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We investigate multiple attribute group decision making (MAGDM) problems with arguments taking the form of interval-valued
intuitionistic fuzzy numbers. In order to relieve influence of unfair arguments, a Gaussian distribution-based argument-dependent
weighting method and a hybrid support-function-based argument-dependent weighting method are devised by, respectively,
measuring support degrees of arguments indirectly and directly, based on which the Gaussian generalized interval-valued
intuitionistic fuzzy ordered weighted averaging operator (Gaussian-GIIFOWA) and geometric operator (Gaussian-GIIFOWG),
the power generalized interval-valued intuitionistic fuzzy ordered weighted averaging (P-GIIFOWA) operator and geometric (P-
GIIFOWA) operator are proposed to generalize a wide range of aggregation operators for decision makers to flexibly choose in
decisionmodelling. And some desirable properties of the proposed operators are also analyzed. Further, application of an approach
integrating proposed operators to exploitation investment evaluation of tourist spots has shown the effectiveness and practicality
of developed methods; experimental results also verify the properties of proposed operators.

1. Introduction

Multiple attribute group decision making (MAGDM) is an
important part of decision theories and the purpose of
MAGDM is to find a desirable solution from finite alterna-
tives by a group of experts assessing on multiple attributes
with different types of decision information, such as crisp
numbers [1–5], interval values [6–8], linguistic scales [9–11],
and fuzzy numbers [12–17]. In order to better handle the
fuzziness and uncertainty in decision process, intuitionistic
fuzzy set (IFS) [18] and interval-valued intuitionistic fuzzy set
(IVIFS) [19] have been introduced and increasing approaches
[20–31] for MAGDM with intuitionistic fuzzy information
can be found in related research literatures. Among the
procedures of those MAGDM approaches, a very common
information aggregation technique is the OWA [32] operator,
which can provide a parameterized family of aggregation
operators including the maximum, the minimum, and the

average criteria. Since its appearance, the OWA operator has
been developed and used in a wide range of applications in
decision making and expert systems [8, 10, 13, 21–24, 33–40].

The important and fundamental step of OWA operator
and its extended versions is to determine the associated
weights. Many researches have been carried out on this
issue and useful methods have been developed under differ-
ent decision environments, such as crisp numbers, interval
numbers, and linguistic scales, which can be mainly clas-
sified into two categories [41]: (1) argument-independent
approaches [42–48]; (2) argument-dependent approaches [4,
5, 9, 11, 23, 41, 42, 44, 45, 49–52]. The weights derived by
the argument-independent approaches are associated with
particular ordered positions of the aggregated arguments
and have no connection with the aggregated arguments,
while the argument-dependent approaches determine the
weights based on input arguments. As for the argument-
dependent approaches, the prominent characteristic is that
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they can relieve the influence of unfair arguments on the
aggregated results by assigning low weights to those “false”
and “biased” ones. In viewing of this merit, researches on
argument-dependent approaches under intuitionistic fuzzy
environments and interval-valued intuitionistic fuzzy envi-
ronments have started to accumulate recently, such as the
linear programming-based aggregation operators with par-
tial weight information [53], the aggregation operators [24]
based on power method [54], the induced aggregation oper-
ators [55] based on Choquet integral and Dempster-Shafer
theory, the power average operators [27] with trapezoidal
intuitionistic fuzzy information, the generalized intuitionistic
fuzzy power averaging operators [23], and the generalized
dependent aggregation operators [40] for MAGDM with
intuitionistic linguistic information.

Another practical and interesting research issue of apply-
ing OWA operator to MAGDM is the generalized exten-
sions utilizing generalizedmeans and quasiarithmeticmeans,
which are, respectively, known as the generalized OWA
(GOWA) operators [35, 56] and the Quasi-OWA operators
[57]. And the main advantages of generalized operators are
that they can generalize a wide range of aggregation operators
including the average, the OWA and the OWG operators,
and that they can flexibly reflect the interests and actual
needs of decision makers, such as the generalized extensions
[58] of induced OWA (IOWA) operator [59], the generalized
weighted exponential proportional aggregation operators [4]
for group decisionmaking with crisp numbers, the expanded
generalized hybrid averaging (GHA) operator [37, 60] for
fuzzy multiattribute decision making environments, the
induced linguistic generalized OWA (ILGOWA) operators
[61], and the generalized power aggregation operators for
linguistic environment [9].

As for the decision making situations with intuitionistic
fuzzy information, several researches have been conducted
to address suitable generalized operators recently. Zhao et al.
[62] investigated extensions ofGOWAoperator to present the
generalized intuitionistic fuzzy weighted averaging operator,
generalized intuitionistic fuzzy ordered weighted averaging
operator, generalized intuitionistic fuzzy hybrid averaging
operator, and Li [36] presented another extensions of GOWA
operator to accommodate intuitionistic fuzzy information.
However, all the above operators are unsuitable for aggre-
gating individual preference relations into group preference
relation when some experts prefer to aggregate the vari-
ables with an inducing order. So, Xu and Xia [55] studied
the induced generalized intuitionistic fuzzy Choquet inte-
gral operators and induced generalized intuitionistic fuzzy
Dempster-Shafer operators. Xu and Wang [22] developed
the induced generalized intuitionistic fuzzy orderedweighted
averaging (IGIFOWA) operator based on the GIFOWA [62]
and the I-IFOWA [22, 63] operators. And based on the
IGOWA operator introduced by Merigó and Gil-Lafuente
[58], Su et al. [21] presented another induced intuitionistic
generalized fuzzy ordered weighted averaging (IG-IFOWA)
operator. In addition, Zhou et al. [23] proposed a generalized
operator based on the power aggregation operator and gen-
eralized mean, but the same as most researches [9, 11, 24, 38,
64] that focused on extended power aggregation operators,

they did not discuss construction methodology of support
function in their presented operators. Comparatively, current
research on generalized operators for decision making situa-
tions with interval-valued intuitionistic fuzzy information is
still in its infancy; only few papers can be found in the liter-
ature. Representatively, Zhao et al. [62] further extended the
GOWA operators to present some basic generalized aggrega-
tion operators for dealing with interval-valued intuitionistic
fuzzy information, including the generalized interval-valued
intuitionistic fuzzy weighted averaging operator, generalized
interval-valued intuitionistic fuzzy ordered weighted averag-
ing operator, and generalized interval-valued intuitionistic
fuzzy hybrid average operator. Based on the Choquet integral
method andDempster-Shafer theory, Xu andXia [55] investi-
gated patulous induced generalized operators for aggregation
of interval-valued intuitionistic fuzzy information. Andmost
recently, Xu and Wang [22] also studied the induced version
of generalized OWA operators for interval-valued intuition-
istic fuzzy group decision making.

The aim of this paper is to develop some generalized
argument-dependent aggregation operatorsmore suitable for
tackling with uncertainty inmultiple attribute group decision
making with interval-valued intuitionistic fuzzy information.
Inspired by the Gaussian distribution method, we present
the Gaussian generalized interval-valued intuitionistic fuzzy
ordered weighted averaging (Gaussian-GIIFOWA) operator
and Gaussian generalized interval-valued intuitionistic fuzzy
orderedweighted geometric (Gaussian-GIIFOWG) operator;
and a hybrid method is developed for construction of sup-
port degree function, based on which we further present
the power generalized interval-valued intuitionistic fuzzy
ordered weighted averaging (P-GIIFOWA) operator and
the power generalized interval-valued intuitionistic fuzzy
ordered weighted geometric (P-GIIFOWG) operator. The
main advantages of these operators are that: they depend on
input arguments neatly and allow arguments being aggre-
gated to support each other so that they can relieve the influ-
ence of unfair assessments on decision results by assigning
lowweights to those “false” and “biased” ones; and simultane-
ously they can include a wide range of aggregation operators
as particular cases, such as interval-valued intuitionistic fuzzy
averaging (IIFA) operator, interval-valued intuitionistic fuzzy
geometric (IIFG) operator, Gaussian interval-valued intu-
itionistic fuzzy ordered weighted geometric (Gaussian-
IIFOWG) operator and averaging (Gaussian-IIFOWA) oper-
ator, power interval-valued intuitionistic fuzzy ordered
weighted geometric (P-IIFOWG) operator and averaging
(Gaussian-IIFOWA) operator, and generalized IIFA (GIIFA)
operator and generalized IIFG (GIIFG) operator. Further-
more, an approach based on the proposed operators is devel-
oped and applied to solve a practical MAGDM problem con-
cerning exploitation investment evaluation of tourist spots.
This approach can give a more completely view of decision
problems with decision information aggregation depending
on input arguments and can also be suitable for solving other
group decisionmaking problems including supplier selection
decision making, strategic management decision making,
human resourcemanagement, and emergency solutions eval-
uation.
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The remainder of this paper is organized as follows. In
Section 2, we give a concise review of fundamental concepts
related to intuitionistic fuzzy sets and interval-valued intu-
itionistic fuzzy sets. In Section 3, we first introduce some
related basic aggregation operators, and then we present two
methods to obtain argument-dependent attribute weights by
Gaussian distribution method and by support degree func-
tion, respectively, based on which the Gaussian-GIIFOWA
operator, Gaussian-GIIFOWG operator, P-GIIFOWA oper-
ator, and P-GIIFOWG operator are presented. In addition,
some desirable properties of these operators are analyzed.
In Section 4, an approach for multiple attribute group
decision making under interval-valued intuitionistic fuzzy
environments is constructed based on the four generalized
dependent aggregation operators. In Section 5, application
study on exploitation investment evaluation of tourist spots is
conducted to verify the validity and practicality of developed
methods. Finally, conclusions are given in Section 6.

2. Preliminaries

In this section, we briefly review some basic concepts to
facilitate future discussions.

Atanassov [18] generalized the concept of fuzzy set and
defined the concept of intuitionistic fuzzy set as shown in the
following Definition 1.

Definition 1 (see [18]). An intuitionistic fuzzy set (IFS) 𝐴 is a
generalized fuzzy set and can be defined as

𝐴 = {⟨𝑥, 𝜇
𝐴 (𝑥) , ]𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

in which 𝜇
𝐴
means a membership function and ]

𝐴
means a

nonmembership function, with the condition 0 ≤ 𝜇
𝐴
(𝑥) +

]
𝐴
(𝑥) ≤ 1, 𝜇

𝐴
(𝑥), ]
𝐴
(𝑥) ∈ [0, 1], for all 𝑥 ∈ 𝑋. Particularly,

𝐴 = 𝜇
𝐴
(𝑥) = ]

𝐴
(𝑥); the given IFS 𝐴 is degraded to an

ordinary fuzzy set.
In reality, itmay not be easy to identify the exact values for

the membership and nonmembership degrees of an element
a set. In this case, a range of values should be a more
appropriatemeasurement to accommodate the vagueness. So,
Atanassov and Gargov [19] introduced the notion of interval-
valued intuitionistic fuzzy set (IVIFS).

Definition 2 (see [19]). An interval-valued intuitionistic fuzzy
set (IVIFS) 𝐴 in𝑋 can be defined as

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , ]̃

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋}

= {⟨𝑥, [𝜇
𝐿

𝐴
(𝑥) , 𝜇

𝑈

𝐴
(𝑥)] , []

𝐿

𝐴
(𝑥) , ]

𝑈

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋} ,

(2)

where 0 ≤ 𝜇
𝐿

𝐴
(𝑥) ≤ 𝜇

𝑈

𝐴
(𝑥) ≤ 1, 0 ≤ ]𝐿

𝐴
(𝑥) ≤ ]𝑈

𝐴
(𝑥) ≤ 1,

0 ≤ 𝜇
𝑈

𝐴
(𝑥) + ]𝑈

𝐴
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋.

Similarly, the intervals 𝜇
𝐴
(𝑥) and ]̃

𝐴
(𝑥) denote the mem-

bership and non-membership of an element a set.
If each of the intervals 𝜇

𝐴
(𝑥) and ]̃

𝐴
(𝑥) contains only one

value for each 𝑥 ∈ 𝑋, we have

𝜇
𝐴
(𝑥) = 𝜇

𝐿

𝐴
(𝑥) = 𝜇

𝑈

𝐴
(𝑥) , ]̃

𝐴
(𝑥) = ]

𝐿

𝐴
(𝑥) = ]

𝑈

𝐴
(𝑥) .

(3)

Then, the given IVIFS 𝐴 is degraded to an ordinary
IFS.

In order to aggregate interval-valued intuitionistic fuzzy
information, Xu [65] defined the following relations and basic
operations.

Definition 3 (see [65]). Let �̃� = ([𝑎, 𝑏], [𝑐, 𝑑]), �̃�
1
= ([𝑎
1
, 𝑏
1
],

[𝑐
1
, 𝑑
1
]), �̃�
2
= ([𝑎
2
, 𝑏
2
], [𝑐
2
, 𝑑
2
]) be interval-valued intuition-

istic fuzzy numbers (IVIFNs), then

(1) �̃�
1
⊕ �̃�
2
= ([𝑎
1
+ 𝑎
2
− 𝑎
1
𝑎
2
, 𝑏
1
+ 𝑏
2
− 𝑏
1
𝑏
2
], [𝑐
1
𝑐
2
, 𝑑
1
𝑑
2
]);

(2) �̃�
1
⊗ �̃�
2
= ([𝑎
1
𝑎
2
, 𝑏
1
𝑏
2
], [𝑐
1
+ 𝑐
2
− 𝑐
1
𝑐
2
, 𝑑
1
+ 𝑑
2
− 𝑑
1
𝑑
2
]);

(3) 𝜆�̃� = ([1 − (1 − 𝑎)
𝜆
, 1 − (1 − 𝑏)

𝜆
], [𝑐
𝜆
, 𝑑
𝜆
]);

(4) �̃�𝜆 = ([𝑎
𝜆
, 𝑏
𝜆
], [1 − (1 − 𝑐)

𝜆
, 1 − (1 − 𝑑)

𝜆
]).

Usually, the following normalized distance measure for-
mulae listed inDefinition 4 can be introduced to calculate the
distance of IVIFSs.

Definition 4. Suppose that two interval-valued intuitionistic
fuzzy sets (IVIFSs) 𝐴 and 𝐵 in𝑋 can be defined as

𝐴 = {⟨𝑥
𝑖
, 𝜇
𝐴
(𝑥
𝑖
) , ]̃
𝐴
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋}

= {⟨𝑥
𝑖
, [𝜇
𝐿

𝐴
(𝑥
𝑖
) , 𝜇
𝑈

𝐴
(𝑥
𝑖
)] , []
𝐿

𝐴
(𝑥
𝑖
) , ]
𝑈

𝐴
(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋} ,

𝐵 = {⟨𝑥
𝑖
, 𝜇
𝐵
(𝑥
𝑖
) , ]̃
𝐵
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋}

= {⟨𝑥
𝑖
, [𝜇
𝐿

𝐵
(𝑥
𝑖
) , 𝜇
𝑈

𝐵
(𝑥
𝑖
)] , []
𝐿

𝐵
(𝑥
𝑖
) , ]
𝑈

𝐵
(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋} ;

(4)

then we can have

(1) the normalized Euclidean distance measure:

𝐷
1
(𝐴, 𝐵)

= (
1

6𝑛

𝑛

∑

𝑖=1

[(𝜇
𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝐿

𝐵
(𝑥
𝑖
))
2

+ (𝜇
𝑈

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐵
(𝑥
𝑖
))
2

+ (]
𝐿

𝐴
(𝑥
𝑖
) − ]
𝐿

𝐵
(𝑥
𝑖
))
2

+ (]
𝑈

𝐴
(𝑥
𝑖
) − ]
𝑈

𝐵
(𝑥
𝑖
))
2

+ (𝜋
𝐿

𝐴
(𝑥
𝑖
) − 𝜋
𝐿

𝐵
(𝑥
𝑖
))
2

+ (𝜋
𝑈

𝐴
(𝑥
𝑖
) − 𝜋
𝑈

𝐵
(𝑥
𝑖
))
2

])

1/2

;

(5)
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(2) the normalized Hamming distance measure:

𝐷
2
(𝐴, 𝐵)

=
1

6𝑛

𝑛

∑

𝑖=1


𝜇
𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝐿

𝐵
(𝑥
𝑖
)


+

𝜇
𝑈

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐵
(𝑥
𝑖
)


+

]
𝐿

𝐴
(𝑥
𝑖
) − ]
𝐿

𝐵
(𝑥
𝑖
)


+

]
𝑈

𝐴
(𝑥
𝑖
) − ]
𝑈

𝐵
(𝑥
𝑖
)


+

𝜋
𝐿

𝐴
(𝑥
𝑖
) − 𝜋
𝐿

𝐵
(𝑥
𝑖
)


+

𝜋
𝑈

𝐴
(𝑥
𝑖
) − 𝜋
𝑈

𝐵
(𝑥
𝑖
)

;

(6)

(3) the normalized Hausdorff distance measure:

𝐷
3
(𝐴, 𝐵)

=
1

𝑛

𝑛

∑

𝑖=1

max {𝜇
𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝐿

𝐵
(𝑥
𝑖
)

,


𝜇
𝑈

𝐴
(𝑥
𝑖
) − 𝜇

𝑈

𝐵
(𝑥
𝑖
)

,


]
𝐿

𝐴
(𝑥
𝑖
) − ]
𝐿

𝐵
(𝑥
𝑖
)

,


]
𝑈

𝐴
(𝑥
𝑖
) − ]
𝑈

𝐵
(𝑥
𝑖
)

,


𝜋
𝐿

𝐴
(𝑥
𝑖
) − 𝜋
𝐿

𝐵
(𝑥
𝑖
)

,


𝜋
𝑈

𝐴
(𝑥
𝑖
) − 𝜋
𝑈

𝐵
(𝑥
𝑖
)

} .

(7)

In order to rank alternatives, it is necessary to consider
how to compare two interval-valued intuitionistic fuzzy
numbers, so Xu [66] devised an approach to compare two
IVIFNs based on the concepts of score function and accuracy
function.

Definition 5 (see [66]). For any three IVIFNs �̃� = ([𝜇
𝐿
, 𝜇
𝑈
],

[]𝐿, ]𝑈]), �̃�
1

= ([𝜇
𝐿

1
, 𝜇
𝑈

1
], []𝐿
1
, ]𝑈
1
]), and �̃�

2
= ([𝜇

𝐿

2
, 𝜇
𝑈

2
], []𝐿
2
,

]𝑈
2
]), score function can be defined as 𝑠(�̃�) = (1/2)(𝜇

𝐿
+

𝜇
𝑈
− ]𝐿 − ]𝑈), accuracy function can be defined as ℎ(�̃�) =

(1/2)(𝜇
𝐿
+ 𝜇
𝑈
+ ]𝐿 + ]𝑈), and

if 𝑠(�̃�
1
) < 𝑠(�̃�

2
), then �̃�

1
is smaller than �̃�

2
, �̃�
1
< �̃�
2
;

if 𝑠(�̃�
1
) > 𝑠(�̃�

2
), then �̃�

1
is greater than �̃�

2
, �̃�
1
> �̃�
2
;

if 𝑠(�̃�
1
) = 𝑠(�̃�

2
), then

if ℎ(�̃�
1
) < ℎ(�̃�

2
), then �̃�

1
is smaller than �̃�

2
, �̃�
1
<

�̃�
2
;

if ℎ(�̃�
1
) > ℎ(�̃�

2
), then �̃�

1
is greater than �̃�

2
, �̃�
1
>

�̃�
2
;

if ℎ(�̃�
1
) = ℎ(�̃�

2
), then �̃�

1
and �̃�

2
represent the

same information, denoted by �̃�
1
= �̃�
2
.

3. Proposed Generalized Dependent
Interval-Valued Intuitionistic Fuzzy
Ordered Weighted Aggregation Operators

3.1. Basic Operators. Up to now, some useful operators have
been proposed for aggregating the interval-valued intuition-
istic fuzzy information.Themost commonly used two opera-
tors for aggregating interval-valued intuitionistic fuzzy argu-
ments are the interval-valued intuitionistic fuzzy weighted
averaging (IIFWA)operator and geometric (IIFWG)operator
as defined by Xu [65] in the following definitions.

Definition 6 (see [65]). An interval-valued intuitionistic
fuzzy weighted averaging (IIFWA) operator of dimension 𝑛

is a mapping IIFWA: Ω𝑛 → Ω, which has an argument
associated vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 with 𝜔

𝑗
∈ [0, 1] and

∑
𝑛

𝑗=1
𝜔
𝑗
= 1, such that

IIFWA
𝜔
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = 𝜔
1
�̃�
1
⊕ 𝜔
2
�̃�
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝜔

𝑛
�̃�
𝑛
. (8)

Let 𝑎
𝑖
= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 = 1, 2, . . . , 𝑛) be a collection

of interval-valued intuitionistic fuzzy numbers, then their
aggregated value by using the IIFWA operator can be shown
as

IIFWA
𝜔
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝑗
)
𝜔𝑗
, 1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝑗
)
𝜔𝑗]

]

,

[

[

𝑛

∏

𝑗=1

𝑐
𝜔𝑗

𝑗
,

𝑛

∏

𝑗=1

𝑑
𝜔𝑗

𝑗
]

]

) .

(9)

Particularly, when 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, the IIFWA

operator reduces to the interval-valued intuitionistic fuzzy
averaging (IIFA) operator; that is,

IIFWA
𝜔
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=
1

𝑛
�̃�
1
⊕

1

𝑛
�̃�
2
⊕ ⋅ ⋅ ⋅ ⊕

1

𝑛
�̃�
𝑛

= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝑗
)
1/𝑛

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝑗
)
1/𝑛

]

]

,

[

[

𝑛

∏

𝑗=1

𝑐
1/𝑛

𝑗
,

𝑛

∏

𝑗=1

𝑑
1/𝑛

𝑗
]

]

)

= IIFA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(10)

Definition 7 (see [65]). An interval-valued intuitionistic
fuzzy weighted geometric (IIFWG) operator of dimension
𝑛 is a mapping IIFWG: Ω𝑛 → Ω, which has an argument
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associated vector 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 with 𝜔

𝑗
∈ [0, 1] and

∑
𝑛

𝑗=1
𝜔
𝑗
= 1, such that

IIFWG
𝜔
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= �̃�
𝜔1

1
⊗ �̃�
𝜔2

2
⊗ ⋅ ⋅ ⋅ ⊗ �̃�

𝜔𝑛

𝑛

= ([

[

𝑛

∏

𝑗=1

𝑎
𝜔𝑗

𝑗
,

𝑛

∏

𝑗=1

𝑏
𝜔𝑗

𝑗
]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝑗
)
𝜔𝑗
, 1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝑗
)
𝜔𝑗]

]

) .

(11)

Particularly, when 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, the IIFWG

operator reduces to the interval-valued intuitionistic fuzzy
geometric (IIFG) operator; that is,

IIFWG
𝜔
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= �̃�
1/𝑛

1
⊗ �̃�
1/𝑛

2
⊗ ⋅ ⋅ ⋅ ⊗ �̃�

1/𝑛

𝑛

= ([

[

𝑛

∏

𝑗=1

𝑎
1/𝑛

𝑗
,

𝑛

∏

𝑗=1

𝑏
1/𝑛

𝑗
]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝑗
)
1/𝑛

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝑗
)
1/𝑛

]

]

)

= IIFG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(12)

Considering ordered positions of interval-valued intu-
itionistic fuzzy arguments rather than weighting the interval-
valued intuitionistic fuzzy arguments themselves, Xu and
Chen [67] proposed an interval-valued intuitionistic fuzzy
ordered weighted averaging (IIFOWA) operator and an
interval-valued intuitionistic fuzzy ordered weighted geo-
metric (IIFOWG) operator, as shown in the following defi-
nitions.

Definition 8 (see [67]). Let (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) be a collec-

tion of interval-valued intuitionistic fuzzy arguments, and
�̃�
𝑗
= ([𝑎
𝑗
, 𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]).The interval-valued intuitionistic fuzzy

ordered weighted averaging (IIFOWA) operator of dimen-
sion 𝑛 is a mapping IIFOWA: 𝑅𝑛 → 𝑅, which has an asso-
ciated weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇, ∑𝑛
𝑗=1

𝑤
𝑗
= 1 and

𝑤
𝑗
∈ [0, 1]; then

IIFOWA
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = 𝑤
1
𝛽
1
⊕ 𝑤
2
𝛽
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑤

𝑛
𝛽
𝑛
,
(13)

where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
),

with 𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗.

Particularly, when 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, the IIFOWA

operator reduces to the IIFA operator; that is,

IIFOWA
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=
1

𝑛
𝛽
1
⊕

1

𝑛
𝛽
2
⊕ ⋅ ⋅ ⋅ ⊕

1

𝑛
𝛽
𝑛

= IIFA
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(14)

Definition 9 (see [67]). Let (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) be a collection

of interval-valued intuitionistic fuzzy arguments, and �̃�
𝑗

=

([𝑎
𝑗
, 𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]). The IIFOWG operator of dimension 𝑛 is a

mapping IIFOWG: 𝑅𝑛 → 𝑅, which has an associated weight
vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇, ∑𝑛
𝑗=1

𝑤
𝑗
= 1 and 𝑤

𝑗
∈ [0, 1];

then

IIFOWG
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = 𝛽
𝑤1

1
⊗ 𝛽
𝑤2

2
⊗ ⋅ ⋅ ⋅ ⊗ 𝛽

𝑤𝑛

𝑛
, (15)

where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
),

with 𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗.

Particularly, when 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, the IIFOWG

operator reduces to the IIFG operator; that is,

IIFOWG
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= 𝛽
1/𝑛

1
⊗ 𝛽
1/𝑛

2
⊗ ⋅ ⋅ ⋅ ⊗ 𝛽

1/𝑛

𝑛

= IIFG
𝑤
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(16)

From another important and practical aspect, Yager [56]
defined a generalized version of OWA operators as the
generalized ordered weighted averaging (GOWA) operator;
then Zhao et al. [62] extended it to the situations where
input arguments are IVIFNs and presented a generalized
interval-valued intuitionistic fuzzy ordered weighted averag-
ing (GIIFOWA) operator and geometric (GIIFOWG) opera-
tor as defined in Definitions 10 and 11.

Definition 10 (see [62]). Let (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) be a collection

of interval-valued intuitionistic fuzzy arguments, and �̃�
𝑗

=

([𝑎
𝑗
, 𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]). The GIIFOWA operator of dimension 𝑛 is

a mapping GIIFOWA: 𝑅𝑛 → 𝑅, which has an associated
weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇, ∑𝑛
𝑗=1

𝑤
𝑗
= 1 and 𝑤

𝑗
∈

[0, 1], 𝜆 > 0; then

GIIFOWA
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= (
𝑛

⊕
𝑗=1

(𝑤
𝑗
𝛽
𝜆

𝑗
))

1/𝜆

= ([

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝜆

𝛽(𝑗)
)

𝑤𝑗

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝜆

𝛽(𝑗)
)

𝑤𝑗

)

1/𝜆

]

]

,
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[

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑐
𝛽(𝑗)

)
𝜆

)

𝑤𝑗

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑑
𝛽(𝑗)

)
𝜆

)

𝑤𝑗

)

1/𝜆

]

]

) ,

(17)

where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
),

with 𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗.

If 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the GIIFOWA operator

reduces to the GIIFA operator; that is,

GIIFOWA
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = (

𝑛

⊕
𝑗=1

(
1

𝑛
𝛽
𝜆

𝑗
))

1/𝜆

= GIIFA
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(18)

Definition 11 (see [62]). Let (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) be a collection

of interval-valued intuitionistic fuzzy arguments, and �̃�
𝑗

=

([𝑎
𝑗
, 𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]). The GIIFOWG operator of dimension 𝑛 is

a mapping GIIFOWG: 𝑅𝑛 → 𝑅, which has an associated
weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇, ∑𝑛
𝑗=1

𝑤
𝑗
= 1 and 𝑤

𝑗
∈

[0, 1], 𝜆 > 0; then

GIIFOWG
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=
1

𝜆
(
𝑛

⊗
𝑗=1

(𝜆𝛽
𝑗
)
𝑤𝑗
)

= ([

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑎
𝛽(𝑗)

)
𝜆

)

𝑤𝑗

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑏
𝛽(𝑗)

)
𝜆

)

𝑤𝑗

)

1/𝜆

]

]

,

[

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝜆

𝛽(𝑗)
)

𝑤𝑗

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝜆

𝛽(𝑗)
)

𝑤𝑗

)

1/𝜆

]

]

) ,

(19)

where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
),

with 𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗.

If 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the GIIFOWG operator

reduces to the GIIFG operator; that is,

GIIFOWG
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

1

𝜆
(
𝑛

⊗
𝑗=1

(𝜆𝛽
𝑗
)
1/𝑛

)

= GIIFG
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(20)

From Definition 8 to Definition 11, it can be seen that
one important and basic step of interval-valued intuitionis-
tic fuzzy ordered weighted aggregation operators and gen-
eralized versions is to determine the associated weights.
In the following subsections, we will focus on investigat-
ing argument-dependent operators in which the associated
weights can be determined objectively only depending on the
interval-valued intuitionistic fuzzy input arguments.

3.2. Proposed Gaussian Generalized Interval-Valued Intuition-
istic Fuzzy Aggregation Operators. According to the basic
operational rules listed in Definition 3 and IIFWA operator
in Definition 6 for aggregating IVIFNs, here we can naturally
definemean value of a set of IVIFNs as shown in the following
definition. Obviously, the mean value 𝜇 is still an IVIFN.

Definition 12. Let (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) be a collection of inter-

val-valued intuitionistic fuzzy arguments, where �̃�
𝑗
= ([𝑎
𝑗
,

𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]). Let 𝜇 be the mean value of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
), and

𝜇 = ([𝑎
𝜇
, 𝑏
𝜇
], [𝑐
𝜇
, 𝑑
𝜇
]); then 𝜇 can be obtained by IIFWA ope-

rator with 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, where

𝑎
𝜇
= 1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝑗
)
1/𝑛

, 𝑏
𝜇
= 1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝑗
)
1/𝑛

,

𝑐
𝜇
=

𝑛

∏

𝑗=1

𝑐
1/𝑛

𝑗
, 𝑑

𝜇
=

𝑛

∏

𝑗=1

𝑑
1/𝑛

𝑗
.

(21)

Definition 13 (see [68]). Let (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) be a collection

of interval-valued intuitionistic fuzzy arguments, and �̃�
𝑗

=

([𝑎
𝑗
, 𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]). 𝜇 = ([𝑎

𝜇
, 𝑏
𝜇
], [𝑐
𝜇
, 𝑑
𝜇
]) denotes mean value

of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
); then the variance of �̃�

1
, �̃�
2
, . . . , �̃�

𝑛
can be

computed according to

𝜎 = √
1

𝑛

𝑛

∑

𝑗=1

(𝑑 (�̃�
𝑗
, 𝜇))
2

. (22)

In real world, a collection of 𝑛 aggregated arguments
(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) usually takes the form of a collection of 𝑛

preference values provided by 𝑛 different decision makers.
Some decisionmakers may assign unduly high or unduly low
preference values to their preferred or repugnant objects. In
such case, very lowweights should be assigned to these “false”
or “biased” opinions; that is to say, the closer a preference
value argument is to the mid one(s), the more the weight;
conversely, the further a preference value is apart from the
mid one(s), the less the weight. So, Xu [44] and Xu [49]
developed Gaussian (normal) distribution-based method to
determine OWA weights by utilizing orderings of arguments
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assessed with crisp numbers and interval numbers, respec-
tively. Inspired by these ideas, by using predefinedmean value
𝜇 of IVIFNs, we extended the Gaussian distribution method
to obtain the dependentweights, here calledGaussianweight-
ing vector, according to interval-valued intuitionistic fuzzy
input arguments.

Definition 14. Let 𝜇 be the mean value of given interval-
valued intuitionistic fuzzy arguments, 𝜎 the variance of
given interval-valued intuitionistic fuzzy arguments; then the
Gaussian weighting vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 can be

defined as

𝜔
𝑗
=

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

, 𝑗 = 1, 2, . . . , 𝑛, (23)

where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
),

with 𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛.

Consider that 𝜔
𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝜔
𝑗
= 1 are commonly

required in aggregation operators; then we can normalize the
Gaussian weighting vector according to

𝜔
𝑗
=

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
, 𝑗 = 1, 2, . . . , 𝑛. (24)

Then by (17), we can define a Gaussian generalized inter-
val-valued intuitionistic fuzzy ordered weighted averaging
(Gaussian-GIIFOWA) operator, as shown in the following
definition.

Definition 15. A Gaussian-GIIFOWA operator of dimension
𝑛 is a mapping Gaussian-GIIFOWA: Ω𝑛 → Ω, which has an

associated Gaussian weighting vector 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇,

with 𝜔
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1; then

Gaussian-GIIFOWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= (𝜔
�̃�𝜎(1)

�̃�
𝜆

𝜎(1)
⊕ 𝜔
�̃�𝜎(2)

�̃�
𝜆

𝜎(2)
⊕ ⋅ ⋅ ⋅ ⊕ 𝜔

�̃�𝜎(𝑛)
�̃�
𝜆

𝜎(𝑛)
)
1/𝜆

= (

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽1−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
𝛽
𝜆

1

⊕

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽2−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
𝛽
𝜆

2

⊕ ⋅ ⋅ ⋅ ⊕

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
𝛽
𝜆

𝑛
)

1/𝜆

= (
1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽1−𝜇)/2𝜎

2

𝛽
𝜆

1
⊕

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽2−𝜇)/2𝜎

2

𝛽
𝜆

2

⊕ ⋅ ⋅ ⋅ ⊕
1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2

𝛽
𝜆

𝑛
)

1/𝜆

× ((

𝑛

∑

𝑗=1

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

)

−1

,

(25)

where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
),

with 𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛.

Similarly, we can define the Gaussian generalized inter-
val-valued intuitionistic fuzzy ordered weighted geometric
(Gaussian-GIIFOWG) operator.

Definition 16. A Gaussian-GIIFOWG operator of dimension
𝑛 is a mapping Gaussian-GIIFOWG:Ω𝑛 → Ω, which has an
associated Gaussian weighting vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇

with 𝜔
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝜔
𝑖
= 1; then

Gaussian-GIIFOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

1

𝜆
((𝜆𝛽
1
)
𝜔
𝛽(1)

⊗ (𝜆𝛽
2
)
𝜔
𝛽(2)

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆𝛽
𝑛
)
𝜔
𝛽(𝑛)

)

=
1

𝜆
((𝜆𝛽
1
)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽1−𝜇)/2𝜎

2
/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

⊗ (𝜆𝛽
2
)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽2−𝜇)/2𝜎

2
/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆𝛽
𝑛
)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2
/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

=
1

𝜆
((𝜆𝛽
1
)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽1−𝜇)/2𝜎

2

⊗ (𝜆𝛽
2
)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽2−𝜇)/2𝜎

2

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆𝛽
𝑛
)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2

)

1/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

,

(26)
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where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
)with

𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛.

Let �̃�
𝑖

= ([𝑎
�̃�(𝑖)

, 𝑏
�̃�(𝑖)

], [𝑐
�̃�(𝑖)

, 𝑑
�̃�(𝑖)

]), 𝛽
𝑖

= ([𝑎
𝛽(𝑖)

, 𝑏
𝛽(𝑖)

],

[𝑐
𝛽(𝑖)

, 𝑑
𝛽(𝑖)

]); then by Definition 3, Gaussian-GIIFOWA oper-
ator and Gaussian-GIIFOWG operator can be transformed
into the following forms;

Gaussian-GIIFOWA (�̃�1, �̃�2, . . . , �̃�𝑛) = ([

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝜆

𝛽(𝑗)
)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝜆

𝛽(𝑗)
)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

]

]

,

[

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑐
𝛽(𝑗)

)
𝜆
)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑑
𝛽(𝑗)

)
𝜆
)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

]

]

) ,

(27)

Gaussian-GIIFOWG (�̃�1, �̃�2, . . . , �̃�𝑛) = ([

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑎
𝛽(𝑗)

)
𝜆
)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑏
𝛽(𝑗)

)
𝜆
)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

]

]

,

[

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝜆

𝛽(𝑗)
)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝜆

𝛽(𝑗)
)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

]

]

) ,

(28)

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽1−𝜇)/2𝜎

2

𝛽
𝜆
1 ⊕

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽2−𝜇)/2𝜎

2

𝛽
𝜆
2 ⊕ ⋅ ⋅ ⋅ ⊕

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2

𝛽
𝜆
𝑛

=
1

√2𝜋𝜎
𝑒
−𝑑
2
(�̃�1−𝜇)/2𝜎

2

�̃�
𝜆
1 ⊕

1

√2𝜋𝜎
𝑒
−𝑑
2
(�̃�2−𝜇)/2𝜎

2

�̃�
𝜆
2

⊕ ⋅ ⋅ ⋅ ⊕
1

√2𝜋𝜎
𝑒
−𝑑
2
(�̃�𝑛−𝜇)/2𝜎

2

�̃�
𝜆
𝑛 ,

(

𝑛

∑

𝑗=1

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

= (

𝑛

∑

𝑗=1

1

√2𝜋𝜎
𝑒
−𝑑
2
(�̃�𝑗−𝜇)/2𝜎

2

)

1/𝜆

,

((𝜆𝛽1)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽1−𝜇)/2𝜎

2

⊗ (𝜆𝛽2)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽2−𝜇)/2𝜎

2

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆𝛽𝑛)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2

)

1/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

= ((𝜆�̃�1)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(�̃�1−𝜇)/2𝜎

2

⊗ (𝜆�̃�2)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(�̃�2−𝜇)/2𝜎

2

,

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆�̃�𝑛)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(�̃�𝑛−𝜇)/2𝜎

2

)

1/∑
𝑛
𝑗=1(1/√2𝜋𝜎)𝑒

−𝑑
2
(�̃�𝑗−𝜇)/2𝜎

2

;

(29)
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then we can rewrite as

Gaussian-GIIFOWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= (𝜔
�̃�(1)

�̃�
𝜆

1
⊕ 𝜔
�̃�(2)

�̃�
𝜆

2
⊕ ⋅ ⋅ ⋅ ⊕ 𝜔

�̃�(𝑛)
�̃�
𝜆

𝑛
)
1/𝜆

,

(30)

Gaussian-GIIFOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=
1

𝜆
((𝜆�̃�
1
)
𝜔�̃�(1)

⊗ (𝜆�̃�
2
)
𝜔�̃�(2)

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆�̃�
𝑛
)
𝜔�̃�(𝑛)

) .
(31)

Obviously, the aggregated results of Gaussian-GIIFOWA
operator and Gaussian-GIIFOWG operator are indepen-
dent of orderings; thus, Gaussian-GIIFOWA and Gaussian-
GIIFOWG are neat and dependent operators.

Theorem 17. Let �̃�
𝑗
= ([𝑎
𝑗
, 𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]) (𝑗 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy arguments,
and the 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the Gaussian weighting

vector related to Gaussian-GIIFOWA operator and Gaussian-
GIIFOWG operator, with 𝜔

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝜔
𝑗
= 1; then

Gaussian-GIIFOWA operator and Gaussian-GIIFOWG ope-
rator have the following properties.

(1) Commutativity: let (�̃�∗
1
, �̃�
∗

2
, . . . , �̃�

∗

𝑛
) be any a permuta-

tion of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
); then

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐴
𝜔,𝜆

(�̃�
∗

1
, �̃�
∗

2
, . . . , �̃�

∗

𝑛
)

= 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐴
𝜔,𝜆

(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ,

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜔,𝜆

(�̃�
∗

1
, �̃�
∗

2
, . . . , �̃�

∗

𝑛
)

= 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜔,𝜆

(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(32)

(2) Idempotency: let �̃�
𝑗
= �̃�, for all 𝑗 = 1, 2, . . . , 𝑛; then

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐴
𝜔,𝜆

(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = �̃�,

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜔,𝜆

(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = 𝛼,

(33)

(3) Boundedness: the Gaussian-GIIFOWA operator and
the Gaussian-GIIFOWG operator lie between the max
and min operators;

�̃�
−
≤ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜔,𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ �̃�
+,

�̃�
−
≤ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐺

𝜔,𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ �̃�
+,

(34)

where

�̃�
−
= ([min

𝑗

(𝑎
𝑗
) ,min
𝑗

(𝑏
𝑗
)] , [max

𝑗

(𝑐
𝑗
) ,max
𝑗

(𝑑
𝑗
)]) ,

�̃�
+
= ([max

𝑗

(𝑎
𝑗
) ,max
𝑗

(𝑏
𝑗
)] , [min

𝑗

(𝑐
𝑗
) ,min
𝑗

(𝑑
𝑗
)]) .

(35)

Theorem 18. Let �̃�
𝑗

= ([𝑎
�̃�(𝑗)

, 𝑏
�̃�(𝑗)

], [𝑐
�̃�(𝑗)

, 𝑑
�̃�(𝑗)

]), 𝛽
𝑗

=

([𝑎
𝛽(𝑗)

, 𝑏
𝛽(𝑗)

], [𝑐
𝛽(𝑗)

, 𝑑
𝛽(𝑗)

]) be two collections of interval-valued
intuitionistic fuzzy arguments, (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑛
) a permutation

of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) with 𝛽

𝑗−1
≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛, and

𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 the Gaussian weighting vector related

to the Gaussian-GIIFOWA operator and Gaussian-GIIFOWG
operator, with 𝜔

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝜔
𝑗
= 1; then

(1) if 𝜆 = 1, then the Gaussian-GIIFOWA operator and
Gaussian-GIIFOWG operator reduce to the following
Gaussian-IIFOWA operator and Gaussian-IIFOWG
operator:

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐼𝐼𝐹𝑂𝑊𝐴(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽1−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
𝛽
1

⊕

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽2−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
𝛽
2

⊕ ⋅ ⋅ ⋅ ⊕

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
𝛽
𝑛

=
1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽1−𝜇)/2𝜎

2

𝛽
1
⊕

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽2−𝜇)/2𝜎

2

𝛽
2

⊕ ⋅ ⋅ ⋅ ⊕
1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2

𝛽
𝑛

× (

𝑛

∑

𝑗=1

1

√2𝜋𝜎
𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

−1
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= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝛽(𝑗)

)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

,

1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝛽(𝑗)

)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

]

]

,

[𝑐
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

𝛽(𝑗)
,

𝑑
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

𝛽(𝑗)
]) ,

(36)

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐼𝐼𝐹𝑂𝑊𝐺(�̃�
1
, �̃�
2
, ..., �̃�
𝑛
) = 𝛽
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽1−𝜇)/2𝜎

2
/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

1

⊗ 𝛽
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽2−𝜇)/2𝜎

2
/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

2

⊗ ⋅ ⋅ ⋅ ⊗ 𝛽
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2
/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

𝑛

= (𝛽
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽1−𝜇)/2𝜎

2

1
⊗ 𝛽
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽2−𝜇)/2𝜎

2

2

⊗ ⋅ ⋅ ⋅ ⊗ 𝛽
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑛−𝜇)/2𝜎

2

𝑛
)

1/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

= ([

[

𝑛

∏

𝑗=1

𝑎
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

𝛽(𝑗)
,

𝑛

∏

𝑗=1

𝑏
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

𝛽(𝑗)

]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝛽(𝑗)

)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

,

1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝛽(𝑗)

)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

]

]

) ;

(37)

(2) if 𝜆 → 0, then the Gaussian-GIIFOWA operator re-
duces to the Gaussian-IIFOWG operator;

(3) if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the Gaussian-

GIIFOWA operator and Gaussian-GIIFOWG
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operator reduce to the GIIFA operator and GIIFG
operator;

(4) if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇 and 𝜆 = 1, then

the Gaussian-GIIFOWA operator and Gaussian-
GIIFOWG operator reduce to the IIFA operator and
IIFG operator;

(5) if𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇 and 𝜆 → 0, then the Gaus-

sian-GIIFOWA operator reduces to the IIFG operator.

Lemma 19. Assume that 𝑥
𝑗
> 0, 𝜆

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛, and

∑
𝑛

𝑗=1
𝜆
𝑗
= 1, then

𝑛

∏

𝑗=1

𝑥
𝜆𝑗

𝑗
≤

𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑗
, (38)

with equality if and only if 𝑥
1
= 𝑥
2
= ⋅ ⋅ ⋅ = 𝑥

𝑛
.

Theorem 20. Let �̃�
𝑗

= ([𝑎
�̃�(𝑗)

, 𝑏
�̃�(𝑗)

], [𝑐
�̃�(𝑗)

, 𝑑
�̃�(𝑗)

]), 𝛽
𝑗

=

([𝑎
𝛽(𝑗)

, 𝑏
𝛽(𝑗)

], [𝑐
𝛽(𝑗)

, 𝑑
𝛽(𝑗)

]) be two collections of interval-valued
intuitionistic fuzzy arguments, (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permuta-

tion of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) with 𝛽

𝑗−1
≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛,

and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the Gaussian weighting vector

related to the Gaussian-GIIFOWA operator and Gaussian-
GIIFOWG operator, with 𝜔

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝜔
𝑗
= 1, then

(1) 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐼𝐼𝐹𝑂𝑊𝐺(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-

𝐼𝐼𝐹𝑂𝑊𝐴(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
);

(2) 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐼𝐼𝐹𝑂𝑊𝐺(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-

𝐺𝐼𝐼𝐹𝑂𝑊𝐴
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
);

(3) 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛-

𝐼𝐼𝐹𝑂𝑊𝐴(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
).

Proof. Based on Lemma 19, we can have

𝑛

∏

𝑗=1

𝑎
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

𝛽(𝑗)

≤

𝑛

∑

𝑗=1

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
𝑎
𝛽(𝑗)

= 1 −

𝑛

∑

𝑗=1

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
(1 − 𝑎

𝛽(𝑗)
)

≤ 1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝛽(𝑗)

)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

,

(a)

𝑛

∏

𝑗=1

𝑎
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

𝛽(𝑗)

= (

𝑛

∏

𝑗=1

(𝑎
𝜆

𝛽(𝑗)
)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

≤ (

𝑛

∑

𝑗=1

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
𝑎
𝜆

𝛽(𝑗)
)

1/𝜆

= (1 −

𝑛

∑

𝑗=1

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
(1 − 𝑎

𝜆

𝛽(𝑗)
))

1/𝜆

≤ (1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝜆

𝛽(𝑗)
)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

,

(b)
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1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑎
𝛽(𝑗)

)
𝜆

)

(1/√2𝜋𝜎)𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

≤ 1 − (1 −

𝑛

∑

𝑗=1

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
(1 − (1 − 𝑎

𝛽(𝑗)
)
𝜆

))

1/𝜆

= 1 − (

𝑛

∑

𝑗=1

(1/√2𝜋𝜎) 𝑒
−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

∑
𝑛

𝑗=1
(1/√2𝜋𝜎) 𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2
(1 − 𝑎

𝛽(𝑗)
)
𝜆

)

1/𝜆

≤ 1 − (

𝑛

∏

𝑗=1

(1 − 𝑎
𝛽(𝑗)

)
𝜆(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

)

1/𝜆

= 1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝛽(𝑗)

)
(1/√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

/∑
𝑛
𝑗=1(1/
√2𝜋𝜎)𝑒

−𝑑
2
(𝛽𝑗−𝜇)/2𝜎

2

.

(c)

Obviously, the above inequations (a), (b), and (c) are also
valid for 𝑏

𝛽(𝑗)
, 𝑐
𝛽(𝑗)

, and 𝑑
𝛽(𝑗)

.
Then by Lemma 19, we can have

𝑛

⊗
𝑗=1

(𝛽
𝜔𝑗

𝑗
) ≤
𝑛

⊕
𝑗=1

(𝜔
𝑗
𝛽
𝑗
) ,

𝑛

⊗
𝑗=1

(𝛽
𝜔𝑗

𝑗
) ≤ (

𝑛

⊕
𝑗=1

(𝜔
𝑗
𝛽
𝜆

𝑗
))

1/𝜆

1

𝜆
(
𝑛

⊗
𝑗=1

(𝜆𝛽
𝑗
)
𝑤𝑗
) ≤
𝑛

⊕
𝑗=1

(𝜔
𝑗
𝛽
𝑗
)

(39)

and thus complete the proof of Theorem 20.

Example 21. For a group decision making problem, suppose
that there are six decision makers 𝑑

𝑗
(𝑗 = 1, 2, . . . , 6);

these decision makers provide their individual preferences
with interval-valued intuitionistic fuzzy numbers. Then, the
preference arguments are collected as follows:

�̃�
1
= ([0.5, 0.6] , [0.2, 0.4]) ,

�̃�
2
= ([0.3, 0.6] , [0.3, 0.4]) ,

�̃�
3
= ([0.4, 0.7] , [0.2, 0.3]) ,

�̃�
4
= ([0.3, 0.5] , [0.1, 0.4]) ,

�̃�
5
= ([0.4, 0.7] , [0.2, 0.3])

�̃�
6
= ([0.6, 0.8] , [0.0, 0.2]) .

(40)

Utilizing (21) and (22), the mean value �̃� and variance
value 𝜎 can be obtained:

�̃� = ([0.4273, 0.664] , [0, 0.3238]) , 𝜎 = 0.1271. (41)

Then, by (23) and (24), we can compute the Gaussian
weighting vector:

𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

6
) , (42)

where 𝜔
1
= 0.1391, 𝜔

2
= 0.128, 𝜔

3
= 0.1867, 𝜔

4
= 0.192,

𝜔
5
= 0.1867, and 𝜔

6
= 0.1675.

Given 𝜆 = 5, according to (27) and (28), it follows that

Gaussian-GIIFOWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= ([0.4676, 0.6846] , [0.0, 0.3083]) ,

Gaussian-GIIFOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= ([0.381, 0.6038] , [0.2166, 0.3554]) .

(43)

3.3. Proposed Power Generalized Interval-Valued Intuitionistic
Fuzzy Aggregation Operators. The above-presented Gaussian
distribution-based methods can obtain argument-dependent
weights according to the indirectly calculated support degree
of arguments by considering the distances between argu-
ments and the mid one (mean value). On the other hand, to
directly consider the support degree of each argument, Yager
[54] developed the power average (PA) operator and a power
ordered weighted average (POWA) operator, which allow the
arguments being aggregated to support each other. Then, Xu
and Yager [39] developed power geometric average (PGA)
operator and power ordered weighted average (POWA) ope-
rator. Most recently, Zhou and Chen [9] further studied
extensions of power operator to linguistic decision environ-
ment. Motivated by these ideas, here we first devise a hybrid
support function for interval-valued intuitionistic fuzzy input
arguments to not only consider the support degrees of each
argument by other arguments but also consider the sup-
port degrees between argument values and mid one (mean
value).Then, a power generalized interval-valued intuitionis-
tic fuzzy ordered weighted averaging (P-GIIFOWA) operator
and a power generalized interval-valued intuitionistic fuzzy
ordered weighted geometric (P-GIIFOWG) operator are
defined, in which associated weights are obtained by the
devised hybrid support function.
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Definition 22. Let (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) be a collection of interval-

valued intuitionistic fuzzy arguments, and let 𝜇 denote the
mean value; then the hybrid support function can be defined
as

Sup (�̃�
𝑗
) =

1

𝑛 − 1

𝑛

∑

𝑘=1,𝑗 ̸= 𝑘

(1 − 𝑑 (�̃�
𝑗
, �̃�
𝑘
)) + (1 − 𝑑 (�̃�

𝑗
, 𝜇))

=
1

𝑛 − 1

𝑛

∑

𝑘=1,𝑗 ̸= 𝑘

Sup (�̃�
𝑗
, �̃�
𝑘
) + Sup (�̃�

𝑗
, 𝜇) .

(44)

Then, we can use Sup(�̃�
𝑖
, �̃�
𝑗
) to denote the support degree

between 𝑎
𝑖
and �̃�
𝑗
and Sup(�̃�

𝑖
, 𝜇) to denote the support degree

between �̃�
𝑖
and 𝜇.

Obviously, Sup(�̃�
𝑖
, �̃�
𝑗
) and Sup(�̃�

𝑖
, 𝜇) satisfy the following

properties:

(1) Sup(�̃�
𝑖
, �̃�
𝑗
) ∈ [0, 1], Sup(�̃�

𝑖
, 𝜇) ∈ [0, 1];

(2) Sup(�̃�
𝑖
, �̃�
𝑗
) = Sup(�̃�

𝑗
, �̃�
𝑖
);

(3) Sup(�̃�
𝑖
, �̃�
𝑗
) ≥ Sup(�̃�

𝑠
, �̃�
𝑝
) if 𝑑(�̃�

𝑖
, �̃�
𝑗
) < 𝑑(�̃�

𝑠
, �̃�
𝑝
), and

Sup(�̃�
𝑖
, 𝜇) ≥ Sup(�̃�

𝑗
, 𝜇) if 𝑑(�̃�

𝑖
, 𝜇) < 𝑑(�̃�

𝑗
, 𝜇), where

𝑑 is a certain distance measure for interval-valued
intuitionistic fuzzy numbers.

Then utilizing hybrid support function in Definition 22,
we can manage to obtain the associated argument weights,
called power weighting vector, according to

𝜔
𝑗
=

Sup (�̃�
𝑗
)

∑
𝑛

𝑗=1
Sup (�̃�

𝑗
)

, 𝑗 = 1, 2, . . . , 𝑛; (45)

that is to say, the closer a preference argument is to other
arguments or the closer a preference argument is tomid value,
the more the argument weighs.

And let (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) be a permutation of (�̃�

1
, �̃�
2
, . . . ,

�̃�
𝑛
), with 𝛽

𝑗−1
≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛; then we can have the

power weighting vector derived according to

𝜔
𝛽(𝑗)

=

Sup (𝛽
𝑗
)

∑
𝑛

𝑗=1
Sup (𝛽

𝑗
)

, 𝑗 = 1, 2, . . . , 𝑛. (46)

Further, we can define the P-GIIFOWA operator and P-
GIIFOWG operator as follows.

Definition 23. A P-GIIFOWA operator of dimension 𝑛 is a
mapping P-GIIFOWA: Ω𝑛 → Ω, 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is

associated power weighting vector, 𝜔
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝜔
𝑖
=

1; then

P-GIIFOWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= (

Sup (𝛽
1
)

∑
𝑛

𝑗=1
Sup (𝛽

𝑗
)

𝛽
𝜆

1
⊕

Sup (𝛽
2
)

∑
𝑛

𝑗=1
Sup (𝛽

𝑗
)

𝛽
𝜆

2

⊕ ⋅ ⋅ ⋅ ⊕

Sup (𝛽
𝑛
)

∑
𝑛

𝑗=1
Sup (𝛽

𝑗
)

𝛽
𝜆

𝑛
)

1/𝜆

= (

Sup (𝛽
1
) 𝛽
𝜆

1
⊕ Sup (𝛽

2
) 𝛽
𝜆

2
⊕ ⋅ ⋅ ⋅ ⊕ Sup (𝛽

𝑛
) 𝛽
𝜆

𝑛

∑
𝑛

𝑗=1
Sup (𝛽

𝑗
)

)

1/𝜆

,

(47)

where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
),

with 𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛.

Definition 24. A P-GIIFOWG operator of dimension 𝑛 is a
mapping P-GIIFOWG: Ω𝑛 → Ω, 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is

associated power weighting vector, 𝜔
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝜔
𝑖
=

1; then

P-GIIFOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=
1

𝜆
((𝜆𝛽
1
)
Sup(𝛽1)/∑

𝑛
𝑗=1 Sup(𝛽𝑗)

⊗ (𝜆𝛽
2
)
Sup(𝛽2)/∑

𝑛
𝑗=1 Sup(𝛽𝑗)

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆𝛽
𝑛
)
Sup(𝛽𝑛)/∑

𝑛
𝑗=1 Sup(𝛽𝑗)

)

=
1

𝜆
((𝜆𝛽
1
)
Sup(𝛽1)

⊗ (𝜆𝛽
2
)
Sup(𝛽2)

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆𝛽
𝑛
)
Sup(𝛽𝑛)

)

1/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

,

(48)

where (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is a permutation of (�̃�

1
, �̃�
2
, . . . , �̃�

𝑛
),

with 𝛽
𝑗−1

≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛.

Given �̃�
𝑖
= ([𝑎

�̃�(𝑖)
, 𝑏
�̃�(𝑖)

], [𝑐
�̃�(𝑖)

, 𝑑
�̃�(𝑖)

]), 𝛽
𝑖
= ([𝑎

𝛽(𝑖)
, 𝑏
𝛽(𝑖)

],

[𝑐
𝛽(𝑖)

, 𝑑
𝛽(𝑖)

]), then P-GIIFOWA operator and P-GIIFOWG
operator can be transformed into the following forms:

P-GIIFOWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = ([

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝜆

𝛽(𝑗)
)

𝜔
𝛽(𝑗)

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝜆

𝛽(𝑗)
)

𝜔
𝛽(𝑗)

)

1/𝜆

]

]

,
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[

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑐
𝛽(𝑗)

)
𝜆

)

𝜔
𝛽(𝑗)

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑑
𝛽(𝑗)

)
𝜆

)

𝜔
𝛽(𝑗)

)

1/𝜆

]

]

)

= ([

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝜆

𝛽(𝑗)
)

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝜆

𝛽(𝑗)
)

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

)

1/𝜆

]

]

,

[

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑐
𝛽(𝑗)

)
𝜆

)

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑑
𝛽(𝑗)

)
𝜆

)

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

)

1/𝜆

]

]

) ,

(49)

P-GIIFOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = ([

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑎
𝛽(𝑗)

)
𝜆

)

𝜔
𝛽(𝑗)

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑏
𝛽(𝑗)

)
𝜆

)

𝜔
𝛽(𝑗)

)

1/𝜆

]

]

,

[

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝜆

𝛽(𝑗)
)

𝜔
𝛽(𝑗)

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝜆

𝛽(𝑗)
)

𝜔
𝛽(𝑗)

)

1/𝜆

]

]

)

= ([

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑎
𝛽(𝑗)

)
𝜆

)

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑏
𝛽(𝑗)

)
𝜆
)
Sup(𝛽𝑗)/∑

𝑛
𝑗=1 Sup(𝛽𝑗))

1/𝜆

]

]

,

[

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝜆

𝛽(𝑗)
)

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝜆

𝛽(𝑗)
)

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

)

1/𝜆

]

]

) .

(50)
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By (45), we can have

P-GIIFOWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = (𝜔

𝛽(1)
𝛽
𝜆

1
⊕ 𝜔
𝛽(2)

𝛽
𝜆

2
⊕ ⋅ ⋅ ⋅ ⊕ 𝜔

𝛽(𝑛)
𝛽
𝜆

𝑛
)
1/𝜆

= (

∑
𝑛

𝑗=1
Sup(𝛽

𝑗
)𝛽
𝜆

𝑗

∑
𝑛

𝑗=1
Sup(𝛽

𝑗
)

)

1/𝜆

= (

∑
𝑛

𝑗=1
(∑
𝑛

𝑘=1,𝑗 ̸= 𝑘
((1 − 𝑑 (𝛽

𝑗
, 𝛽
𝑘
)) + (1 − 𝑑 (𝛽

𝑗
, 𝜇)))) 𝛽

𝜆

𝑗

∑
𝑛

𝑗=1
∑
𝑛

𝑘=1,𝑗 ̸= 𝑘
(1 − 𝑑 (𝛽

𝑗
, 𝛽
𝑘
)) + (1 − 𝑑 (𝛽

𝑗
, 𝜇))

)

1/𝜆

,

(51)

P-GIIFOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) =

1

𝜆
((𝜆𝛽
1
)
𝜔
𝛽(1)

⊗ (𝜆𝛽
2
)
𝜔
𝛽(2)

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆𝛽
𝑛
)
𝜔
𝛽(𝑛)

)

=
1

𝜆
((𝜆𝛽
1
)
Sup(𝛽1)

⊗ (𝜆𝛽
2
)
Sup(𝛽2)

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆𝛽
𝑛
)
Sup(𝛽𝑛)

)

1/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

=
1

𝜆
(

𝑛

∏

𝑗=1

(𝜆𝛽
𝑗
)
∑
𝑛
𝑘=1,𝑗 ̸= 𝑘(1−𝑑(𝛽𝑗 ,𝛽𝑘))+(1−𝑑(𝛽𝑗 ,𝜇))/∑

𝑛
𝑗=1 ∑
𝑛
𝑘=1,𝑗 ̸= 𝑘(1−𝑑(𝛽𝑗 ,𝛽𝑘))+(1−𝑑(𝛽𝑗 ,𝜇))

)

=
1

𝜆
(

𝑛

∏

𝑗=1

(𝜆𝛽
𝑗
)
∑
𝑛
𝑘=1,𝑗 ̸= 𝑘(1−𝑑(𝛽𝑗 ,𝛽𝑘))+(1−𝑑(𝛽𝑗 ,𝜇))

)

1/∑
𝑛
𝑗=1 ∑
𝑛
𝑘=1,𝑗 ̸= 𝑘(1−𝑑(𝛽𝑗 ,𝛽𝑘))+(1−𝑑(𝛽𝑗 ,𝜇))

.

(52)

Since

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1,𝑗 ̸= 𝑘

((1 − 𝑑 (𝛽
𝑗
, 𝛽
𝑘
)) + (1 − 𝑑 (𝛽

𝑗
, 𝜇))) 𝛽

𝑗

=

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1,𝑗 ̸= 𝑘

((1 − 𝑑 (�̃�
𝑗
, �̃�
𝑘
)) + (1 − 𝑑 (�̃�

𝑗
, 𝜇))) �̃�

𝑗
,

𝑛

∏

𝑗=1

(𝜆𝛽
𝑗
)
∑
𝑛
𝑘=1,𝑗 ̸= 𝑘(1−𝑑(𝛽𝑗 ,𝛽𝑘))+(1−𝑑(𝛽𝑗 ,𝜇))

=

𝑛

∏

𝑗=1

(𝜆�̃�
𝑗
)
∑
𝑛
𝑘=1,𝑗 ̸= 𝑘(1−𝑑(�̃�𝑗 ,�̃�𝑘))+(1−𝑑(�̃�𝑗 ,𝜇))

,

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1,𝑗 ̸= 𝑘

((1 − 𝑑 (𝛽
𝑗
, 𝛽
𝑘
)) + (1 − 𝑑 (𝛽

𝑗
, 𝜇)))

=

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1,𝑗 ̸= 𝑘

((1 − 𝑑 (�̃�
𝑗
, �̃�
𝑘
)) + (1 − 𝑑 (�̃�

𝑗
, 𝜇))) ,

(53)

then we can have

P-GIIFOWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= (𝜔
�̃�(1)

�̃�
𝜆

1
⊕ 𝜔
�̃�(2)

�̃�
𝜆

2
⊕ ⋅ ⋅ ⋅ ⊕ 𝜔

�̃�(𝑛)
�̃�
𝜆

𝑛
)
1/𝜆

,

P-GIIFOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=
1

𝜆
((𝜆�̃�
1
)
𝜔�̃�(1)

⊗ (𝜆�̃�
2
)
𝜔�̃�(2)

⊗ ⋅ ⋅ ⋅ ⊗ (𝜆�̃�
𝑛
)
𝜔�̃�(𝑛)

) .

(54)

Obviously, P-GIIFOWA and P-GIIFOWG are also neat
and dependent operators.

Theorem 25. Let (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) be a collection of interval-

valued intuitionistic fuzzy arguments, and (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is

a permutation of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
), with 𝛽

𝑗−1
≥ 𝛽
𝑗
for all 𝑗 =

2, . . . , 𝑛. If Sup(𝛽
𝑖
) ≥ Sup(𝛽

𝑗
); then 𝜔

𝛽(𝑖)
≥ 𝜔
𝛽(𝑗)

.

Theorem 26. Let �̃�
𝑗
= ([𝑎
𝑗
, 𝑏
𝑗
], [𝑐
𝑗
, 𝑑
𝑗
]) (𝑗 = 1, 2, . . . , 𝑛) be

a collection of interval-valued intuitionistic fuzzy arguments,
and 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 the weighting vector derived by

hybrid supportmethod related to the P-GIIFOWAoperator and
P-GIIFOWG operator, with 𝜔

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝜔
𝑗
= 1; then
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the P-GIIFOWA operator and the P-GIIFOWG operator have
the following properties.

(1) Commutativity: let (�̃�∗
1
, �̃�
∗

2
, . . . , �̃�

∗

𝑛
) be any a permuta-

tion of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
); then

𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐴
𝜔,𝜆

(�̃�
∗

1
, �̃�
∗

2
, . . . , �̃�

∗

𝑛
)

= 𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐴
𝜔,𝜆

(�̃�
1
, �̃�
2
, . . . �̃�
𝑛
) ,

𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜔,𝜆

(�̃�
∗

1
, �̃�
∗

2
, . . . , �̃�

∗

𝑛
)

= 𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜔,𝜆

(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) .

(55)

(2) Idempotency: let �̃�
𝑗
= �̃�, for all 𝑗 = 1, 2, . . . , 𝑛; then

𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐴
𝜔,𝜆

(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = 𝛼,

𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜔,𝜆

(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) = �̃�.

(56)

(3) Boundedness: the P-GIIFOWA operator and the P-
GIIFOWG operator lie between the max and min
operators:

�̃�
−
≤ 𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜔,𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ �̃�
+,

�̃�
−
≤ 𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐺

𝜔,𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ �̃�
+,

(57)

where

�̃�
−
= ([min

𝑗

(𝑎
𝑗
) ,min
𝑗

(𝑏
𝑗
)] , [max

𝑗

(𝑐
𝑗
) ,max
𝑗

(𝑑
𝑗
)]) ,

�̃�
+
= ([max

𝑗

(𝑎
𝑗
) ,max
𝑗

(𝑏
𝑗
)] , [min

𝑗

(𝑐
𝑗
) ,min
𝑗

(𝑑
𝑗
)]) .

(58)

Theorem 27. Let �̃�
𝑗

= ([𝑎
�̃�(𝑗)

, 𝑏
�̃�(𝑗)

], [𝑐
�̃�(𝑗)

, 𝑑
�̃�(𝑗)

]), 𝛽
𝑗

=

([𝑎
𝛽(𝑗)

, 𝑏
𝛽(𝑗)

], [𝑐
𝛽(𝑗)

, 𝑑
𝛽(𝑗)

]) be two collections of interval-valued
intuitionistic fuzzy arguments, (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑛
) a permutation

of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
), with 𝛽

𝑗−1
≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛, and

𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 the weighting vector derived by hybrid

support method related to the P-GIIFOWA operator and P-
GIIFOWG operator, 𝜔

𝑗
∈ [0, 1], ∑𝑛

𝑗=1
𝜔
𝑗
= 1; then

(1) if 𝜆 = 1, then the P-GIIFOWA operator and P-
GIIFOWG operator reduce to the following P-IIFOWA
operator and P-IIFOWG operator:

𝑃-𝐼𝐼𝐹𝑂𝑊𝐴(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=

Sup (𝛽
1
)

∑
𝑛

𝑗=1
Sup (𝛽

𝑗
)

𝛽
1
⊕

Sup (𝛽
2
)

∑
𝑛

𝑗=1
Sup (𝛽

𝑗
)

𝛽
2

⊕ ⋅ ⋅ ⋅ ⊕

Sup (𝛽
𝑛
)

∑
𝑛

𝑗=1
Sup (𝛽

𝑗
)

𝛽
𝑛

= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝛽(𝑗)

)
Sup(𝛽𝑗)/∑

𝑛
𝑗=1 Sup(𝛽𝑗)

,

1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝛽(𝑗)

)
Sup(𝛽𝑗)/∑

𝑛
𝑗=1 Sup(𝛽𝑗)]

]

,

[𝑐
Sup(𝛽𝑗)/∑

𝑛
𝑗=1 Sup(𝛽𝑗)

𝛽(𝑗)
, 𝑑

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

𝛽(𝑗)
]) ,

(59)

𝑃-𝐼𝐼𝐹𝑂𝑊𝐺(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= (𝛽
Sup(𝛽1)
1

⊗ 𝛽
Sup(𝛽2)
2

⊗ ⋅ ⋅ ⋅ ⊗ 𝛽
Sup(𝛽𝑛)
𝑛

)

1/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

= ([𝑎
Sup(𝛽𝑗)/∑

𝑛
𝑗=1 Sup(𝛽𝑗)

𝛽(𝑗)
, 𝑏

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

𝛽(𝑗)
] ,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝛽(𝑗)

)
Sup(𝛽𝑗)/∑

𝑛
𝑗=1 Sup(𝛽𝑗)

,

1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝜆

𝛽(𝑗)
)

Sup(𝛽𝑗)/∑
𝑛
𝑗=1 Sup(𝛽𝑗)

]

]

) ;

(60)

(2) if 𝜆 → 0, then the P-GIIFOWA operator reduces to the
P-IIFOWG operator;

(3) if𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the P-GIIFOWA oper-

ator and P-GIIFOWG operator reduce to the GIIFA
operator and GIIFG operator;

(4) if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇 and 𝜆 = 1, then the P-

GIIFOWA operator and P-GIIFOWG operator reduce
to the IIFA operator and IIFG operator;

(5) if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇 and 𝜆 → 0, then the P-

GIIFOWA operator reduces to the IIFG operator.

Theorem 28. Let �̃�
𝑗

= ([𝑎
�̃�(𝑗)

, 𝑏
�̃�(𝑗)

], [𝑐
�̃�(𝑗)

, 𝑑
�̃�(𝑗)

]), 𝛽
𝑗

=

([𝑎
𝛽(𝑗)

, 𝑏
𝛽(𝑗)

], [𝑐
𝛽(𝑗)

, 𝑑
𝛽(𝑗)

]) be two collections of interval-valued
intuitionistic fuzzy arguments, (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑛
) a permutation

of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
), with 𝛽

𝑗−1
≥ 𝛽
𝑗
for all 𝑗 = 2, . . . , 𝑛, 𝜔 =

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 the weight vector derived by hybrid support

method related to the P-GIIFOWA operator and P-GIIFOWG
operator, with 𝜔

𝑗
∈ [0, 1] and ∑

𝑛

𝑗=1
𝜔
𝑗
= 1; then

(1) 𝑃-𝐼𝐼𝐹𝑂𝑊𝐺(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ 𝑃-𝐼𝐼𝐹𝑂𝑊𝐴(�̃�

1
, �̃�
2
, . . . ,

�̃�
𝑛
);

(2) 𝑃-𝐼𝐼𝐹𝑂𝑊𝐺(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ 𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜆
(�̃�
1
, �̃�
2
,

. . . , �̃�
𝑛
);

(3) 𝑃-𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
) ≤ 𝑃-𝐼𝐹𝑂𝑊𝐴(�̃�

1
, �̃�
2
,

. . . , �̃�
𝑛
).
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Proof. Similar to the proof of Theorem 20, Theorem 28 can
be proved by mathematical induction method, so proof steps
are omitted here.

Example 29. For a group decision making problem, suppose
that there are six decision makers 𝑑

𝑗
(𝑗 = 1, 2, . . . , 6) to pro-

vide their individual preferences with interval-valued intui-
tionistic fuzzy numbers. Then, the preference arguments can
be collected as follows:

�̃�
1
= ([0.5, 0.6] , [0.2, 0.4]) ,

�̃�
2
= ([0.3, 0.6] , [0.3, 0.4]) ,

�̃�
3
= ([0.4, 0.7] , [0.2, 0.3]) ,

�̃�
4
= ([0.3, 0.5] , [0.1, 0.4]) ,

�̃�
5
= ([0.4, 0.7] , [0.2, 0.3]) ,

�̃�
6
= ([0.6, 0.8] , [0.0, 0.2]) .

(61)

According to (44) and (45), we can have the power
weighting vector:

𝜔 = (𝜔
1
, 𝜔
2
, 𝜔
3
, 𝜔
4
, 𝜔
5
, 𝜔
6
) , (62)

where 𝜔
1
= 0.1653, 𝜔

2
= 0.164, 𝜔

3
= 0.1715, 𝜔

4
= 0.1651,

𝜔
5
= 0.1715, and 𝜔

6
= 0.1625.

Suppose 𝜆 = 5, then according to (51) and (52), it follows
that

P-GIIFOWA (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= ([0.4691, 0.6828] , [0.0, 0.299]) ,

P-GIIFOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= ([0.3808, 0.6049] , [0.2225, 0.3422]) .

(63)

Theorem 30. Let �̃�
𝑗
= ([𝑎

�̃�(𝑗)
, 𝑏
�̃�(𝑗)

], [𝑐
�̃�(𝑗)

, 𝑑
�̃�(𝑗)

]) and 𝛽
𝑗
=

([𝑎
𝛽(𝑗)

, 𝑏
𝛽(𝑗)

], [𝑐
𝛽(𝑗)

, 𝑑
𝛽(𝑗)

]) be two collections of interval-valued
intuitionistic fuzzy arguments, and let 𝛾 be the interval-valued
intuitionistic fuzzy number obtained by applying 𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜆

or 𝐺𝐼𝐼𝐹𝑂𝑊𝐺
𝜆
on �̃�
𝑗
and 𝛽

𝑗
; then one can have

(1-a) if 𝑐
𝛽(𝑗)

= 0, 𝛾 = 𝐺𝐼𝐼𝐹𝑂𝑊𝐴
𝜆
(�̃�
𝑗
, 𝛽
𝑗
) = ([𝑎, 𝑏], [𝑐, 𝑑]),

then 𝑐 = 0;
(1-b) if 𝑑

𝛽(𝑗)
= 0, 𝛾 = 𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜆
(�̃�
𝑗
, 𝛽
𝑗
) = ([𝑎, 𝑏], [𝑐, 𝑑]),

then 𝑑 = 0;
(1-c) if 𝑐

𝛽(𝑗)
= 0 and 𝑑

𝛽(𝑗)
= 0, 𝛾 = 𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜆
(�̃�
𝑗
, 𝛽
𝑗
) =

([𝑎, 𝑏], [𝑐, 𝑑]), then 𝑐 = 𝑑 = 0;
(2-a) if 𝑎

𝛽(𝑗)
= 0, 𝛾 = 𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜆
(�̃�
𝑗
, 𝛽
𝑗
) = ([𝑎, 𝑏], [𝑐, 𝑑]),

then 𝑎 = 0;
(2-b) if 𝑏

𝛽(𝑗)
= 0, 𝛾 = 𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜆
(�̃�
𝑗
, 𝛽
𝑗
) = ([𝑎, 𝑏], [𝑐, 𝑑]),

then 𝑏 = 0;
(2-c) if 𝑎

𝛽(𝑗)
= 0 and 𝑏

𝛽(𝑗)
= 0, 𝛾 = 𝐺𝐼𝐼𝐹𝑂𝑊𝐴

𝜆
(�̃�
𝑗
, 𝛽
𝑗
) =

([𝑎, 𝑏], [𝑐, 𝑑]), then 𝑎 = 𝑏 = 0.

Proof. For the proposition (1-a), if 𝑐
𝛽(𝑗)

= 0, then we can have

GIIFOWA
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

= (
𝑛

⊕
𝑗=1

(𝑤
𝑗
𝛽
𝜆

𝑗
))

1/𝜆

= ([

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝜆

𝛽(𝑗)
)

𝑤𝑗

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝜆

𝛽(𝑗)
)

𝑤𝑗

)

1/𝜆

]

]

,

[

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑐
𝛽(𝑗)

)
𝜆

)

𝑤𝑗

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑑
𝛽(𝑗)

)
𝜆

)

𝑤𝑗

)

1/𝜆

]

]

)

= ([𝑎, 𝑏] , [0, 𝑑]) ,

(64)

so the proposition (1-a) is right. Correspondingly, proposition
(1-b) and proposition (1-c) can be proved in the same way.

For the proposition (2-a), if 𝑎
𝛽(𝑗)

= 0, then

GIIFOWG
𝜆
(�̃�
1
, �̃�
2
, . . . , �̃�

𝑛
)

=
1

𝜆
(
𝑛

⊗
𝑗=1

(𝜆𝛽
𝑗
)
𝑤𝑗
)

= ([

[

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑎
𝛽(𝑗)

)
𝜆

)

𝑤𝑗

)

1/𝜆

,

1 − (1 −

𝑛

∏

𝑗=1

(1 − (1 − 𝑏
𝛽(𝑗)

)
𝜆

)

𝑤𝑗

)

1/𝜆

]

]

,

[

[

(1 −

𝑛

∏

𝑗=1

(1 − 𝑐
𝜆

𝛽(𝑗)
)

𝑤𝑗

)

1/𝜆

,

(1 −

𝑛

∏

𝑗=1

(1 − 𝑑
𝜆

𝛽(𝑗)
)

𝑤𝑗

)

1/𝜆

]

]

)

= ([0, 𝑏] , [𝑐, 𝑑]) ,

(65)

so the proposition (2-a) is right, and proposition (2-b) and
proposition (2-c) can also be proved similarly.

Thus, according to Theorem 30, for the situation that
𝑐
𝛽(𝑗)

= 0 or 𝑑
𝛽(𝑗)

= 0, GIIFOWG
𝜆
operators should be



18 Journal of Applied Mathematics

better choices than GIIFOWA
𝜆
operators to consider more

completely the preference information indicated by nonzero
arguments, while for the situation 𝑎

𝛽(𝑗)
= 0 or 𝑏

𝛽(𝑗)
= 0,

GIIFOWA
𝜆
operators can use preference information more

completely than GIIFOW𝐺
𝜆
operators.

4. An Approach for
Multiple Attribute Group Decision
Making with Interval-Valued Intuitionistic
Fuzzy Information

For the multiple attribute group decision making problems,
in which both the attribute weights and the expert weights
take the form of real numbers, and the attribute arguments
take the form of interval-valued intuitionistic fuzzy num-
bers, we develop a decision making approach based on
the above-presented dependent interval-valued intuitionistic
fuzzy aggregation operators.

Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a set of alternatives, 𝐺 =

{𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑚
} a set of attributes, 𝜔 = {𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑚
}
𝑇 the

weighting vector of attributes, where 𝜔
𝑗
∈ [0, 1], ∑𝑛

𝑗=1
𝜔
𝑗
=

1, 𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑡
} a set of decision makers, and 𝜆 =

(𝜆
(1)

, 𝜆
(2)

, . . . , 𝜆
(𝑡)
) the weighting vector of decision makers.

The proposed approach involves the following steps.

Step 1. Construct individual interval-valued intuitionistic
fuzzy evaluation matrices �̃�

(𝑘). �̃�
(𝑘)

= (𝑟
(𝑘)

𝑖𝑗
)
𝑛×𝑚

=

(𝜇
(𝑘)

𝑖𝑗
, ]̃(𝑘)
𝑖𝑗

)
𝑛×𝑚

= ([𝜇
𝐿(𝑘)

𝑖𝑗
, 𝜇
𝑈(𝑘)

𝑖𝑗
], []𝐿(𝑘)
𝑖𝑗

, ]𝑈(𝑘)
𝑖𝑗

])
𝑛×𝑚

, where [𝜇𝐿(𝑘)
𝑖𝑗

,

𝜇
𝑈(𝑘)

𝑖𝑗
] indicates the degree to which the alternative 𝑥

𝑖
satisfies

the attribute 𝑔
𝑗
, []𝐿(𝑘)
𝑖𝑗

, ]𝑈(𝑘)
𝑖𝑗

] indicates the degree to which the
alternative 𝑥

𝑖
(𝑖 = 1, 2, . . . , 𝑛) does not satisfies the attribute

𝑔
𝑗
(𝑗 = 1, 2, . . . , 𝑚).

Step 2. Calculate argument weighting vector 𝜔
(𝑘)

= (𝜔
(𝑘)

1
,

𝜔
(𝑘)

2
, . . . , 𝜔

(𝑘)

𝑛
)
𝑇 associated with the interval-valued intuition-

istic fuzzy value 𝑟
(𝑘)

𝑖𝑗
in 𝑘th individual matrix �̃�

(𝑘) according
to (24) or (46).

Step 3. Utilize Gaussian-GIIFOWA operator, P-GIIFOWA
operator, Gaussian-GIIFOWG operator, or P-GIIFOWG
operator to aggregate the arguments in 𝑖th row of 𝑘th decision
maker’s assessmentmatrix �̃�(𝑘) as the corresponding interval-
valued intuitionistic fuzzy value 𝑟

𝑖𝑘
in the group decision

matrix �̇� for each 𝑥
𝑖
.

Step 4. Utilize IIFWA operator or IIFWG operator to derive
the overall group interval-valued intuitionistic fuzzy decision
vector 𝑟 for all the alternatives by aggregating the values in
each row of �̇�.

Step 5. Calculate score values 𝑠(𝑟
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) and

accuracy values ℎ(𝑟
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) of alternative 𝑥

𝑖
and

then rank all the alternatives to select the optimal one(s)
according to Definition 5.

Step 6. End.

5. Application to Exploitation Investment
Evaluation of Tourist Spots

5.1. Application Study. Suppose that a tourism development
and investment company is about to choose the most
desirable project(s) to invest from several candidate tourist
spots, which are filtered out through initial screening and
advance to an investment expert committee for detailed com-
prehensive due diligence, such as evaluation of exploitation
feasibility and evaluation of sustainable management strate-
gies [69]. Given that five filtered alternative tourist spots
𝑥
𝑖
(𝑖 = 1, 2, 3, 4, 5) advance to be reviewed for acceptance, the

corresponding investment criteria about exploitation feasibi-
lity of tourist spots could be constructed according to [69]
from the following five aspects: variety (𝑔

1
), orientability

(𝑔
2
), monopoly (𝑔

3
), destructibility (𝑔

4
), and novelty (𝑔

5
).

And three domain experts are organized as decision makers
DM 𝑑

𝑘
(𝑘 = 1, 2, 3) in the investment expert committee

to assess alternative tourist spots 𝑥
𝑖
by interval-valued intu-

itionistic fuzzy numbers with respect to each investment
criterion 𝑔

𝑗
. Suppose the decision makers’ weighting vector

𝜆 = (0.3, 0.3, 0.4)
𝑇. According to Section 4, the procedure

for solving this practical MAGDM problem contains the
following steps.

Step 1. According to the opinions of decision makers, the
interval-valued intuitionistic fuzzy decision matrix �̃�

(𝑘)
=

(𝑟
(𝑘)

𝑖𝑗
)
𝑛×𝑚

(𝑘 = 1, 2, 3) can be firstly constructed, and the
assessments are listed in Tables 1, 2, and 3.

Step 2. Respectively calculate Gaussian weighting vector
according to (24) and power weighting vector according to
(46).

Gaussian weighting vector:

𝜔
(1)

= (0.2443, 0.159, 0.2682, 0.1661, 0.1623)
𝑇,

𝜔
(2)

= (0.1719, 0.2185, 0.3227, 0.1169, 0.17)
𝑇,

𝜔
(3)

= (0.1613, 0.2245, 0.2058, 0.2721, 0.1363)
𝑇;

(66)

power weighting vector:

𝜔
(1)

= (0.2022, 0.197, 0.2046, 0.1976, 0.1985)
𝑇,

𝜔
(2)

= (0.1982, 0.2030, 0.2072, 0.1901, 0.2015)
𝑇,

𝜔
(3)

= (0.1972, 0.2041, 0.2029, 0.2069, 0.1889)
𝑇.

(67)

Step 3. Then, respectively utilize the Gaussian-GIIFOWA
operator, P-GIIFOWA operator, Gaussian-GIIFOWG oper-
ator, or P-GIIFOWG operator to aggregate each interval-
valued intuitionistic fuzzy arguments in 𝑖th row of 𝑘th deci-
sion maker’s assessment matrix �̃�

(𝑘) and get the group deci-
sionmatrix �̇� for each 𝑥

𝑖
. Here, suppose 𝜆 = 1, and the results

are shown in Tables 4, 5, 6, and 7.

Step 4. Aggregate each row in �̇� using IIFWA operator or
IIFWG operator to derive the interval-valued intuitionistic
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Table 1: Decision matrix �̃�
(1) by 𝑑

1
.

𝑔
1

𝑔
2

𝑔
3

𝑔
4

𝑔
5

𝑥
1

([0.4, 0.5], [0.3, 0.4]) ([0.5, 0.6], [0.1, 0.2]) ([0.6, 0.7], [0.2, 0.3]) ([0.7, 0.8], [0.1, 0.2]) ([0.7, 0.8], [0.0, 0.2])

𝑥
2

([0.6, 0.8], [0.1, 0.2]) ([0.5, 0.6], [0.3, 0.4]) ([0.4, 0.5], [0.3, 0.4]) ([0.4, 0.6], [0.3, 0.4]) ([0.4, 0.7], [0.1, 0.3])

𝑥
3

([0.5, 0.6], [0.3, 0.4]) ([0.5, 0.7], [0.1, 0.2]) ([0.5, 0.6], [0.3, 0.4]) ([0.3, 0.4], [0.2, 0.5]) ([0.6, 0.7], [0.2, 0.3])

𝑥
4

([0.5, 0.6], [0.3, 0.4]) ([0.7, 0.8], [0.0, 0.1]) ([0.4, 0.5], [0.2, 0.4]) ([0.5, 0.7], [0.1, 0.2]) ([0.5, 0.7], [0.2, 0.3])

𝑥
5

([0.4, 0.7], [0.2, 0.3]) ([0.5, 0.6], [0.2, 0.4]) ([0.3, 0.6], [0.3, 0.4]) ([0.6, 0.8], [0.1, 0.2]) ([0.4, 0.5], [0.2, 0.3])

Table 2: Decision matrix �̃�
(2) by 𝑑

2
.

𝑔
1

𝑔
2

𝑔
3

𝑔
4

𝑔
5

𝑥
1

([0.4, 0.6], [0.3, 0.4]) ([0.5, 0.7], [0.0, 0.2]) ([0.5, 0.6], [0.2, 0.4]) ([0.6, 0.8], [0.1, 0.2]) ([0.4, 0.7], [0.2, 0.3])

𝑥
2

([0.5, 0.8], [0.1, 0.2]) ([0.3, 0.5], [0.2, 0.3]) ([0.3, 0.6], [0.2, 0.4]) ([0.4, 0.5], [0.2, 0.4]) ([0.3, 0.6], [0.2, 0.3])

𝑥
3

([0.5, 0.6], [0.0, 0.1]) ([0.5, 0.8], [0.1, 0.2]) ([0.4, 0.7], [0.2, 0.3]) ([0.2, 0.4], [0.2, 0.3]) ([0.5, 0.8], [0.0, 0.2])

𝑥
4

([0.5, 0.7], [0.1, 0.3]) ([0.4, 0.6], [0.0, 0.1]) ([0.3, 0.5], [0.2, 0.4]) ([0.7, 0.9], [0.0, 0.1]) ([0.3, 0.5], [0.2, 0.2])

𝑥
5

([0.7, 0.8], [0.0, 0.1]) ([0.4, 0.6], [0.0, 0.2]) ([0.4, 0.7], [0.2, 0.3]) ([0.3, 0.5], [0.1, 0.3]) ([0.6, 0.7], [0.1, 0.2])

Table 3: Decision matrix �̃�
(3) by 𝑑

3
.

𝑔
1

𝑔
2

𝑔
3

𝑔
4

𝑔
5

𝑥
1

([0.3, 0.4], [0.4, 0.5]) ([0.8, 0.9], [0.1, 0.1]) ([0.7, 0.8], [0.1, 0.2]) ([0.4, 0.5], [0.3, 0.5]) ([0.2, 0.4], [0.3, 0.6])

𝑥
2

([0.5, 0.7], [0.1, 0.3]) ([0.4, 0.7], [0.2, 0.3]) ([0.4, 0.5], [0.2, 0.2]) ([0.6, 0.8], [0.1, 0.2]) ([0.2, 0.3], [0.0, 0.1])

𝑥
3

([0.2, 0.4], [0.1, 0.2]) ([0.4, 0.5], [0.2, 0.4]) ([0.5, 0.8], [0.0, 0.1]) ([0.4, 0.6], [0.2, 0.3]) ([0.5, 0.6], [0.2, 0.3])

𝑥
4

([0.7, 0.8], [0.0, 0.2]) ([0.5, 0.7], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.3]) ([0.4, 0.5], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2])

𝑥
5

([0.5, 0.6], [0.2, 0.4]) ([0.5, 0.8], [0.0, 0.2]) ([0.4, 0.7], [0.2, 0.3]) ([0.3, 0.6], [0.2, 0.3]) ([0.7, 0.8], [0.0, 0.1])

Table 4: Group decision matrix �̇� obtained by utilizing Gaussian-GIIFOWA operator.

𝑑
1

𝑑
2

𝑑
3

𝑥
1

([0.5836, 0.6885], [0.0, 0.2642]) ([0.4815, 0.6701], [0.0, 0.3019]) ([0.5666, 0.6954], [0.1959, 0.2958])

𝑥
2

([0.4721, 0.6578], [0.1919, 0.3223]) ([0.3511, 0.6173], [0.1775, 0.3175]) ([0.4574, 0.6650], [0.0, 0.2128])

𝑥
3

([0.4900, 0.6099], [0.2205, 0.3549]) ([0.4397, 0.7080], [0.0, 0.2122]) ([0.4095, 0.6107], [0.0, 0.2391])

𝑥
4

([0.5159, 0.6539], [0.0, 0.2730]) ([0.4215, 0.6386], [0.0, 0.2126]) ([0.5689, 0.6945], [0.0, 0.2174])

𝑥
5

([0.4321, 0.6554], [0.1988, 0.3172]) ([0.4938, 0.6837], [0.0, 0.2122]) ([0.4694, 0.7064], [0.0, 0.2470])

Table 5: Group decision matrix �̇� obtained by utilizing P-GIIFOWA operator.

𝑑
1

𝑑
2

𝑑
3

𝑥
1

([0.5951, 0.7002], [0.0, 0.2500]) ([0.4845, 0.6879], [0.0, 0.2874]) ([0.5457, 0.6792], [0.2024, 0.3094])

𝑥
2

([0.4667, 0.6562], [0.1932, 0.3284]) ([0.3641, 0.6194], [0.1743, 0.3104]) ([0.4322, 0.6338], [0.0, 0.2047])

𝑥
3

([0.4887, 0.6132], [0.2058, 0.3445]) ([0.4322, 0.6925], [0.0, 0.2048]) ([0.4104, 0.6071], [0.0, 0.2337])

𝑥
4

([0.5307, 0.6741], [0.0, 0.2507]) ([0.4598, 0.6820], [0.0, 0.1905]) ([0.5970, 0.7189], [0.0, 0.2175])

𝑥
5

([0.4486, 0.6560], [0.1895, 0.3109]) ([0.5037, 0.6766], [0.0, 0.2048]) ([0.5006, 0.7153], [0.0, 0.2344])

Table 6: Group decision matrix �̇� obtained by utilizing Gaussian-GIIFOWG operator.

𝑑
1

𝑑
2

𝑑
3

𝑥
1

([0.5553, 0.6574], [0.1658, 0.2805]) ([0.4733, 0.6588], [0.1677, 0.3217]) ([0.4555, 0.5881], [0.2392, 0.3904])

𝑥
2

([0.4576, 0.6285], [0.2247, 0.3400]) ([0.3387, 0.5930], [0.1836, 0.3307]) ([0.4213, 0.6035], [0.1321, 0.2279])

𝑥
3

([0.4732, 0.5894], [0.2388, 0.3752]) ([0.4180, 0.6725], [0.1141, 0.2302]) ([0.3861, 0.5724], [0.1463, 0.2724])

𝑥
4

([0.4969, 0.6292], [0.1818, 0.3117]) ([0.3851, 0.5905], [0.1202, 0.2588]) ([0.5400, 0.6647], [0.0846, 0.2217])

𝑥
5

([0.4104, 0.6345], [0.2129, 0.3299]) ([0.4562, 0.6658], [0.0972, 0.2302]) ([0.4351, 0.6871], [0.1329, 0.2719])
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Table 7: Group decision matrix �̇� obtained by utilizing P-GIIFOWG operator.

𝑑
1

𝑑
2

𝑑
3

𝑥
1

([0.5669, 0.6689], [0.1473, 0.2655]) ([0.4735, 0.6745], [0.1663, 0.3070]) ([0.4247, 0.5680], [0.2473, 0.4063])

𝑥
2

([0.4537, 0.6317], [0.2258, 0.3443]) ([0.3506, 0.5913], [0.1811, 0.3239]) ([0.3927, 0.5645], [0.1240, 0.2235])

𝑥
3

([0.4687, 0.5886], [0.2245, 0.3684]) ([0.4011, 0.6443], [0.1042, 0.2234]) ([0.3819, 0.5663], [0.1424, 0.2661])

𝑥
4

([0.5105, 0.6503], [0.1671, 0.2907]) ([0.4134, 0.6202], [0.1060, 0.2312]) ([0.5693, 0.6926], [0.0810, 0.2218])

𝑥
5

([0.4270, 0.6319], [0.2032, 0.3244]) ([0.4592, 0.6535], [0.0838, 0.2234]) ([0.4636, 0.6959], [0.1244, 0.2662)

Table 8: Overall group decision assessment values for all alternatives.

Combination of
operators 𝑥

1
𝑥
2

𝑥
3

𝑥
4

𝑥
5

Gaussian-GIIFOWA
and IIFWA

([0.5481, 0.6859],
[0.0, 0.2877])

([0.4322, 0.6491],
[0.0, 0.2718])

([0.4437, 0.6427],
[0.0, 0.2597])

([0.5125, 0.6664],
[0.0, 0.2312])

([0.4661, 0.6850],
[0.0, 0.2544])

P-GIIFOWA and
IIFWA

([0.5442, 0.6882],
[0.0, 0.2839])

([0.4235, 0.6365],
[0.0, 0.2673])

([0.4414, 0.6367],
[0.0, 0.2524])

([0.5394, 0.6951],
[0.0, 0.2181])

([0.4865, 0.6869],
[0.0, 0.2450])

Gaussian-GIIFOWG
and IIFWG

([0.4890, 0.6292],
[0.1965, 0.3385])

([0.4045, 0.6077],
[0.1762, 0.2943])

([0.4203, 0.6061],
[0.1660, 0.2930])

([0.4759, 0.6310],
[0.1254, 0.2608])

([0.4337, 0.6646],
[0.1475, 0.2778])

P-GIIFOWG and
IIFWG

([0.4785, 0.6281],
[0.1943, 0.3371])

([0.3964, 0.5921],
[0.1728, 0.2919])

([0.4121, 0.5955],
[0.1570, 0.2864])

([0.5005, 0.6575],
[0.1151, 0.2459])

([0.4510, 0.6634],
[0.1372, 0.2719])

Table 9: Orderings of the alternatives obtained by using different
operators.

Different combination of operators Ordering
Gaussian-GIIFOWA and IIFWA 𝑥

2
≺ 𝑥
3
≺ 𝑥
5
≺ 𝑥
1
≺ 𝑥
4

P-GIIFOWA and IIFWA 𝑥
2
≺ 𝑥
3
≺ 𝑥
5
≺ 𝑥
1
≺ 𝑥
4

Gaussian-GIIFOWG and IIFWG 𝑥
2
≺ 𝑥
3
≺ 𝑥
1
≺ 𝑥
5
≺ 𝑥
4

P-GIIFOWG and IIFWG 𝑥
2
≺ 𝑥
3
≺ 𝑥
1
≺ 𝑥
5
≺ 𝑥
4

fuzzy overall group decision assessment values for all alter-
natives. The results are shown in Table 8.

Step 5. Calculate the scores 𝑆(𝑟
𝑖
) (𝑖 = 1, 2, 3, 4, 5) of the

group overall intuitionistic fuzzy assessment values and rank
all alternatives in accordance with scores 𝑆(𝑟

𝑖
); the obtained

ordering results are listed in Table 9.

As can be seen from Table 9, for all four combinations of
operators, alternative 𝑥

4
is consistently distinguished as the

best one, and alternative 𝑥
2
and 𝑥

3
are consistently distin-

guished as the worst ones. The ordering of 𝑥
1
and 𝑥

5
shows

difference with IIFWA or IIFWG adopted. The first two
combinations of averaging operators yield the same ranking
result as 𝑥

2
≺ 𝑥
3
≺ 𝑥
5
≺ 𝑥
1
≺ 𝑥
4
and the last two combina-

tions of geometric operators also generate the same ranking
result as 𝑥

2
≺ 𝑥
3
≺ 𝑥
1
≺ 𝑥
5
≺ 𝑥
4
, which show that the pro-

posed Gaussian distribution-based operators and power
method-based operators can help to effectively differentiate
the most desirable one(s). Generally, from the aspect of dif-
ferent support degree measurement methods adopted, the
Gaussian-GIIFOWA operator and Gaussian-GIIFOWG ope-
rator appear to be more straight and concise than the P-
GIIFOWA operator and P-GIIFOWG operator, while the

latter two operators can utilize preference more completely
by considering not only support degree of each argument
by other arguments but also the support degree between the
aggregated argument and the mean value. So for different
practical decision making problems, decision makers may
choose different operators according to their preference and
the related facts.

5.2. Further Discussion. In order to further verify proper-
ties of the proposed four generalized argument-dependent
aggregation operators, experiments are conducted in this
subsection with attitudinal parameter 𝜆 varying in a crisp
range: 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, and 5. For clarity, the proposed
Gaussian-GIIFOWA operator, Gaussian-GIIFOWG opera-
tor, P-GIIFOWA operator, and P-GIIFOWG operator are,
respectively, applied on assessment matrix given by decision
maker𝑑

1
(as shown inTable 4), and corresponding results are

listed in Table 10 to Table 13.
From comparison with the last columns of Table 10 to

Table 13, it is can be seen that the best and worst alternatives
are totally consistent and only the orderings of 𝑥

2
and 𝑥

5

exhibit some difference, which shows that all the proposed
four aggregation operators can effectively distinguish the
most desirable alternatives. And from the view of results
obtained by Gaussian-GIIFOWA and Gaussian-GIIFOWG
with ranging𝜆, it is can be observed that all the score values in
Table 11 are smaller than the score values in Table 10 with 𝜆 =

1 (Gaussian-GIIFOWA is reduced to be Gaussian-IIFOWA),
and that all the score values in Table 10 are bigger than the
score values in Table 11 with 𝜆 = 1 (Gaussian-GIIFOWG
reduces to Gaussian-IIFOWG). These observed facts just
verify the validness of the inequations given in Theorem 20.
And similarly, the same facts verifying the validness ofTheo-
rem 28 can also be observed by comparing the score values
listed in Tables 12 and 13.
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Table 10: Ranking results obtained by applying Gaussian-GIIFOWA on assessments given by 𝑑
1
.

Aggregation operator 𝜆 Score values Ranking

1/5 𝑠(𝑟
1
) = 0.9965, 𝑠(𝑟

2
) = 0.6022, 𝑠(𝑟

3
) = 0.5121, 𝑠(𝑟

4
) = 0.8839, 𝑠(𝑟

5
) = 0.5594 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

Gaussian-GIIFOWA

1/4 𝑠(𝑟
1
) = 0.9972, 𝑠(𝑟

2
) = 0.6030, 𝑠(𝑟

3
) = 0.5128, 𝑠(𝑟

4
) = 0.8874, 𝑠(𝑟

5
) = 0.5601 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

1/3 𝑠(𝑟
1
) = 0.9984, 𝑠(𝑟

2
) = 0.6044, 𝑠(𝑟

3
) = 0.5141, 𝑠(𝑟

4
) = 0.8860, 𝑠(𝑟

5
) = 0.5613 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

1/2 𝑠(𝑟
1
) = 1.008, 𝑠(𝑟

2
) = 0.6071, 𝑠(𝑟

3
) = 0.5167, 𝑠(𝑟

4
) = 0.8886, 𝑠(𝑟

5
) = 0.5638 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

1 𝑠(𝑟
1
) = 1.008, 𝑠(𝑟

2
) = 0.6156, 𝑠(𝑟

3
) = 0.5245, 𝑠(𝑟

4
) = 0.8968, 𝑠(𝑟

5
) = 0.5716 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

2 𝑠(𝑟
1
) = 1.0231, 𝑠(𝑟

2
) = 0.6341, 𝑠(𝑟

3
) = 0.541, 𝑠(𝑟

4
) = 0.9147, 𝑠(𝑟

5
) = 0.5887 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

3 𝑠(𝑟
1
) = 1.0386, 𝑠(𝑟

2
) = 0.6542, 𝑠(𝑟

3
) = 0.558, 𝑠(𝑟

4
) = 0.9343, 𝑠(𝑟

5
) = 0.6075 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

4 𝑠(𝑟
1
) = 1.054, 𝑠(𝑟

2
) = 0.6755, 𝑠(𝑟

3
) = 0.575, 𝑠(𝑟

4
) = 0.9552, 𝑠(𝑟

5
) = 0.6272 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

5 𝑠(𝑟
1
) = 1.0688, 𝑠(𝑟

2
) = 0.6972, 𝑠(𝑟

3
) = 0.5917, 𝑠(𝑟

4
) = 0.9767, 𝑠(𝑟

5
) = 0.6471 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

Table 11: Ranking results obtained by applying Gaussian-GIIFOWG on assessments given by 𝑑
1
.

Aggregation operator 𝜆 Score value Ranking

1/5 𝑠(𝑟
1
) = 0.841, 𝑠(𝑟

2
) = 0.5523, 𝑠(𝑟

3
) = 0.4714, 𝑠(𝑟

4
) = 0.7077, 𝑠(𝑟

5
) = 0.5225 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

Gaussian-GIIFOWG

1/4 𝑠(𝑟
1
) = 0.8327, 𝑠(𝑟

2
) = 0.5505, 𝑠(𝑟

3
) = 0.4701, 𝑠(𝑟

4
) = 0.699, 𝑠(𝑟

5
) = 0.5213 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

1/3 𝑠(𝑟
1
) = 0.8215, 𝑠(𝑟

2
) = 0.5475, 𝑠(𝑟

3
) = 0.4678, 𝑠(𝑟

4
) = 0.6873, 𝑠(𝑟

5
) = 0.5193 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

1/2 𝑠(𝑟
1
) = 0.8041, 𝑠(𝑟

2
) = 0.5413, 𝑠(𝑟

3
) = 0.4632, 𝑠(𝑟

4
) = 0.6694, 𝑠(𝑟

5
) = 0.5152 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

1 𝑠(𝑟
1
) = 0.7664, 𝑠(𝑟

2
) = 0.5215, 𝑠(𝑟

3
) = 0.4486, 𝑠(𝑟

4
) = 0.6325, 𝑠(𝑟

5
) = 0.5022 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

2 𝑠(𝑟
1
) = 0.7059, 𝑠(𝑟

2
) = 0.4811, 𝑠(𝑟

3
) = 0.4168, 𝑠(𝑟

4
) = 0.5795, 𝑠(𝑟

5
) = 0.4741 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

3 𝑠(𝑟
1
) = 0.6513, 𝑠(𝑟

2
) = 0.4449, 𝑠(𝑟

3
) = 0.3838, 𝑠(𝑟

4
) = 0.5371, 𝑠(𝑟

5
) = 0.4459 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

4 𝑠(𝑟
1
) = 0.6024, 𝑠(𝑟

2
) = 0.4149, 𝑠(𝑟

3
) = 0.3513, 𝑠(𝑟

4
) = 0.5019, 𝑠(𝑟

5
) = 0.4194 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

5 𝑠(𝑟
1
) = 0.56, 𝑠(𝑟

2
) = 0.3905, 𝑠(𝑟

3
) = 0.3199, 𝑠(𝑟

4
) = 0.4725, 𝑠(𝑟

5
) = 0.3952 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

Table 12: Ranking results obtained by applying P-GIIFOWA on assessments given by 𝑑
1
.

Aggregation operator 𝜆 Score value Ranking

1/5 𝑠(𝑟
1
) = 1.0344, 𝑠(𝑟

2
) = 0.5892, 𝑠(𝑟

3
) = 0.5375, 𝑠(𝑟

4
) = 0.9417, 𝑠(𝑟

5
) = 0.5918 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

P-GIIFOWA

1/4 𝑠(𝑟
1
) = 1.035, 𝑠(𝑟

2
) = 0.5899, 𝑠(𝑟

3
) = 0.5383, 𝑠(𝑟

4
) = 0.9424, 𝑠(𝑟

5
) = 0.5925 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

1/3 𝑠(𝑟
1
) = 1.0361, 𝑠(𝑟

2
) = 0.5911, 𝑠(𝑟

3
) = 0.5398, 𝑠(𝑟

4
) = 0.9437, 𝑠(𝑟

5
) = 0.5938 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

1/2 𝑠(𝑟
1
) = 1.0384, 𝑠(𝑟

2
) = 0.5936, 𝑠(𝑟

3
) = 0.5427, 𝑠(𝑟

4
) = 0.9462, 𝑠(𝑟

5
) = 0.5963 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

1 𝑠(𝑟
1
) = 1.0453, 𝑠(𝑟

2
) = 0.6013, 𝑠(𝑟

3
) = 0.5517, 𝑠(𝑟

4
) = 0.954, 𝑠(𝑟

5
) = 0.6042 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

2 𝑠(𝑟
1
) = 1.0595, 𝑠(𝑟

2
) = 0.6182, 𝑠(𝑟

3
) = 0.5704, 𝑠(𝑟

4
) = 0.9708, 𝑠(𝑟

5
) = 0.6214 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

3 𝑠(𝑟
1
) = 1.0741, 𝑠(𝑟

2
) = 0.6367, 𝑠(𝑟

3
) = 0.5895, 𝑠(𝑟

4
) = 0.989, 𝑠(𝑟

5
) = 0.64 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

4 𝑠(𝑟
1
) = 1.0884, 𝑠(𝑟

2
) = 0.6564, 𝑠(𝑟

3
) = 0.6083, 𝑠(𝑟

4
) = 1.0081, 𝑠(𝑟

5
) = 0.6594 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

5 𝑠(𝑟
1
) = 1.1021, 𝑠(𝑟

2
) = 0.6767, 𝑠(𝑟

3
) = 0.6263, 𝑠(𝑟

4
) = 1.0275, 𝑠(𝑟

5
) = 0.6788 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3
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Table 13: Ranking results obtained by applying P-GIIFOWG on assessments given by 𝑑
1
.

Aggregation operator 𝜆 Score value Ranking

1/5 𝑠(𝑟
1
) = 0.9026, 𝑠(𝑟

2
) = 0.5437, 𝑠(𝑟

3
) = 0.4907, 𝑠(𝑟

4
) = 0.7869, 𝑠(𝑟

5
) = 0.5531 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

P-GIIFOWG

1/4 𝑠(𝑟
1
) = 0.8938, 𝑠(𝑟

2
) = 0.542, 𝑠(𝑟

3
) = 0.4892, 𝑠(𝑟

4
) = 0.7773, 𝑠(𝑟

5
) = 0.5518 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

1/3 𝑠(𝑟
1
) = 0.8818, 𝑠(𝑟

2
) = 0.5392, 𝑠(𝑟

3
) = 0.4867, 𝑠(𝑟

4
) = 0.7642, 𝑠(𝑟

5
) = 0.5497 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

1/2 𝑠(𝑟
1
) = 0.8631, 𝑠(𝑟

2
) = 0.5335, 𝑠(𝑟

3
) = 0.4814, 𝑠(𝑟

4
) = 0.7442, 𝑠(𝑟

5
) = 0.5453 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

1 𝑠(𝑟
1
) = 0.8229, 𝑠(𝑟

2
) = 0.5154, 𝑠(𝑟

3
) = 0.4644, 𝑠(𝑟

4
) = 0.7029, 𝑠(𝑟

5
) = 0.5313 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

2 𝑠(𝑟
1
) = 0.7581, 𝑠(𝑟

2
) = 0.4783, 𝑠(𝑟

3
) = 0.4271, 𝑠(𝑟

4
) = 0.6435, 𝑠(𝑟

5
) = 0.5012 𝑥

1
≻ 𝑥
4
≻ 𝑥
2
≻ 𝑥
5
≻ 𝑥
3

3 𝑠(𝑟
1
) = 0.6987, 𝑠(𝑟

2
) = 0.4451, 𝑠(𝑟

3
) = 0.3884, 𝑠(𝑟

4
) = 0.5956, 𝑠(𝑟

5
) = 0.4709 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

4 𝑠(𝑟
1
) = 0.6453, 𝑠(𝑟

2
) = 0.4176, 𝑠(𝑟

3
) = 0.3505, 𝑠(𝑟

4
) = 0.5555, 𝑠(𝑟

5
) = 0.4424 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

5 𝑠(𝑟
1
) = 0.5987, 𝑠(𝑟

2
) = 0.395, 𝑠(𝑟

3
) = 0.3146, 𝑠(𝑟

4
) = 0.5217, 𝑠(𝑟

5
) = 0.4164 𝑥

1
≻ 𝑥
4
≻ 𝑥
5
≻ 𝑥
2
≻ 𝑥
3

In summary, the proposed four generalized argument-
dependent operators can effectively and objectively distin-
guish the most desirable alternative(s). The Gaussian weight-
ing vector directly measures support degree of arguments
with less computation complexity by only considering the
distance between arguments with mean value, while the
power weighting vector obtained by hybrid support function
can consider objective preference information by measuring
both the support degrees between arguments and the support
degrees between arguments andmid values. In practical deci-
sion modelling process, decision makers can select suitably
presented operators and proper parameter 𝜆 in accordance
with attitudinal preference or problem characteristics to help
effectively solve multiple attribute group decision making
problems under interval-valued intuitionistic fuzzy environ-
ments.

6. Conclusions

We have investigated some generalized argument-dependent
aggregation operators for MAGDM under interval-valued
intuitionistic fuzzy environments. First, a Gaussian distribu-
tion-based method for deriving weighting vector by measur-
ing distances between arguments and mean value has been
presented, based on which we have proposed the Gaussian-
GIIFOWA operator and the Gaussian-GIIFOWG operator.
Then, a hybrid support degree function has been devised
for measuring both the support degrees between arguments
and the support degrees between arguments and mean value,
based onwhich we have also proposed the P-GIIFOWAoper-
ator and the P-GIIFOWG operator. And some desirable pro-
perties of the proposed dependent operators have been ana-
lyzed. The main advantages of developed operators are that
they can relieve the influence of unfair assessments on the
results by assigning lowweights to those false andbiased ones,
and they can include a wide range of other aggregation ope-
rators for decisionmakers to flexibly choose in practical deci-
sion modelling. An approach has been formed based on
developed operators and applied to solve the MAGDM

problem concerning exploitation investment evaluation of
tourist spots for verifying effectiveness and practicality of
proposed methods. Furthermore, the results of comparative
experiments have also verified the properties of developed
operators. In the future, we will continue working on the
extension and application of these operators to other fields
under different environments, such as the information fusion,
data mining, and hybrid decision making indices with hesi-
tant fuzzy preference.
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