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In order to effectively solve the dynamic vehicle routing problem with time windows, the mathematical model is established and an
improved variable neighborhood search algorithm is proposed. In the algorithm, allocation customers and planning routes for the
initial solution are completed by the clustering method. Hybrid operators of insert and exchange are used to achieve the shaking
process, the later optimization process is presented to improve the solution space, and the best-improvement strategy is adopted,
which make the algorithm can achieve a better balance in the solution quality and running time. The idea of simulated annealing
is introduced to take control of the acceptance of new solutions, and the influences of arrival time, distribution of geographical
location, and time window range on route selection are analyzed. In the experiment, the proposed algorithm is applied to solve the
different sizes’ problems of DVRP. Comparing to other algorithms on the results shows that the algorithm is effective and feasible.

1. Introduction

Dynamic Vehicle Routing Problem (DVRP) is a variant of
the Vehicle Routing Problems (VRPs) that has arisen due to
recent advances in real-time communication and informa-
tion technologies.TheVRP is a nondeterministic polynomial
hard (NP-hard) problem that calls for the determination
of the optimal set of routes to be performed by a fleet of
vehicles to serve a given set of customers. However, amajority
of the information is unpredictable before path optimiza-
tion, such as the customer’s geographic position, customer
demand, and vehicle travel and service time.This information
is dynamic and new information may appear or existing
information changes, and so forth. Many different factors
must be considered when a decision about the allocation and
scheduling of a new request is taken: the current location
of each vehicle, their current planned route and schedule,
characteristics of the new request, travel times between
the service points, characteristics of the underlying road
network, service policy of the company, and other related
constraints. The DVRP is a complex problem compared to

the classic VRP, and variable neighborhood search (VNS) is
proposed as a means to effectively and efficiently tackle the
dynamic problem and optimize the planned routes between
the occurrences of new events. VNS was initially proposed
by Hansen and Mladenović [1, 2] for solving combinatorial
and global optimization problems.Themain reasoning of this
metaheuristic is based on the idea of a systematic change of
neighborhoods within a local search method.

This paper has twomain contributions. First, according to
the characteristic of DVRP, we gave the graph expression and
formulated the mathematical model. Second, the proposed
algorithm is improved in initial solution, shaking and local
search based on classic VNS. The later optimization process
is presented, and the results show that the algorithm is feasible
and competitive with other existing algorithms. The remain-
der of the paper is organized as follows: literature reviews
are illustrated in Section 2 and the mathematical formulation
problem is discussed in Section 3. Section 4 introduces the
main ideas of the improved variable neighborhood search,
while computational results are presented and discussed in
Section 5. Section 6 concludes the paper.
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2. Literature Reviews

TheDVRP problem is closely related to the actual production
and life. In recent years, DVRP gradually becomes a hot topic.
Both domestic and foreign scholars mainly focus on the con-
struction of different scheduling models and the designing of
simple and efficient heuristic algorithms. A survey of results
achieved on the different types of DVRPs can be found in
Gendreau and Potvin [3].The dynamic full-truckload pickup
and delivery problem has been studied by Fleischmann et al.
[4] and Yang et al. [5]. Montemanni et al. [6] proposed the
vehicle schedulingmodel with randomdynamic demand and
solved it using an ant colony algorithm. In Gendreau et al.
[7] neighborhood search heuristics for dial-a-ride problems
are finally presented. Goel and Gruhn [8] studied the math-
ematical model of dynamic vehicle routing problems under
the conditions of the real-life information. Schönberger
and Kopfer [9] studied the real-time decision-making and
autonomous decision-making of DVRP. Novoa and Storer
[10] introduced the approximate solution algorithm with
stochastic demands. Branchini et al. [11] presented local
search algorithm for a dynamic vehicle routing problem.
Müller [12] studied DVRP with time window and analyzed
the algorithm for the model suboptimal solution.

In the past ten decades, a tremendous amount of work
in the field of vehicle routing problems has been published,
especially literature based on VNS. The Bräysy [13] gave
the internal design of the VND and RVNS algorithm in
detail, analyzed the VRPTW problem, and indicated the
VND algorithm as one of the most effective ways to solve
VRPTW problems. Polacek et al. [14] designed VNS to solve
the multidepot vehicle routing problem with time windows
MDVRPTW.His algorithm used the neighborhood structure
of swap and cross to do shaking operation for the current
solution, to do local search with a constrained 3-opt operator
to accept the part of the poor solution to avoid getting into
a local optimum for the algorithm by Threshold Accepting.
Kytöjoki et al. [15] designed the guided VNS algorithm
to handle the 32 existing large-scale VRP problems and
compared it to the TS algorithm. The result showed that
the VNS algorithm was more effective than TS algorithm
in solving time. Goel and Gruhn [16] introduced the RVNS
to solve the general VRP problem including time windows,
vehicle constraints, path constraints, travel departure time
constraints, capacity constraints, the order models compati-
bility constraints,multisupplier point of the orders, and trans-
port and service position constraints. Hemmelmayr et al. [17]
proposed the VNS algorithm for periodical VRP problem,
adopted the saving algorithm for the construction of the
initial solution, designed the move and cross neighborhood,
used 3-opt operator as local search strategies, and contrasted
it with other research results. Fleszar et al. [18] adopted VNS
algorithm to solve the open-loop VRP problem and tested 16
benchmark problems.

Due to the complexity of the problem, the current solving
quality and efficiency for the DVRP are far from the practical
requirements. So, there are many problems need to make in-
depth research such as how to seek feasible solutions, how
to prevent falling into local optimum, and how to control

Advance request customer (static)
Immediate request customer (dynamic)
Depot

Depot

New route segment
Planned route
Current position
of vehicle

Figure 1: An example for dynamic vehicle routing problem.

the solution within the acceptable range. This paper presents
an improved variable neighborhood search algorithm to
solve DVRP; it integrates local search operator, optimization
process, and the simulated annealing algorithm into the VNS
algorithm framework. Through the comparison with other
algorithms, it shows that the proposed algorithm can get the
better solution.

3. Problem Descriptions

3.1. Problem Definition. Larsen [19] defined DVRP with two
aspects: not all information relevant to the planning of the
routes is known by the planner when the routing process
begins; information can change after the initial routes have
been constructed. And he illustrated a dynamic vehicle
routing situation. The simple example is shown in Figure 1.
As seen from it, two uncapacitated vehicles must service
both advance and immediate request customers without time
windows. The advance request customers are represented by
yellow nodes, while those that are immediate requests are
depicted by black nodes.The solid blue lines represent the two
routes the dispatcher has planned prior to the vehicles leaving
the depot. The two thick arcs indicate the vehicle positions at
the time the dynamic requests are received. Ideally, the new
customers should be inserted into the already planned routes
without the order of the nonvisited customers being changed
andwithminimal delay.This is the case depicted on the right-
hand side route. However, in practice, the insertion of new
customers will usually be a much more complicated task and
will imply a replanning of the nonvisited part of the route
system. This is illustrated by the left-hand side route where
servicing the new customer creates a large detour.

We can also describe the DVRP with a mathematic
approach. The problem is defined on a complete graph 𝐺 =

(𝑉, 𝐸), where 𝑉 = {𝑣
0
, . . . , 𝑣

𝐿
} is the vertex set and 𝐸 =

{(𝑣
𝑖
, 𝑣
𝑗
) : 𝑣
𝑖
, 𝑣
𝑗
∈ 𝑉, 𝑖 ̸= 𝑗} is the arc set. The vertices’ set 𝐷 =

{𝑣
0
} corresponds to the depots. Each vertex 𝑣

𝑖
∈ 𝑉 has several

nonnegative weights associated with it, namely, a demand 𝑑
𝑖
,

a arrival time 𝑎
𝑖
, the waiting time 𝑤

𝑖
, service time 𝑠

𝑖
, and an

earliest 𝑒
𝑖
and latest 𝑙

𝑖
possible start time for the service, which

define a time window [𝑒
𝑖
, 𝑙
𝑖
]. 𝐶𝑡
𝑖𝑗
is the transportation cost
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from customer 𝑖 to customer 𝑗 in the period 𝑡. Each vehicle
𝑘 has associated with a nonnegative capacity 𝑞

𝑘
. 𝑇 refers to

the number of time periods, 𝑐
𝑓
is the fixed cost for a vehicle,

𝑐
𝑡
is the traveling cost per unit time, and 𝑀 is a very large

number.
The variables are defined as follows:

𝑦
𝑖𝑘
= {

1, if customer 𝑖 is delivered by vehicle 𝑘,

0, other,

𝑥
𝑡

𝑖𝑗

=
{

{

{

1, if the vehicle visits the customer 𝑗 from
customer 𝑖 in the 𝑡 period,

0, other.
(1)

3.2. Mathematical Formulation

3.2.1. Objective Function. The dynamic vehicle routing prob-
lem with time windows is formulated in this section as a
mixed integer linear programming problem.The objective of
the formulation is to minimize the total cost that consists of
the fixed costs of used vehicles and the routing costs:

min𝐹 = 𝑐
𝑓
× ∑

𝑖∈𝑉

∑

𝑗∈𝑉\{𝑉0}

𝑇

∑

𝑡=1

𝑥
𝑡

𝑖𝑗
+ 𝑐
𝑡

× ∑

𝑖∈𝑉

∑

𝑗∈𝑉\{𝑉0}

𝑇

∑

𝑡=1

(𝑐
𝑡

𝑖𝑗
× 𝑥
𝑡

𝑖𝑗
) .

(2)

3.2.2. Problem Constraints. The constraints of the problem
consist of vehicle constraints, demand constraints, routing
constraints, and other constraints.
Assignment of Nodes to Vehicles. Equation (3) ensure that each
customer has a vehicle service for only one time and the
vehicle does not return to the yard:

𝐿

∑

𝑖=0,𝑖 ̸= 𝑗

𝑇

∑

𝑡=1

𝑥
𝑡

𝑖𝑗
= 1, 𝑗 = 1, 2, . . . , 𝐿;

𝐿

∑

𝑗=1,𝑗 ̸= 𝑖

𝑇

∑

𝑡=1

𝑥
𝑡

𝑖𝑗
= 1, 𝑖 = 1, 2, . . . , 𝐿;

(3)

Relationship between the Vehicle and Depot. Constraint (4)
ensures that the number of vehicles departed from the
yard does not exceed the maximum number 𝐾 of vehicles
belonging to the distribution center:

𝐿

∑

𝑗=1

𝑇

∑

𝑡=1

𝑥
𝑡

0𝑗
≤ 𝐾. (4)

Relationship between the Vehicle and Route. Constraint (5)
ensures that customers on the same route are delivered by the
same vehicle:

𝐾

∑

𝑘=1

𝑘 (𝑦
𝑖𝑘
− 𝑦
𝑗𝑘
) ≥ 𝑀(

𝑇

∑

𝑡=1

𝑥
𝑡

𝑖𝑗
− 1) , ∀𝑖, 𝑗, 𝑖 ̸= 𝑗,

𝐾

∑

𝑘=1

𝑘 (𝑦
𝑖𝑘
− 𝑦
𝑗𝑘
) ≤ 𝑀(1 −

𝑇

∑

𝑡=1

𝑥
𝑡

𝑖𝑗
) , ∀𝑖, 𝑗, 𝑖 ̸= 𝑗.

(5)

Assignment of Nodes to Vehicles. Equation (6) states that every
customer node must be serviced by a single vehicle:

𝐾

∑

𝑘=1

𝑦
𝑖𝑘
= 1, ∀𝑖 = 1, 2, . . . , 𝐿 (6)

Capacity Constraints. Constraint (7) states that the overall
load to deliver to customer sites serviced by a used vehicle
𝑣 should never exceed its capacity:

𝐿

∑

𝑖=1

𝑑
𝑖
𝑦
𝑖𝑘
≤ 𝑞
𝑖
, ∀𝑘 = 1, 2, . . . , 𝐾. (7)

Subcircuit Constraints. Equation (8) ensures to eliminate sub-
circuit:

∑

𝑖,𝑗∈𝑆×𝑆,𝑖 ̸= 𝑗

𝑇

∑

𝑡=1

𝑥
𝑡

𝑖𝑗
≤ |𝑆| − 1, 𝑆 ∈ {1, 2, . . . , 𝐿} , ∀𝑖, 𝑗, 𝑖 ̸= 𝑗.

(8)

Time Constraint Violations due to Early/Late Services at
Customer Sites. One has

𝑎
𝑖
+ 𝑤
𝑖
+ 𝑠
𝑖
+ 𝑐
𝑡

𝑖𝑗
− 𝑀(1 − 𝑥

𝑡

𝑖𝑗
) ≤ 𝑎
𝑗
,

𝑎
𝑗
≤ 𝑙
𝑗
,

𝑤
𝑖
= max {𝑒

𝑖
− 𝑎
𝑖
, 0} .

(9)

Other Constraints. One has

𝑥
𝑡

𝑖𝑗
= 0, 1, ∀𝑖, 𝑗, 𝑘,

𝑦
𝑖𝑘
= 0, 1, ∀𝑖, 𝑘.

(10)

4. An Improved Variable Neighborhood
Search Algorithm

VNS is a metaheuristic for solving combinatorial and global
optimization problems proposed by Hansen andMladenović
[1, 2]. Starting from any initial solution, a so-called shaking
step is performed by randomly selecting a solution from the
first neighborhood. This is followed by applying an iterative
improvement algorithm.This procedure is repeated as long as
a new incumbent solution is found. If not, one switches to the
next neighborhood (which is typically larger) and performs
a shaking step followed by the iterative improvement. If
a new incumbent solution is found, one starts with the
first neighborhood; otherwise one proceeds with the next
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Main: Clarke And Wright savings algorithm
Input: the number of customers and vehicles, the capacity of vehicles
Output: set of initial solution
Begin
for each day do

while number of routes > number of vehicles do
shortest route:= find route with fewest number of customers
for each customer ∈ shortest route do

delete current route
insert in cheapest position of the remaining routes

end for
end while

end for
end Begin

Algorithm 1: The initial solution based on CW.

neighborhood, and so forth. The description consists of the
building of an initial solution, the shaking phase, the local
searchmethod, and the acceptance decision.The flow of VNS
is shown in Figure 2.

4.1. Initial Solution. Using variable neighborhood search
algorithm, first, it needs to build one or more initial feasible
solution; a clustering algorithm for an initial feasible solution
mainly completes two tasks: customer allocation and path
planning. For obtaining an initial solution, each customer
is assigned a visit day combination randomly. Routes are
constructed by solving a vehicle routing problem for each
day using the Clarke andWright savings’ algorithm [20]. The
Clarke and Wright savings’ algorithm terminates when no
two routes can feasibly be merged; that is, no two routes can
be merged without violating the route duration or capacity
constraints shown in Algorithm 1. As a result, the number
of routes may exceed the number of available vehicles. In
that case, a route with the fewest customers is identified
and the customers in this route are moved to other routes
(minimizing the increase in costs). Note that this may result
in routes that no longer satisfy the duration or capacity
constraints.This step is repeated until the number of routes is
equal to the number of vehicles. Since the initial solutionmay
not be feasible, the VNS needs to incorporate techniques that
drive the search to a feasible solution.

The initial solution obtained by the above method can
basically meet the needs of the follow-up work, building
the foundation to achieve optimal feasible solution in the
following algorithm.

4.2. Shaking. Shaking is a key process in the variable neigh-
borhood search algorithm design. The main purpose of the
shaking process is to extend the current solution search space,
to reduce the possibility that the algorithm falls into the local
optimal solution in the follow-solving process, and to get the
better solution. The set of neighborhood structures used for
shaking is the core of the VNS. The primary difficulty is to
find a balance between effectiveness and the chance to get
out of local optimal. In the shaking execution, it first selects

a neighborhood structure 𝑁
𝑘
from the set of neighborhood

structures of current solution 𝑥; then according to the
definition of𝑁

𝑘
, 𝑥 corresponds to change and generate a new

solution 𝑥
∗.

There are two neighborhood structures to achieve the
shaking: insert and exchange. Insert operator denotes a
certain period of consecutive nodes moving from the current
path to another path; exchange operator refers to interchange
the two-stage continuous nodes belonging to different paths.
The insert and exchange operators are shown in Figure 3.
The cross-exchange operator was developed by Taillard et al.
[21]. The main idea of this exchange is to take two segments
of different routes and exchange them. Compared with the
VNS by Polacek et al. [14], the selection criterion is slightly
changed.Now it is possible to select the same route twice.This
allows exploring more customer visit combinations within
one route. An extension to the CROSS exchange operator is
introduced by Bräysy [13]; this operator is called improved
cross-exchange—𝑖Cross exchange for short. Both operators
are used to define a set of neighborhood structures for the
improved VNS.

In each neighborhood, the insert operator is applied
with a probability 𝑝insert to both routes to further increase
the extent of the perturbation; then the probability of the
exchange operator is 1 − 𝑝insert. IVNS selects randomly an
exchange operator to change path for each shaking execution.
The shaking process is somewhat similar to the crossover
operation of the genetic algorithm. When the process is
finished, the only twopaths have the exchange of information;
most of the features of the current solution will be preserved,
to speed the convergence of the algorithm.

4.3. Local Search. In a VNS algorithm, local search pro-
cedures will search the neighborhood of a new solution
space obtained through shaking in order to achieve a locally
optimal solution. Local search is the most time-consuming
part in the entire VNS algorithm framework and decides the
final solution quality, so computational efficiency must be
considered in the design process of local search algorithm.
Twomain aspects are considered in the design of local search
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Start

Define the set of the neighborhood
structure for local research

To construct the initial solution 𝑥, assume

Shaking process: in the 𝑘th neighborhood
structure of current solution 𝑥 randomly

generates a 𝑥s solution, and the evaluation
function of 𝑥 is 𝑓(𝑥)

Local search process: for 𝑥𝑠 to adopt some
local search algorithm to solve local optimal
solution 𝑥𝑙, evaluation function of 𝑥𝑙 is 𝑓(𝑥𝑙)

Later optimization process: get the

To accept the new solution

If meet the acceptance
decision of new solution?

Yes

Yes

Yes

No

No

Yes

No

EndNo

the optimal solution 𝑥𝑏←𝑥, the evaluation
function of 𝑥𝑏 is 𝑓(𝑥𝑏). The number of

iterations is 𝑛𝑡 , and 𝑖 = 1, 𝑘 = 1

𝑓(𝑥𝑙) < 𝑓(𝑥𝑏)

optimal solution: 𝑥op
𝑥𝑙←𝑥op , 𝑥𝑏←𝑥op , 𝑓(𝑥𝑏)←𝑓(𝑥𝑙)

𝑘 ← (𝑘 mod 𝑁max ) + 1

𝑓(𝑥𝑙) < 𝑓(𝑥)

𝑥 ← 𝑥𝑙, 𝑘 ← 1, 𝑖 ← 𝑖 + 1

𝑖 ← 𝑖 + 1

𝑖 ≤ 𝑛𝑡

𝑁𝑘 (𝑘 = 1, 2, . . ., 𝑁max )

Figure 2: The flow of IVNS.
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𝑖𝑖 − 1

𝑖 + 1 𝑗 + 1

𝑖 + 1 𝑗 + 1

𝑗 + 2

𝑗 + 2 𝑗 + 3

𝑘

𝑖

𝑘

𝑘 − 1 𝑙

𝑙

𝑙 + 1

𝑖 − 1 𝑗 + 3

𝑘 − 1 𝑙 + 1

Depot

Depot

Depot

Depot

(a) Insert

𝑖 − 1

𝑖 − 1

𝑖 + 2

𝑖 + 2

𝑗

𝑗

𝑗 − 1

𝑗 − 1

𝑖 + 1

𝑖 + 1

𝑗 + 1

𝑗 + 1 𝑗 + 2

𝑗 + 2

𝑖

𝑖

𝑖 − 2

𝑖 − 2

𝑗 − 2

𝑗 − 2

Depot

Depot

Depot

Depot

(b) Cross

𝑖 − 1

𝑖 − 1

𝑗

𝑗

𝑗 + 1

𝑗 + 1

𝑖

𝑖

𝑘 − 1

𝑘 − 1

𝑘 𝑙

𝑘𝑙

𝑙 + 1

𝑙 + 1

DepotDepot

Depot Depot

Customer node
Route

𝑖

(c) 𝑖Cross

Figure 3: Insert and exchange operator.
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𝑗 𝑗𝑗 + 1𝑗 + 1

𝑖 𝑖 𝑖 + 1𝑖 + 1

DepotDepot

(a) 2 − 𝑜𝑝𝑡

Customer node
Route

𝑖 + 1 𝑖 + 1

𝑗𝑗

𝑗 + 1𝑗 + 1

𝑘 𝑘𝑘 + 1𝑘 + 1

𝑖

𝑖

𝑖

Depot Depot

(b) 3 − 𝑜𝑝𝑡

Figure 4: 2 − 𝑜𝑝𝑡 and 3 − 𝑜𝑝𝑡 strategy.

algorithms: local search operator and the search strategy.
Based on the previous studies, this paper selects 2 − 𝑜𝑝𝑡 and
3 − 𝑜𝑝𝑡 as a local search operator in order to obtain the
good quality local optimal solution in a short period; they
are shown in Figure 4. According to the probability, one of
the two operators is selected in each local search process.The
parameter 𝑝

2−𝑜𝑝𝑡
represents the probability of selection for

2 − 𝑜𝑝𝑡; similarly, the probability of selection for 3 − 𝑜𝑝𝑡 can
be expressed as 1 − 𝑝

2−𝑜𝑝𝑡
. This mixed operator can develop

optimization ability for 2 − 𝑜𝑝𝑡 and 3 − 𝑜𝑝𝑡 and expand the
solution space of the algorithm.

There aremainly two search strategies: first-improvement
and best-improvement in local search algorithm.The former
refers to access the neighborhood solution of the current 𝑥
solution successively in the solution process, if thev current
access neighborhood solution 𝑥

𝑛
is better than 𝑥, tomake 𝑥 =

𝑥
𝑛
and update neighborhood solution. We repeat these steps

until all the neighborhood solutions of 𝑥 are accessed. Finally,
𝑥 will be obtained as a local optimal solution. The latter
refers to traverse all of the neighborhood solution of current
𝑥 solution in the solution process, to select the optimum
neighborhood solution 𝑥

𝑛
as a local optimal solution. In this

paper, we adopt the best-improvement strategy; it enables the
algorithm to achieve a better balance in the solution quality
and run time.

4.4. Later Optimization Process. In order to accelerate the
convergence speed and improve the solution quality, the later
optimization process is proposed in the IVNS algorithm.
After the local search is completed, if the local optimal
solution 𝑥𝑙 is better than the global optimal solution 𝑥𝑏, that
is, 𝑓(𝑥𝑙) < 𝑓(𝑥𝑏), the later optimization process will be

continued to be implemented in order to seek a better global
optimal solution [22]. The algorithm of later optimization
process which was proposed by Gendreau et al. is suitable
for solving the traveling salesman problem and the vehicle
routing problemwith timewindows.The algorithmprocesses
can be simply described as follows.

Step 1. There are some assumptions. The path that will be
optimized is 𝑟, its length is 𝑛, and its value of the evaluation
function is 𝑐. The final optimized path is 𝑟∗, the value of the
evaluation function is 𝑐∗, and 𝑟

∗
= 𝑟, 𝑐∗ = 𝑐, and 𝑘 = 1.

Step 2. The Unstring and a String processes [23] are, respec-
tively, performed for the 𝑘th customer in the 𝑟, the optimized
path 𝑟

 can be obtained, and its value of the evaluation
function value is 𝑐.

Step 3. If 𝑐 < 𝑐
∗, some processes are carried out; they are

𝑟
∗

= 𝑟
, 𝑟 = 𝑟

, 𝑐∗ = 𝑐
, 𝑐 = 𝑐

, and 𝑘 = 1, jump to Step 2;
otherwise, 𝑘 = 𝑘 + 1.

Step 4. If 𝑘 = 𝑛 + 1, the algorithm will be terminated;
otherwise, jump to Step 2.

4.5. Acceptance Decision. The last part of the heuristic con-
cerns the acceptance criterion. Here we have to decide
whether the solution produced by VNS will be accepted
as a starting solution for the next iteration. To avoid that
the VNS becomes too easily trapped in local optima, due
to the cost function guiding towards feasible solutions and
most likely complicating the escape of basins surrounded by
infeasible solutions, we also allow to accept worse solutions
under certain conditions. This is accomplished by utilizing a
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Table 1: The position and demand of static customers.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
X 29 47 45 32 6 34 44 36 38 5 27 32 17 40 37 26 34 18 43 19 25 26 29 29 14 50 47 8 42 46
Y 44 9 13 16 1 6 6 46 39 28 7 3 14 47 47 12 19 40 26 3 49 49 3 37 37 10 26 10 27 34
Demand 0.5 0.2 0.4 2 1.7 0.3 1.7 0.7 0.2 1.2 1.7 0.5 0.3 1.5 0.4 0.8 1.4 1.4 1 1.7 0.2 0.9 0.3 0.2 0.5 0.3 0.9 0.5 1.4 2

Metropolis criterion like in simulated annealing Kirkpatrick
[24] for inferior solutions 𝑥

∗ and accepting them with a
probability of (11), depending on the cost difference to the
actual solution 𝑥 of the VNS process and the temperature
𝑇. We update 𝑇 every 𝑛

𝑇
iterations by an amount of (𝑇 ×

𝑛
𝑇
)/𝛿max, where 𝑞0 denotes a random number on the interval

[0, 1], where 𝛿max denotes the maximal VNS iterations, and
an initial temperature value is 𝑇

0
= 10:

𝑆𝐴 (𝑥
∗
, 𝑥) =

{{{{{

{{{{{

{

𝑥
∗
, if 𝑞

0
> exp(

𝑓 (𝑥
∗
) − 𝑓 (𝑥)

𝑇
) ,

𝑥, if 𝑞
0
≤ exp(

𝑓 (𝑥
∗
) − 𝑓 (𝑥)

𝑇
) .

(11)

5. Numerical Experiments

In order to assess the performance of the improved variable
neighborhood search algorithm to solve DVRP, three test
problems with respect to different sizes (small, medium, and
large) have been done. We analyze the solution quality and
efficiency of our proposed algorithm. IVNS algorithm is
implemented by theC # language, and themain configuration
of the computer is an Intel Core i3 1.8 GHz, 2GB RAM
running Windows XP.

5.1. Case 1

5.1.1. Experimental Data and Setting. In order to assess the
performance of the improved variable neighborhood search
algorithm to solveDVRP, the data sets from the literature [25]
are used. Firstly, the VNS algorithm is applied to solve the
DVRP, and then the results are analyzed and compared with
other existing algorithms.

The dynamic distribution network is randomly gener-
ated by the computer. The distribution area is a square of
50 km × 50 km; 30 static demand customers and 10 the
dynamic demand customers are randomly generated. Each
customer’s demand is a randomnumber of [0, 2], the vehicle’s
capacity of distribution centers is 8 t, and the maximum
driving distance of vehicle once is 100 km.These information
including the coordinates and demand of 30 static customers
and 10 dynamic customers are randomly generated by the
computer, the location of the distribution center is 𝑂 (25 km,
25 km), and the number of vehicles is 3. The objective is
to arrange the delivery route of the vehicle reasonably, so
that the distribution mileage is the shortest. For simplicity,
the distance between customer and distribution center uses
the straight-line distance. The coordinates and demands
of static customers and dynamic customers are shown in
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Figure 5: The position relationship of customer and depot.

Table 2: The position and demand of dynamic customers.

No. A B C D E F G H I J
X 8 47 2 9 21 41 39 4 44 13
Y 19 10 15 9 12 43 25 8 41 49
Period 1 2 2 1 1 1 1 2 1 2
Demand 1 1.5 1.6 3 1.4 0.3 0.2 2.2 2.8 1

Tables 1 and 2, respectively, the specific position relationship
for the customer and the customer, and the customer and
distribution center are shown in Figure 5.

The initial values of the various parameters for IVNS
algorithm are set as follows.

(1) The parameter settings for simulated annealing
accepted criteria are initial temperature 𝑇

0
= 10,

every 𝑛
𝑇

= 𝑛/10 generation to update temperature
𝑇
𝑛+1

= 0.9 × 𝑇
𝑛
, 𝑛
𝑡
= 1000 to end the algorithm.

(2) The parameters value of the Shaking operation are as
follows: 𝑝insert = 0.2, 𝑝cross = 0.15, and 𝑝

𝑖cross = 0.1.
(3) The 𝑝

2−𝑜𝑝𝑡
value is 0.5 in local search.

5.1.2. Numerical Results. First, distribution of fixed-demand
customer is optimized, solved, and generated initial distribu-
tion route, as shown in Table 3.

The customers’ demand information is updated at period
1; at this moment, the service requests are put forward by
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Table 3: Initial distribution route of fixed-demand customer.

Vehicle Route Utilization % Mileage/km
1 0-17-7-3-2-26-27-19-29-0 90 69.92
2 0-4-6-12-23-11-16-0 70 50.82
3 0-24-1-22-21-18-25-10-0 61.25 75.83
4 0-13-28-5-20-0 52.50 68.63
5 0-30-9-14-15-8-0 60 68.65

Table 4: Scheduling plan at the period 1.

Vehicle Route Utilization % Mileage/km
1 0-17-7-3-2-26-27-19-29-G-0 93.79 67.31
2 0-4-6-12-23-11-16-0 90.25 48.35
3 0-24-1-22-21-18-25-10-0 74.43 75.47
4 0-A-D-28-5-20-E-12-0 91.32 84.11
5 0-30-I-F-14-15-8-9-0 99.17 71.43

Table 5: Scheduling plan at the period 2.

Vehicle Route Utilization % Mileage/km
1 0-17-7-3-B-2-26-27-19-29-G-0 94.54 70.61
2 0-4-6-12-23-11-16-0 90.25 48.35
3 0-24-1-22-21-18-J-25-10-0 83.82 87.93
4 0-13-E-20-5-28-D-H-C-A-0 93.19 98.79
5 0-30-9-I-F-14-15-8-0 99.17 71.43

Table 6: The comparison results of different algorithms.

Algorithm IVNS GA TS TPA
The optimal value 470.85 470.85 470.85 470.85
The worst value 749 1089 1367 879
The average value 558 823 919 548
Success rate 40% 14.7% 11.2% 28.5%
The number of iterations 25.47 47.65 28.17 31.69

six dynamic customers of A, D, E, F, G, and I. According
to the known information on real-time optimization stage,
the improved variable neighborhood search algorithm is used
to solve the distribution network at period 1 and output
scheduling plan, as shown in Table 4, and the specific route
is shown in Figure 6.

At period 2, the four dynamic demand customers of B,
C, H, and J have the service request, and now according
to customer requests, we update the relevant information.
Based on known real-time information on the dynamic
distribution network, the improved variable neighborhood
search algorithm is applied to solve the distribution network
at period 2, and then the scheduling plan is output, as shown
in Table 5, while specific vehicle route is shown in Figure 7.

These results show that the improved variable neigh-
borhood search algorithm can solve the real-time require-
ments of the dynamic vehicle routing problem; the best-
improvement search strategy and the insert and exchange
operators speed the convergence of the algorithm and obtain
better solution.
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Figure 7: The route at period 2.

In order to verify that the improved variable neighbor-
hood search for solving the dynamic vehicle routing problem,
we compare it with the genetic algorithms (GAs), tabu search
(TS), and a two-stage algorithm (TPA) based on the above
example. The parameters setting of GA, TS, and TPA can
be seen in the relevant literature [22, 25]. A comprehensive
comparison is made from the optimal value, the worst value,
the average value, search success rate, and the number of
iterations.The results of the experiment are shown in Table 6.

As can be seen from Table 6, the four algorithms consis-
tently find an optimal solution, but the worst and average
values have obvious differences; there are differences in
search success rate and the number of iterations.The order of
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Table 7: The comparison results of Lackner and IVNS.

No. Dod (%) Average vehicle number Average driving distance/km Average calculating time/s
IVNS Lackner ARE (%) IVNS Lackner ARE (%) IVNS Lackner ARE(%)

R1

90 14.25 15.15 −5.94 1343.82 1278.33 5.12 16.87 17.85 −5.49
70 14.23 15.02 −5.26 1331.35 1336.1 −0.36 19.06 19.87 −4.08
50 15.23 14.19 7.33 1293.81 1329.98 −2.72 25.69 27.46 −6.45
30 13.47 14.22 −5.27 1286.63 1337.86 −3.83 48.34 46.97 2.92
10 14.8 13.9 6.47 1259.18 1278.06 −1.48 70.01 68.01 2.94

C1

90 11.25 11.78 −4.50 1235.47 1479.6 −16.50 6.31 6.47 −2.47
70 11.26 11.87 −5.14 1031.78 1261.3 −18.20 11.08 10.81 2.50
50 12.21 11.97 2.01 1072.32 1236.06 −13.25 17.77 18.32 −3.00
30 10.57 10.54 0.28 970.8 1066.89 −9.01 28.06 27.08 3.62
10 10.23 10.78 −5.10 895.68 996.35 −10.10 42.46 44.25 −4.05

RC1

90 15 15 0.00 1506.43 1475.21 2.12 17.66 17.04 3.64
70 13.58 14.65 −7.30 1513.23 1488.44 1.67 24.12 28.5 −15.37
50 13.19 12.57 4.93 1519.12 1448.07 4.91 49.84 47.98 3.88
30 12.98 13.43 −3.35 1489.96 1439.71 3.49 44.12 46.21 −4.52
10 12.88 13.15 −2.05 1431.79 1426.89 0.34 86.78 88.21 −1.62

R2

90 3.23 3.56 −9.27 1045.89 1193.33 −12.36 14.1 13.9 1.44
70 3.79 3.61 4.99 1034.22 1116.93 −7.41 19.32 21.75 −11.17
50 3.33 3.65 −8.77 1012.11 1138.78 −11.12 32.11 32.08 0.09
30 4.22 4.87 −13.35 987.42 1085.42 −9.03 55.22 58.29 −5.27
10 6.22 6.1 1.97 951 1052.85 −9.67 71.01 70.11 1.28

C2

90 3.14 3.02 3.97 695.5 792.46 −12.24 6.21 5.52 12.50
70 3.67 3.9 −5.90 671.86 743.78 −9.67 9.14 9.91 −7.77
50 3.88 3.7 4.86 610.98 689.25 −11.36 18 18 0.00
30 3.19 3.5 −8.86 655.23 632.33 3.62 27.18 28.35 −4.13
10 4 4 0.00 582.32 629.08 −7.43 62.82 63.67 −1.34

RC2

90 5 5 0.00 1351.21 1476.76 −8.50 9.96 10.89 −8.54
70 3.98 4.1 −2.93 1256.32 1346.76 −6.72 19.03 18.98 0.26
50 4.32 4.45 −2.92 1189.13 1269.29 −6.32 25.78 27.96 −7.80
30 5.21 5.65 −7.79 1151.35 1244.85 −7.51 38.67 39.11 −1.13
10 6.8 7.1 −4.23 1183.11 1220.9 −3.10 57.1 57.29 −0.33

Average 8.637 8.81 −2.01 1118.63 1183.72 −5.50 32.46 33.03 −1.72

the four algorithms of search success rate from the smallest to
largest is tabu search algorithm, two-stage algorithm, genetic
algorithm, and IVNS; the order for the worst value is as
follows: the average value from small to big is IVNS, two-stage
algorithm, genetic algorithm, and tabu search algorithm; it
reflects the IVNS has the better global search capability.
The number of iterations for four algorithms from the
smallest to the largest is IVNS, tabu search algorithm, two-
stage algorithm, and genetic algorithm, this also shows that
convergence rate of IVNS is faster than the other algorithms,
and it can be more appropriate to solve dynamic vehicle
routing problem to some extent.

5.2. Case 2. The experimental test uses the benchmark
data which was 100-node VRPTW calculation example and
compiled by Solomon in 1987. Every sample contains 100
nodes and distributes into 100 × 100 Euclidean plane. The
sample is divided into six categories: R1, R2, C1, C2, RC1,
and RC2. DVRPTW adopts the Lackner dynamic test data

set which is designed in 2004 based on the Solomon example.
For each question in the Solomon example, there are five data
sets corresponding to it. They are 90%, 70%, 50%, 30%, and
10% five dynamic degree.

The dynamic degree is described as follows:

Dod =
𝑁
𝑑

𝑁
𝑑
+ 𝑁
𝑠

× 100%. (12)

𝑁
𝑑
is the number of dynamic customer demand, and 𝑁

𝑠
is

the number of static customer demand.
Table 7 gives the comparison results of the Solomon

problem to IVNS and Lackner under different dynamic
degrees. From the number of vehicles, the average driving
distance, and the average calculation time, we compared the
calculation results and the relative error. For five dynamic
degrees, the average values of the number of vehicles,
respectively, are 8.637 and 8.81 for IVNS and Lackner, the
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Table 8: The comparison results of Gehring and IVNS.

Instance set Objective The number of vehicles The calculation time/s Total demand New demand Reject demand
Gehring IVNS Gehring IVNS Gehring IVNS

C1 10 1 43494.2 43265.9 100 95 207 201 720 122 0
C2 10 1 21778.4 21763 31 30 216 212 640 114 2
R1 10 1 56389.8 56383.1 103 100 189.6 190.3 701 90 0
R2 10 1 37014.7 36982.2 19 20 237 228 550 49 2
RC1 10 1 48056.1 48005.7 97 98 316.8 313.5 853 80 3
RC2 10 1 33534.3 33156.1 23 21 507.6 499.8 690 189 0
Average 40044.58 39926.00 62.17 60.67 279.00 274.10 692.33 107.33 1.17

relative error is −2.01; the average values of driving distance
respectively are 1118.63 and 1183.72 for IVNS and Lackner, and
the relative error is −5.50; the average values of calculation
time, respectively, are 32.46 and 33.03 for IVNS and Lackner,
and the relative error is −1.72. According to Table 7, the
following conclusions can be drawn.

(1) In terms of the total driving distance, relative to
the best results which are obtained by Lackner’s
various algorithms, except for the RC1, R1, and C2,
the proposed algorithm can obtain better calculation
results for other type’s dynamic degrees.

(2) The present algorithm, in which the average com-
putation time is less than 90 seconds, fully meets
the requirements of real-time scheduling.The average
calculation time of IVNS is lower than Lackner; it
demonstrates that the algorithm has better search
capabilities.

5.3. Case 3. In order to verify the proposed variable
neighborhood search algorithm to solve the large-scale
dynamic vehicle routing problem effectively, this paper
extends to large-scale test instances with 1000 customer
which are presented by Gehring and Homberger. Table 8
gives the comparison results of the first path adjustment
for the part instance based on Gehring and our proposed
algorithm.

As shown in Table 8, the results of the objective value, the
number of vehicles, and the calculation time are compared
based on Gehring and IVNS. 107.33 average new demands are
occurred, and 692.33 total demands are handled in the path
adjustment instance; only 1.17 customer demands failed to be
satisfied, while the service level is close to 100%. In dealing
with a large-scale problem, the algorithm running time is an
important evaluation index; the average running time of our
proposed algorithm is 274.10 s; it is smaller than Gehring’s
algorithm.The number of vehicle is closely related to the cost,
and it is decreased from 62.17 to 60.67. The objective value
is reduced from 40044.58 to 39926.00; it demonstrates that
the results have been improved. According to the analysis, to
some extent, the proposed algorithm can solve the large-scale
dynamic VRP and improve the results.

6. Conclusions

In this research, we proposed a formulation for a dynamic
vehicle routing problem.We also presented an improved vari-
able neighborhood search (IVNS) metaheuristic for DVRP.
In the initial solution, the routes are constructed by solving a
vehicle routing problem for each day using the Clarke and
Wright savings algorithm Clarke and Wright [20]. In the
shaking execution, there are two neighborhood structures to
achieve the shaking: insert and exchange. This paper selects
2−𝑜𝑝𝑡 and 3−𝑜𝑝𝑡 as a local search operator in order to obtain
the good quality local optimal solution in a short period. In
order to accelerate the convergence speed and improve the
solution quality, the later optimization process is proposed in
the IVNS algorithm. To test the performance of the proposed
improved variable neighborhood search algorithm, we test
three problemswith respect to different sizes (small, medium,
and large) and compare the results with other algorithms.The
results show that the proposed model and the algorithm are
effective and can solve theDVRPwithin a very short time and
improve the quality of solution to some extent.
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