, ) =8 (%, ) + U; () (x = xg) -+ (x — x4
(28)

with U]-(y) = Ej(y)/Fj(y),F-(y) | ||Ej(y)||2 having the
representation

(b1) $¥(x, ) = N(x, y)/D(x, y),
(b2) Dj(x, ) 2 0,
(b3) D;(x, y) | IN;(x, »)I,

where D;(x, ) is a real polynomial.



Then we can get
S9 (3,3) = 89 (3, 7) + U (x = 0) -+ (- ;)

_ N; (x, ) E;, (»)

- Dj(x,y) + Fj+1 (y) (x—xo)...(x_xj)

= (Nj (x,9) Fin (y) + D; (x,y) Ei ()
x(x—xo)u-(x—xj))

x(D; (%, ) Fju ()"

_ Nj+1 (x’ y)
Dj+1 (x,y)’
(29)
where
Nj (x,y) = N; (%, ) Fi ()
+D;(x,y) Ejy () (x = xo)
(30)
-]
Dj,y (x,y) = D; (x,9) Fi ().
Obviously,
[Nl = INj e P By () + D} (5,9)
<[EGy D (e =x0) -+ (- x;)°
+N; (x>)’)'Ej+1 ()’)Fj+1 ()’)Dj (%) G31)
x(x—xo)---(x—xj)
+Nj (x,y)- E;, () Fin () D; (x,9)
x(x—xo)--«(x—xj)
since
D; (% 3) 1 [N, (e ) f%unwﬂmﬁ(m
Dj+1 (x,y) | ||Nj+1 (xJ’)”z-
Termination: $™ (x, ¥) =R, (%, ). O

Theorem 12 (Characterization). Let R,,,(x,y) = N(x, y)/
D(x, y) be expressed as

R= Ry, (xy)=Uy(y) + Uy (y) (x = %))

o4 Uy () (= xg) (X = %) »
(33)

where U(y) = E,;/F, as in (12) we assume F,, F; have no
common factot, i, j = 0,1,...,m,i# j, then
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(i) if n is even, R is of type [mn + m + n/mn + n};
(ii) if n is odd, R is of type [mn + n/mn +n—m—1].

Proof. The proof is recursive. Let n be even.

Form = 0, R, ,(x, y) = Uy(y) = E,/F,, by Lemma 10, we
find that it is of type [n/n].

For m = 1, because deg{E;} = deg{F,} = n, deg{E,} =
deg{F,} =n

N
Ry, (x,y) = D_I =Uy (») + Uy () (x = xp)
E E
=§+§u—w (34)

_ EyF, +EF, (x - x,)
- FyF,

is of type [2n + 1/2n].

For m = 2, from the formula above we know that
deg{N,} = 2n+1,deg{D,} = 2n,deg{E,} = n,and deg{F,} =
n. one has

N, N, E
Rz,n(x’)’) = Fz = Hi + F_j (x = xo) (3 = x7)
(35)
_ N\F, +E,D, (x = x,) (x — x;)
- D,F, .
It is easy to find that R, ,(x, ) is of type [3n + 2/3n].
For m = k, let Ry ,(x, y) = N;/Dy. be of type [(k + 1)n +

k/(k + 1)n].
For m = k + 1, we consider that
N, E
Ry (%, y) = D—: + ﬁ (x = x0) -+ (x = xz)
_ NiFipy + By Dy (x = xp) -+ (x = xz) (36)
D F
- Nk+1
Dk+1
where
deg{Niy }= k+1)(n+1)+n
= (k+2)n+k+1), (37)

deg {Dy, 1} = (k+)n+n=(k+2)n.

Therefore, when # is even, R is of type [mn + m + n/mn + n].
Similarly, if 7 is odd, for m = 0,R,(x,y) = Uy(y) =
E,/F,, by Lemma 10, we find that it is of type [n/n — 1].
For m = 1, because deg{E;} = deg{E,} = n, deg{F,} =
deg{F,} =n-1

N
Ry, (x,y) = D_i =Uy (3) + U, () (x = xp)
E E
:F—Z+F—11(x—x0) (38)

_ EF, + E|F, (x = x,)
- FOFl

is of type [2n/2n - 2].
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For m = 2, from the formula above we know that deg{N, }
=2n, deg{D,} = 2n—2, deg{E,} = n, and deg{F,} =n—1.
one has

N. N E
Ry, (x,y) = D—j = 31 + F—j (x = xp) (2 = 1)
(39)
_ N, F, + E; Dy (x = xp) (x - x,)
D,F, '
We get that R, ,(x, y) is of type [3n/3n — 3].
Form =k, let
Ni
Ry, (xy) = =
(%) =5 (40)
be of type [(k + 1)n/(k + 1)(n - 1)].
For m = k + 1, we consider that
N . Exn
R ) = — 4 — — v —
o () = B+ 752 (= x0) (=)
_ NiFinr + By Dy (2 = x0) -+ (% = xp) (41)
Dy Fy
— Nk+1
Dk+1
where

deg{Ni,}=(k+D)(n-1)+k+1=(k+2)n,

deg{Dp =+ )(n-1)+n-1)=(k+2)(n-1).
(42)

Therefore, when nis odd, Ris of type [(m+1)n/(m+1)(n—
1)]. O

Definition 13. A matrix-valued Newton-Thiele type ratio-
nal fraction R, (x,y) = N(x,»)/D(x,y) is defined to
be a bivariate generalized inverse and rational interpolant
(BGIRIy) on the rectangular grid A, , if

(1) Ry (X1 Y1) = Yoo (15 716) € Ay
(i) D(xl) }’k) +0, (xl) )/k) € Am,n,
(iii) (a) if n is even,

deg{D (x, y)} = mn+n,
(43)

deg {N (x, y)} = mn+ m+n,

(b) if n is odd,

deg{D (x, y)} = mn+n-m-1,
(44)

deg {N (x, y)} = mn+n,

(iv) D(x, y) | IN(x, p)I,
(v) D(x, y) is real, and D(x, y) > 0.

Now let us turn to the error estimate of the BGIRIy.
Firstly, we give Lemma 14.

7
Lemma 14. Let
R, (%) =U; (y) + U] (¥) (x = xo)
+oo+ U, () (=) (=21) -+ (=X ) »
(45)
where forl =0,1,...,m
* Y =)
U, (») = P10 (%5 -+ X1 Yo) + i,
P11 (%05 -+ -5 X5 Yo 1)
Y~ Yn |
+ “ee + 46
| @i (X055 X1 Yor o+ 5 V) (46)
N Y= nl
| @t (oo s X0 Yo+ o> Vo )
then R, (x, y) satisfies
R, (x0y) = £ (y)s i= 0.1,
(47)

R:n,n(x’yj)sz,n(x’yj)> j=0,1,...,n.

Remark 15. We delete the proof of the above lemma since it
can be easily generalized from [3].

Now the error estimate Theorem 16 will be put which is
also motivated by [3]. We let

N(x,y) .

_ N (%)
D(X, y)’ Rm,n (X,y)

= . (48
D (xy) *¥

R, (x,y) =

Theorem 16. Let a matrix f(x, y) be max(m + 1,n+ 1) times
continuously differentiable onasetD = {a < x < b,c < y < d}
containing the points A, = {(x;, y) : 1 =0,1,...,mk =
0,1,...,m (x5, y;.) € R?}, then, for any point (x, y) € D, there
exists a point (§,1) € D such that

f(x’y) _Rm,n (x,y)
-
D(x, y) D* (x, y)
% {merl (.X') am+1

(m+1)! ox™m+1

@1 () 0™
E, (€> y) + maynﬂ E, (x’ 11)} >

(49)

where
Wpey (%) = (x = x) (x — ;) - (x = x,,)
@ (1) = =2) 0 =31) (= 5)>
E, (x,7) =D (x.y)D" (%, 3) [f (x.7) =R}, (x.»)],

E,(x,y) = D(x,y) D" (x, )[R}, (%, ) = Ry, (x, )] -
(50)



Proof. Let
E (x,y)=D(x,y) D" (x,y)[f (x.y) - R}, (x.¥)],
E,(x,y) = D(x,y) D" (x, )[R}, (%, ) = Ry, (%, )],

E(x,y) =E (x,y) + E;(x,y).

(51)
From Lemma 14, we know
E (x,y)=0, i=0,1,...,m, (52)
which results in
w,, (x) am+1
Ei(x,y) = 24 E\(x,y)| (53)

(m + 1)l 0xm+1 it

where w,,,,,(x) = (x = xy)(x —x;)---(x — x,,,), and £ is a

number contained in the interval (a,b) which may depend
on y. Similarly, from

E(x9,)=0, j=0,1,...,n, (54)

we can get that

‘Dn an+l
Ey(x,y) = a ()

T+ 1) By”“Ez (x.7)

> (55)
y=n

where @, (y) = (y—¥,)(y=»1) - (y—¥,), and yis a number
contained in the interval (¢, d) which may depend on x.
Therefore,

E(x,y) = E, (x,y) + E; (x, y)

Wi (x) am+1
B (m++ 1)! ameEl (%)
: x=£ (56)
@, (y) 0"
+ E,(x,y)
(n+1)! 9yl 2 e
The proof is thus completed. O

4. Numerical Examples

Example 17. Let (x;, y;) and Y, ,i,j = 0,1,2 be given in
Table 1:

Ry (%,y) =Uy () + Uy () x + Uy () x (x = 1) (57)

Using Algorithm 7, we can get

10 y y-1]
)= (4 0)* oo * ,
’ 0.0/ (89) 1(3s-1s)
0 -1 y y-1]
U(y)z( >+ G2
O o) iy @

= P! + Y + y_ll
Uz(}’) <% 0> (0 73/5) |( 0 715/14).

—-5/14 —-5/7
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Based on generalized inverse (4), we obtain

Ry, (x,y)
ap ap 6 5 4
= x (70y° — 368y~ + 892
<‘/121 azz) ( 4 4 4
3 2 -1
-1240y” +1040y° ~512y+128)
_N(xy)
D(x,y)
(59)
where

ay, = 70y° - 368y° + 892y" — 1240y’
+1040y” — 512y + 128,
a;, = 178y5x - 858y4x + 1688y3x
— 1776xy” + 1024xy — 256x — 38y°x°
+262y* x> — 640y’ x” - 512x°y
- Syéx2 + 5y6x + 800962)12 +128x7,
a,, = 108y° —200y* + 200y — 112y + 32y
—28y° +60y°x — 344y°x + 736" x — 784y’ x
+408xy” — 32xy — 64x — 24y° x> + 16y x”
—96x°y + 10y°x* + 40x° y* + 64x7,
a,, = 68y° — 140y* + 160y° — 96y
+32y — 14y° - 50y°x° + 270y°x* — 640y*x*
+820y°x* — 560x”y* + 160x° y + 50y°x — 270y’ x

+640y"x — 820y°x + 560xy” — 160xy.
(60)

From Definition 13, we know that R, , (x, ) is a BGIRIy
since R, ,(x;, y;) =Y; ;and deg N(x, y) = 8, deg D(x,y) =
6,and D(x, ) | IN(x, y)|.

In paper [9], a bivariate Thieletype matrix-valued rational
interpolant Ry(x, y) = Gyo(y) + (x = x0) /G o(p) + -+ (x -
X 1)/Gpo(y) (page 73), where for [ = 0, 1,...,n,

Gio (y) = B, (%X0> -+ X1 Yo)
Y=Y
By, (%X0s -+ +> %1 Yo 1) (61)
e Y= Y | '
B (v s X0 302 )
Here By (xg,--.»Xps Yos - -5 Vi) 1 = 0,1,...,n,k =0,1,...,m

is defined different from that of this paper (see [9]). We
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TABLE 1
yil%; X, =0 x; =1 x, =2
0 10 1 -1 10
0 00 00 10
_, 10 10 1 -1
% 01 -1 1 0 1
) 1 0 11 11
72 -1 0 10 0 -1
TABLE 2
Y(1.3,1.3) Ryp(1.3,1.3) IRy = Ylg
—0.856888 0.5155013 3.669296 —0.856888 0.5155010 3.669297 1.09% — 006
1.30000 3.66929 2.600 1.30000 3.66929 2.600 '
Rp(1.3,1.3) IRy — Y,
-0. 14111 54 4
0.98999 0 5.4739 2.613697
1.29999 5.47394 2.999
Y(1.5,1.5) Ryp(1.5,1.5) IRyr - Ylls
—0.989999 0.1411200 4.481689 —0.989992 0.1411203 4.481688 9.15¢ — 007
1.50000 4.481689 3.00 1.50000 4.481688 3.00 '
Ry(15,1.5) IRy — Y1,
—0.99829372 —0.05837 5.47394 1.43144
1.49999 5.47394  3.1999

now give another numerical example to compare the two
algorithms, which shows that the method of this paper is
better than the one of [9].

Example 18. Let

Y (x, y) = (cos (9;+ y) sin (:y+ y) Xej’y) 62)

and we suppose {xg, X, X3, X3, X4 X5} = {¥, ¥1> 2> ¥3» V> Y5}
= {1.0,1.2,1.4,1.6,1.8,2.0}. The numerical results Ryr(x, »)
in Step 9 of Algorithm 7 and R;(x, y) in [9] are given in
Table 2.

Remark 19. In Table 2, from the F-norm of Ry;—Y and R;—Y,
we can see that the error using Newton-Thiele type formula
is much less than the one using Thieletype formula.

5. Conclusion

In this paper, the bivariate generalized inverse Newton-Thiele
type matrix interpolation to approximate a matrix function
f(x,y) is given, and we also give a recursive algorithm
accompanied with some other important conclusions such as
divisibility, characterization and some numerical examples.
From the second example, it is easy to find that the approxi-
mant using Newton-Thiele type formula is much better than
the one using Thieletype formula.
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