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Generalized symbolic trajectory evaluation (GSTE) is a model checking approach and has successfully demonstrated its powerful
capacity in formal verification of VLSI systems. GSTE is an extension of symbolic trajectory evaluation (STE) to themodel checking
of 𝜔-regular properties. It is an alternative to classical model checking algorithms where properties are specified as finite-state
automata. In GSTE, properties are specified as assertion graphs, which are labeled directed graphs where each edge is labeled
with two labeling functions: antecedent and consequent. In this paper, we show the complement relation between GSTE assertion
graphs and finite-state automata with the expressiveness of regular languages and 𝜔-regular languages. We present an algorithm
that transforms a GSTE assertion graph to a finite-state automaton and vice versa. By applying this algorithm, we transform the
problem of GSTE assertion graphs implication to the problem of automata language containment. We demonstrate our approach
with its application to verification of an FIFO circuit.

1. Introduction

Generalized symbolic trajectory evaluation (GSTE) [1–4] is
a model checking approach which was originally developed
at Intel and has successfully demonstrated its powerful
capacity in formal verification of VLSI systems [1–7]. GSTE
is extended from the lattice-based symbolic trajectory evalu-
ation (STE) [8, 9] which can handle large industrial designs
[10–13]. The STE theory consists of a simple specification
language, a simulation-based model checking algorithm,
and a powerful quaternary abstraction algorithm. Though
STE is very efficient in automatic verification of large-scale
industrial hardware designs at both gate and transistor levels,
it has a limited specification language which only allows the
specification of properties over finite time intervals.

In GSTE, all 𝜔-regular properties can be expressed
and verified with space and time efficiencies comparable
with STE. Assertion graphs are introduced in GSTE as an
extension of STE specification language and are the key
to the usability of GSTE. An assertion graph is a labeled

directed graph where each edge is labeled with two labeling
functions: antecedent and consequent [3].The existing GSTE
theory provides an efficient model checking procedure for
verifying that a circuit obeys an assertion graph as well as
techniques based on abstract interpretation to combat state
space explosion [3, 7].

How to establish that one specification implies another
is a fundamental problem in formal verification. Hu et al.
[6, 7] proposed some algorithms to decide whether one
assertion graph implies another through building monitor
circuits. Yang and Seger [2] verified assertion graphs through
manually refining assertion graphs. Yang et al. [14] gave some
conditions under which the assertion graphs implication is
decided without reachability analysis if two assertion graphs
have the same graph structure. Sebastiani et al. [15] gave the
complement relation between an assertion graph and a finite-
state automaton. An assertion graph with 𝑛 states resulted in
a nondeterministic automaton with 3 ∗ 𝑛 states.

In this paper, we consider both finite-state automata that
accept regular languages and finite-state 𝜔-automata with
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Büchi acceptance conditions that accept𝜔-regular languages.
For a finite-state automaton over finite words, acceptance is
defined according to the last state visited by a run of the
automaton; while for a finite-state automaton with Büchi
acceptance conditions, there is no such “the last state” and
acceptance is defined according to the set of states that a run
visits infinitely often [16].

We present a theory on the complement relation between
GSTE assertion graphs and finite-state automata and an
algorithm which automatically transforms assertion graphs
to their equivalent finite-state automata, and vice versa. For
an assertion graph 𝐺, we construct a corresponding finite-
state automaton 𝑀𝐺 such that 𝐿∗(𝐺) = Σ

∗
− 𝐿
∗
(𝑀𝐺) and

𝐿
𝜔
(𝐺) = Σ

𝜔
− 𝐿
𝜔
(𝑀𝐺), the number of states in 𝑀𝐺 is only

twice asmany as that in𝐺, and a deterministic assertion graph
is transformed to a deterministic automaton. On the other
hand, for an arbitrary finite-state automaton𝑀, we construct
a corresponding assertion graph 𝐺

𝑀
such that 𝐿∗(𝐺

𝑀
) =

Σ
∗
−𝐿
∗
(𝑀) and 𝐿𝜔(𝐺

𝑀
) = Σ
𝜔
−𝐿
𝜔
(𝑀), the number of states

inG
𝑀
is the same as that in𝑀, and a deterministic automaton

is transformed to a deterministic assertion graph.
We apply the proposed theory and algorithm to the

GSTE assertion graphs implication problem by transforming
this problem to the automata language containment prob-
lem. Since, in many cases, assertion graphs are nondeter-
ministic, their corresponding finite-state automata are also
nondeterministic. This may cause exponential state space
blowups in checking automata language containment [16–
22]. We avoid such blowups in determining the implication
relation between a nondeterministic assertion graph and its
refinement derived following the refinement strategies given
in [2], by transforming the implication relation between
nondeterministic assertion graphs to the implication relation
between deterministic assertion graphs without adding any
states. This application is illustrated with a case study for
verifying correctness properties of an FIFO circuit.

The remainder of this paper is organized as follows.
In Section 2, we introduce the preliminaries of finite-state
automata andGSTE assertion graphs. In Section 3,we present
the transformation algorithm and prove its correctness. In
Section 4, we propose an application of the transformation
algorithm to determine the implication relation between
GSTE assertion graphs and demonstrate its effectiveness with
a case study. We conclude in Section 5.

2. Preliminaries

In this section, we give the definitions of finite-state automata
and GSTE assertion graphs and of their finite and infinite
languages.We also show that the fairness edge constraints for
GSTE assertion graphs [1] are equivalent to the fairness state
constraints.

Definition 1. A finite-state automaton 𝑀 is a tuple 𝑀 =

⟨𝑄, Σ, 𝐸, 𝐿𝐹, 𝑞0, 𝐹⟩, where𝑄 is a finite set of states, Σ is a finite
alphabet, 𝐸 is a set of directed edges over 𝑄, 𝐿𝐹 : 𝐸 → 2

Σ is
the labeling function for all edges, 𝑞

0
∈ 𝑄 is the initial state,

and 𝐹 is a subset of 𝑄 whose elements are called acceptance
states.

Definition 2. A finite word (or string)𝑋 = 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
∈ Σ
∗ is

accepted by a finite-state automaton𝑀 (denoted as 𝑋⊨
∗
𝑀)

if there exists a path 𝜌 = 𝑞
0
𝑞
1
⋅ ⋅ ⋅ 𝑞
𝑛
such that (𝑞

𝑖−1
, 𝑞
𝑖
) ∈ 𝐸,

𝑞
𝑛
∈ 𝐹, and 𝑥

𝑖
∈ 𝐿𝐹((𝑞

𝑖−1
, 𝑞
𝑖
)), denoted as𝑋⊨

𝐿𝐹
𝜌.

Definition 3. An infinite word (or string) 𝑋 = 𝑥
1
𝑥
2
⋅ ⋅ ⋅ ∈

Σ
𝜔 is accepted by a finite-state automaton 𝑀 (denoted as

𝑋⊨
𝜔
𝑀) if there exists an infinite path 𝜌 = 𝑞

0
𝑞
1
⋅ ⋅ ⋅ such

that (𝑞𝑖−1, 𝑞𝑖) ∈ 𝐸, Inf(𝜌) ∩ 𝐹 ̸= 0, where Inf(𝜌) is the set of
states occurring infinitely often in 𝜌, and 𝑥𝑖 ∈ 𝐿𝐹((𝑞𝑖−1, 𝑞𝑖)),
denoted as𝑋⊨𝐿𝐹𝜌.

Definition 4. The finite language 𝐿∗(𝑀) of 𝑀 is 𝐿∗(𝑀) =

{𝑋 ∈ Σ
∗
| 𝑋⊨∗𝑀}. The infinite language 𝐿𝜔(𝑀) of 𝑀 is

𝐿
𝜔
(𝑀) = {𝑋 ∈ Σ

𝜔
| 𝑋⊨𝜔𝑀}.

Definition 5. Given a finite-state automaton 𝑀 = ⟨𝑄, Σ, 𝐸,

𝐿𝐹, 𝑞0, 𝐹⟩, In(𝑞) and Out(𝑞) for 𝑞 ∈ 𝑄 are called the set
of incoming edges of 𝑞 and the set of outgoing edges of 𝑞,
respectively; that is, In(𝑞) = {(𝑞


, 𝑞) | (𝑞


, 𝑞) ∈ 𝐸} and

Out(𝑞) = {(𝑞, 𝑞) | (𝑞, 𝑞) ∈ 𝐸}.

Definition 6. If for all 𝑞 ∈ 𝑄 and for all 𝑒, 𝑒 ∈ Out(𝑞), 𝑒 ̸= 𝑒


and 𝐿𝐹(𝑒)∩𝐿𝐹(𝑒) = 0,𝑀 is called a deterministic finite-state
automaton (DFA). Otherwise,𝑀 is called a nondeterministic
finite-state automaton (NFA).

Traditionally, an NFA may have a set of initial states.
The expressiveness of an NFA with multiple initial states is
the same as that of an NFA with a unique initial state. The
transformation is easy.

Definition 7. An assertion graph 𝐺 is a tuple ⟨𝑄, Σ, 𝐸, 𝑞
0
, ant,

cons, 𝐹⟩, where𝑄 is a finite set of states, Σ is a finite alphabet,
𝐸 is a set of directed edges over 𝑄, ant : 𝐸 → 2

Σ and cons :
𝐸 → 2

Σ are the labeling functions for all edges, 𝑞
0
∈ 𝑄 is the

initial state, and𝐹 is a subset of𝑄 and elements of𝐹 are called
acceptance states.

Definition 8. A finite word (or string) 𝑋 = 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
∈ Σ
∗

is accepted by an assertion graph 𝐺 (denoted as 𝑋⊨
∗
𝐺) if for

each finite path 𝜌 = 𝑞
0
𝑞
1
⋅ ⋅ ⋅ 𝑞
𝑛
with (𝑞

𝑖−1
, 𝑞
𝑖
) ∈ 𝐸 (where

1 ≤ 𝑖 ≤ 𝑛) and 𝑞
𝑛
∈ 𝐹 such that 𝑋⊨ant𝜌 ⇒ 𝑋⊨cons𝜌, where

𝑋⊨ant𝜌 denotes 𝑥
𝑖
∈ ant((𝑞

𝑖−1
, 𝑞
𝑖
)) and 𝑋⊨cons𝜌 denotes 𝑥

𝑖
∈

cons((𝑞
𝑖−1
, 𝑞
𝑖
)) for 1 ≤ 𝑖 ≤ 𝑛. An infinite word (or string)

𝑋 = 𝑥
1
𝑥
2
⋅ ⋅ ⋅ ∈ Σ

𝜔 is accepted by 𝐺 (denoted as 𝑋⊨
𝜔
𝐺) if

for all infinite path 𝜌 = 𝑞
0
𝑞
1
⋅ ⋅ ⋅ with (𝑞

𝑖−1
, 𝑞
𝑖
) ∈ 𝐸 (where

𝑖 ≥ 1) and Inf(𝜌) ∩ 𝐹 ̸= 0 such that 𝑋⊨ant𝜌 ⇒ 𝑋⊨cons𝜌. The
finite language 𝐿∗(𝐺) of 𝐺 is 𝐿∗(𝐺) = {𝑋 ∈ Σ

∗
| 𝑋⊨∗𝐺}. The

infinite language 𝐿𝜔(𝐺) of 𝐺 is 𝐿𝜔(𝐺) = {𝑋 ∈ Σ
𝜔
| 𝑋⊨𝜔𝐺}.

Remark 9. In [1], an assertion graph 𝐺 = ⟨𝑄, Σ, 𝐸, 𝑞
0, ant,

cons, 𝐹𝑒⟩ has a set 𝐹𝑒 of acceptance (fair) edges. The final
edge of a finite path must be in 𝐹𝑒 and for an infinite path;
at least one edge in 𝐹𝑒 must appear in the path infinitely
often. This can be transformed to the above definitions by
the following construction. For any 𝑞 ∈ 𝑄, if the incoming
edges In(𝑞) have both acceptance edges and nonacceptance
edges, 𝑞 is substituted with 𝑞

 and 𝑞
 such that In(𝑞) =

In(𝑞) ∩ 𝐹
𝑒
, In(𝑞) = In(𝑞) − In(𝑞); that is, the incoming
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Figure 1: Fair edges to fair states.

edges of 𝑞 are all acceptance edges, the incoming edges of 𝑞
are nonacceptance edges (See Figure 1). The outgoing edges
of 𝑞 and 𝑞

 are the same as the outgoing edges of 𝑞, and
the labeling function ant and cons are the same. All such 𝑞𝑠
are included the acceptance state set 𝐹 in the transformed
assertion graph.

Definition 10. Given an assertion graph 𝐺 = ⟨𝑄, Σ, 𝐸, 𝑞
0
, ant,

cons, 𝐹⟩, if for all 𝑞 ∈ 𝑄, for all 𝑒, 𝑒 ∈ Out(𝑞) and 𝑒 ̸= 𝑒
,

ant(𝑒)∩ant(𝑒) = 0,𝐺 is called a deterministic assertion graph
(DAG). Otherwise, 𝐺 is called a nondeterministic assertion
graph (NAG).

For any assertion graph 𝐺 = ⟨𝑄, Σ, 𝐸, 𝑞0, ant, cons, 𝐹⟩,
we can assume that 𝐺 is a nonrestarting assertion graph
(i.e., In(𝑞

0
) = 0); otherwise, we construct a nonrestarting

assertion graph 𝐺

= ⟨𝑄


, Σ, 𝐸

, 𝑞
0
, ant, cons, 𝐹⟩ from 𝐺:

𝑄

= 𝑄 ∪ {𝑞


} (add a new state 𝑞 to 𝑄), In(𝑞) = {(𝑞, 𝑞


) |

(𝑞, 𝑞
0
) ∈ 𝐸)}, Out(𝑞) = {(𝑞


, 𝑞) | (𝑞

0
, 𝑞) ∈ 𝐸)}, ant((𝑞, 𝑞)) =

ant((𝑞
0
, 𝑞)), cons((𝑞, 𝑞)) = cons((𝑞

0
, 𝑞)), ant((𝑞, 𝑞)) =

ant((𝑞, 𝑞
0
)), cons((𝑞, 𝑞)) = cons((𝑞, 𝑞

0
)). Basically, we copy

the edges and the related labeling functions ant and cons of
𝑞
0
to 𝑞 and delete the incoming edges of 𝑞

0
. The other edges

and labeling functions remain the same.

3. Transformations between GSTE Assertion
Graphs and Finite-State Automata

In this section, we present the transformations between a
GSTE assertion graph and a finite-state automaton. Given
an assertion graph 𝐺, we build a finite-state automaton 𝑀

𝐺

such that 𝐿∗(𝐺) = Σ
∗
− 𝐿
∗
(𝑀
𝐺
) and 𝐿

𝜔
(𝐺) = Σ

𝜔
−

𝐿
𝜔
(𝑀
𝐺
). And if 𝐺 is a deterministic assertion graph, then

𝑀
𝐺
is also a deterministic finite-state automaton. Let𝑀

𝐺
=

⟨𝑄

, Σ, 𝐸

, 𝐿𝐹, 𝑞



0
, 𝐹

⟩:

(1) 𝑄 = (𝑄 − {𝑞
0
}) × {0, 1} ∪ {(𝑞

0
, 0)}, 𝑞

0
= (𝑞
0
, 0);

(2) 𝐸 = {((𝑞1, 𝑘1), (𝑞2, 𝑘2)) | (𝑞1, 𝑞2) ∈ 𝐸; if 𝑘1 = 0,

then 𝑘2 ∈ {0, 1}; if 𝑘1 = 1, then 𝑘2 = 1} (See
Figure 2);

(3) 𝐿𝐹((𝑞
1, 0), (𝑞2, 0)) = ant((𝑞1, 𝑞2)) ∩ cons((𝑞1, 𝑞2)),

𝐿𝐹((𝑞1, 0), (𝑞2, 1)) = ant((𝑞1, 𝑞2)) ∩ ¬cons((𝑞1, 𝑞2)),
𝐿𝐹((𝑞1

, 1), (𝑞
2
, 1)) = ant((𝑞

1
, 𝑞
2
));

(4) 𝐹 = {(𝑞, 1) | 𝑞 ∈ 𝐹}.

Intuitively, 𝑀
𝐺
is constructed to accept all strings (or

words) that are not accepted by 𝐺. Such a string (or word)
satisfies the antecedent of each edge traversed while violating
the consequent of at least of such edge.

q1
q2

(q1, 0)
(q2, 0)

(q1, 1)

(q2, 1)

(q2, 1)

Figure 2: Assertion graph to finite-state automaton.

Theorem 11. If 𝐺 is a DAG, then𝑀𝐺 is a DFA.

Proof. We prove the following two cases.
(i) For any state (𝑞, 1) in 𝑀𝐺 and any two outgoing

edges ((𝑞, 1), (𝑞1, 1)) and ((𝑞, 1), (𝑞2, 1)), 𝐿𝐹(((𝑞, 1), (𝑞1, 1))) ∩
𝐿𝐹(((𝑞, 1), (𝑞2, 1))) = ant((𝑞, 𝑞1))∩ ant((𝑞, 𝑞2)) (the construc-
tion of𝑀𝐺) = 0 (the definition of DAG).

(ii) For any state (𝑞, 0) in𝑀𝐺 and any two outgoing edges
((𝑞, 0), (𝑞1, 𝑘1)) and ((𝑞, 0), (𝑞2, 𝑘2)).

(a) If 𝑞
1
= 𝑞
2
, then 𝑘

1
= 0, 𝑘

2
= 1, 𝐿𝐹(((𝑞, 0), (𝑞

1
, 0))) ∩

𝐿𝐹(((𝑞, 0), (𝑞
1
, 1))) = ant((𝑞, 𝑞

1
)) ∩ cons((𝑞, 𝑞

1
)) ∩

ant((𝑞, 𝑞
1
))∩¬cons((𝑞, 𝑞

1
)) (the construction of𝑀

𝐺
)

= 0.
(b) If 𝑞1

̸= 𝑞
2
, then 𝐿𝐹(((𝑞, 1), (𝑞

1
, 1))) ∩ 𝐿𝐹(((𝑞, 1),

(𝑞2, 1))) ⊆ ant((𝑞, 𝑞1)) ∩ ant((𝑞, 𝑞2)) (the construc-
tion of𝑀𝐺) = 0 (the definition of DAG).

Therefore,𝑀
𝐺
is a DFA.

Theorem 12. 𝐿∗(𝑀
𝐺
) = Σ
∗
− 𝐿
∗
(𝐺).

Proof. First, we show 𝐿
∗
(𝑀
𝐺
) ⊇ Σ
∗
− 𝐿
∗
(𝐺).

Suppose𝑋 = 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
∈ Σ
∗
− 𝐿
∗
(𝐺).

Then there exists a finite path 𝜌 = 𝑞
0
𝑞
1
⋅ ⋅ ⋅ 𝑞
𝑛
in 𝐺 with

(𝑞
𝑖−1
, 𝑞
𝑖
) ∈ 𝐸, 1 ≤ 𝑖 ≤ 𝑛 and 𝑞

𝑛
∈ 𝐹 such that 𝑥

𝑖
∈

ant((𝑞
𝑖−1
, 𝑞
𝑖
)) for 1 ≤ 𝑖 ≤ 𝑛; and ∃𝑙, 1 ≤ 𝑙 ≤ 𝑛, when 1 ≤ ℎ < 𝑙,

𝑥
ℎ
∈ ant((𝑞

𝑖−1
, 𝑞
𝑖
)) ∩ cons((𝑞

𝑖−1
, 𝑞
𝑖
)), 𝑥
𝑙
∈ ant((𝑞

𝑙−1
, 𝑞
𝑙
)) ∩

¬cons((𝑞
𝑖−1
, 𝑞
𝑖
)).

Let a path 𝜌 of𝑀
𝐺
be as follows:

𝜌

= (𝑞
0
, 0) (𝑞

1
, 0) ⋅ ⋅ ⋅ (𝑞

𝑙−0
, 0) (𝑞

𝑙
, 1) ⋅ ⋅ ⋅ (𝑞

𝑛
, 1) . (1)

Then 𝑥
𝑖
∈ 𝐿𝐹((𝑞

𝑖−1
, 𝑘
𝑖−1
), (𝑞
𝑖
, 𝑘i)), where 𝑘𝑖 = 0 if 1 ≤ 𝑖 <

𝑙, 𝑘
𝑖
= 1 if 𝑙 ≤ 𝑖 ≤ 𝑛; and (𝑞

𝑛
, 1) ∈ 𝐹

.
Therefore,𝑋 ∈ 𝐿

∗
(𝑀
𝐺
).

Second, we show 𝐿
∗
(𝑀
𝐺
) ⊆ Σ
∗
− 𝐿
∗
(𝐺).

Suppose𝑋 = 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
∈ 𝐿
∗
(𝑀
𝐺
).

Then there exists a path as follows:

𝜌

= (𝑞
0
, 0) (𝑞

1
, 0) ⋅ ⋅ ⋅ (𝑞

𝑙−0
, 0) (𝑞

𝑙
, 1) ⋅ ⋅ ⋅ (𝑞

𝑛
, 1) , (2)

such that 𝑥𝑖 ∈ 𝐿𝐹((𝑞𝑖−1, 𝑘𝑖−1), (𝑞𝑖, 𝑘𝑖)), where 𝑘𝑖 = 0 if 1 ≤ 𝑖 <

𝑙, 𝑘𝑖 = 1 if 𝑙 ≤ 𝑖 ≤ 𝑛; and (𝑞𝑛, 1) ∈ 𝐹
.

According to the construction of 𝑀𝐺 from 𝐺, we know
that 𝜌 = 𝑞

0
𝑞
1
⋅ ⋅ ⋅ 𝑞
𝑛
is a path of 𝐺; if 1 ≤ 𝑖 < 𝑙,

𝑥
𝑖

∈ 𝐿𝐹((𝑞
𝑖−1
, 𝑘
𝑖−1
), (𝑞
𝑖
, 𝑘
𝑖
)) = 𝐿𝐹((𝑞

𝑖−1
, 0), (𝑞

𝑖
, 0)) =

ant((𝑞
𝑖−1
, 𝑞
𝑖
)) ∩ cons((𝑞

𝑖−1
, 𝑞
𝑖
)) ⊆ ant((𝑞

𝑖−1
, 𝑞
𝑖
)).

𝑥
𝑙
∈ 𝐿𝐹((𝑞

𝑙−1
, 0), (𝑞

𝑙
, 1)) = ant((𝑞

𝑙−1
, 𝑞
𝑙
)) ∩ ¬cons((𝑞

𝑙−1
,

𝑞
𝑙
)), that is, 𝑥

𝑙
∈ ant((𝑞

𝑙−1
, 𝑞
𝑙
)), but 𝑥

𝑙
∉ cons((𝑞

𝑙−1
, 𝑞
𝑙
)).
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If 𝑙 < 𝑖 ≤ 𝑛, 𝑥
𝑖
∈ 𝐿𝐹((𝑞

𝑖−1
, 𝑘
𝑖−1
), (𝑞
𝑖
, 𝑘
𝑖
)) = 𝐿𝐹((𝑞

𝑖−1
,

1), (𝑞
𝑖
, 1)) = ant((𝑞

𝑖−1
, 𝑞
𝑖
)).

Therefore,𝑋 ∉ 𝐿
∗
(𝐺).

Theorem 13. 𝐿𝜔(𝑀
𝐺
) = Σ
𝜔
− 𝐿
𝜔
(𝐺).

Proof. First, we prove 𝐿𝜔(𝑀
𝐺
) ⊇ Σ
𝜔
− 𝐿
𝜔
(𝐺).

Suppose𝑋 = 𝑥
1
𝑥
2
⋅ ⋅ ⋅ ∈ Σ

𝜔
− 𝐿
𝜔
(𝐺).

Then there exists an infinite path 𝜌 = 𝑞
0
𝑞
1
⋅ ⋅ ⋅ in 𝐺 with

(𝑞
𝑖−1
, 𝑞
𝑖
) ∈ 𝐸 and Inf(𝜌) ∩ 𝐹 ̸= 0 such that 𝑥

𝑖
∈ ant((𝑞

𝑖−1
, 𝑞
𝑖
))

for 1 ≤ 𝑖; and ∃𝑙, 1 ≤ 𝑙, 𝑥𝑙 ∉ cons((𝑞𝑙−1, 𝑞𝑙)). Let a path
𝜌
 of 𝑀𝐺 be 𝜌


= (𝑞0, 0)(𝑞1, 0) ⋅ ⋅ ⋅ (𝑞𝑙−1, 0)(𝑞𝑙, 1)(𝑞𝑙+1, 1) ⋅ ⋅ ⋅ .

This path 𝜌
 will visit infinitely often every (𝑞, 1) ∈ 𝐹

 if
𝑞 ∈ Inf(𝜌) ∩ 𝐹. And 𝑥𝑖 ∈ 𝐿𝐹((𝑞𝑖−1, 𝑘𝑖−1), (𝑞𝑖, 𝑘𝑖)), where
𝑘𝑖−1 = 0 if 1 ≤ 𝑖 ≤ 𝑙, 𝑘𝑖 = 1 if 𝑙 < 𝑖.

Thus𝑋 ∈ 𝐿
𝜔
(𝑀𝐺).

Second, we prove 𝐿𝜔(𝑀𝐺) ⊆ Σ
𝜔
− 𝐿
𝜔
(𝐺).

Suppose𝑋 = 𝑥1
𝑥
2
⋅ ⋅ ⋅ ∈ 𝐿

𝜔
(𝑀
𝐺
).

Then there exists an infinite path 𝜌 = (𝑞
0
, 0)(𝑞
1
, 0) ⋅ ⋅ ⋅

(𝑞
𝑙−1
, 0)(𝑞
𝑙
, 1)(𝑞
𝑙+1
, 1) ⋅ ⋅ ⋅ in 𝑀

𝐺
with (𝑞

𝑖−1
, 𝑞
𝑖
) ∈ 𝐸 and

Inf(𝜌) ∩ 𝐹 ̸= 0 such that 𝑥
𝑖
∈ 𝐿𝐹((𝑞

𝑖−1
, 𝑘
𝑖−1
), (𝑞
𝑖
, 𝑘
𝑖
)), where

𝑘
𝑖
= 0 if 1 ≤ 𝑖 < 𝑙, 𝑘

𝑖
= 1 if 𝑙 ≤ 𝑖 ≤ 𝑛.

According to the construction of 𝑀
𝐺
from 𝐺, we know

that 𝜌 = 𝑞
0
𝑞
1
⋅ ⋅ ⋅ is a path of 𝐺, and Inf(𝜌) ∩ 𝐹 ̸= 0;

𝑥
𝑖
∈ ant((𝑞

𝑖−1
, 𝑞
𝑖
)) for 1 ≤ 𝑖, and 𝑥

𝑙
∈ ant((𝑞

𝑙−1
, 𝑞
𝑙
)) ∩

¬cons((𝑞
𝑙−1
, 𝑞
𝑙
)), that is, 𝑥

𝑙
∉ cons((𝑞

𝑙−1
, 𝑞
𝑙
)).

Therefore,𝑋⊭
𝜔
𝐺, that is,𝑋 ∈ Σ

𝜔
− 𝐿
𝜔
(𝐺).

Given a finite-state automaton 𝑀 = ⟨𝑄, Σ, 𝐸, 𝐿𝐹, 𝑞
0
,

𝐹⟩, build an assertion graph 𝐺
𝑀

as 𝐺
𝑀

= ⟨𝑄, Σ, 𝐸, 𝑞
0
, ant,

cons, 𝐹⟩ where ant(𝑒) = 𝐿𝐹(𝑒), cons(𝑒) = 0 for all 𝑒 ∈ 𝐸. This
construction is the same as the construction proposed in [15].

Theorem 14. 𝐿∗(𝐺
𝑀
) = Σ

∗
− 𝐿
∗
(𝑀) and 𝐿𝜔(𝐺

𝑀
) = Σ

𝜔
−

𝐿
𝜔
(𝑀).

Proof. Directly from the construction of 𝐺
𝑀 and the lan-

guage definitions in [15].

Theorem 15. If𝑀 is a DFA, then 𝐺𝑀 is a DAG.

Proof. Directly from the construction of 𝐺
𝑀

and the deter-
ministic definition.

4. Application to GSTE Assertion
Graphs Implication

4.1. Transforming GSTE Assertion Graphs Implication to
Automata Language Containment. The complement relation
between an assertion graph and a finite-state automaton can
be applied to determine the implication relation between
assertion graphs by transforming the GSTE assertion graphs
implication to the finite-state automata language contain-
ment.

Definition 16. Given two assertion graphs 𝐺
1

and 𝐺
2
,

𝐺
1
⇒
∗
𝐺
2
if and only if 𝐿∗(𝐺

1
) ⊆ 𝐿
∗
(𝐺
2
) and 𝐺

1
⇒
𝜔
𝐺
2
if and

only if 𝐿𝜔(𝐺
1
) ⊆ 𝐿
𝜔
(𝐺
2
).

Let 𝑀∗𝑐 be an automaton whose finite language is the
complement of the finite language of an automaton 𝑀; that

is, 𝐿∗(𝑀∗𝑐) = Σ
∗
− 𝐿
∗
(𝑀). Let𝑀𝜔𝑐 be an automaton whose

infinite language is the complement of the infinite language
of an automaton𝑀; that is, 𝐿𝜔(𝑀𝜔𝑐) = Σ𝜔 − 𝐿𝜔(𝑀).

Theorem 17. 𝐺
1
⇒
∗
𝐺
2
iff 𝐿∗((𝑀

𝐺
1

)
∗𝑐
×𝑀
𝐺
2

) = 0.
𝐺
1
⇒
𝜔
𝐺
2
iff 𝐿𝜔((𝑀

𝐺
1

)
𝜔𝑐
×𝑀
𝐺
2

) = 0.

Proof. (𝐺
1
⇒
∗
𝐺
2
) ⇔ 𝐿

∗
(𝐺
1
) ⊆ 𝐿

∗
(𝐺
2
) ⇔ 𝐿

∗
(𝑀
𝐺
1

) ⊇

𝐿
∗
(𝑀
𝐺
2

) ⇔ 𝐿
∗
((𝑀
𝐺
1

)
∗𝑐
×𝑀
𝐺
2

) = 0.
(𝐺
1
⇒
𝜔
𝐺
2
) ⇔ 𝐿

𝜔
(𝐺
1
) ⊆ 𝐿

𝜔
(𝐺
2
) ⇔ 𝐿

𝜔
(𝑀
𝐺
1

) ⊇

𝐿
𝜔
(𝑀
𝐺
2

) ⇔ 𝐿
𝜔
((𝑀
𝐺
1

)
𝜔𝑐
×𝑀
𝐺
2

) = 0.

InGSTE, because of its aggressive abstraction, abstraction
refinement is often necessary [2]. Verifying whether a circuit
𝐶 satisfies an assertion graph 𝐺, 𝐶 ⊨ 𝐺, using the GSTE
engine may produce false negative if 𝐺 is too abstract. Thus,
it is necessary to refine 𝐺 into a refined assertion graph 𝐺ref.
If we can verify 𝐶 ⊨ 𝐺

ref, then we can conclude 𝐶 ⊨ 𝐺. But
how can we guarantee that (𝐶 ⊨ 𝐺

ref
) ⇒ (𝐶 ⊨ 𝐺) if the

assertion graph is complex? We must establish 𝐺
ref

⇒ 𝐺.
We can verify 𝐺ref

⇒ 𝐺 by transforming it to an automata
language containment test usingTheorem 17.

A critical difficulty in checking the language containment,
𝐿(𝑀1) ⊆ 𝐿(𝑀2), is the construction of a complement finite-
state automaton𝑀𝑐

2
of𝑀2. Complementing a nondetermin-

istic automaton with 𝑛 states resulted in an automaton with
2
2
𝑂(𝑛)

[23]. Some optimized complementing constructions
were introduced with 2

𝑂(𝑛 log 𝑛) [16–22]. However, the com-
plexity is still exponential.

Although we can transform deterministic assertion
graphs to deterministic finite-state automata, in many cases,
assertion graphs are nondeterministic. This may cause
state space blowups when checking language containment
between automata corresponding to these assertion graphs.
We observe that in determining the implication relation
between an assertion graph and its refinements constructed
using the refinement strategies in [2], we can transform
the nondeterministic assertion graph 𝐺 to deterministic
assertion graph 𝐺det by adding only one variable without
adding any states and then apply the refinements to 𝐺det. The
requirement of our method is that the refinements applied to
𝐺det will not cause nondeterminism. The refinement strate-
gies in [2] satisfy our requirement.The language containment
of deterministic finite state automata can be checked in
polynomial time [19]. Therefore, the state space blowup
problem can be avoided in determining the implication
relation between a refined assertion graph and an original
assertion graph.

For any given assertion graph 𝐺 = ⟨𝑄, Σ, 𝐸, 𝑞
0
, ant, cons,

𝐹⟩, let 𝐺ref be a refined assertion graph of 𝐺. If 𝐺 is a non-
deterministic assertion graph, we add an additional variable
“det” to constrain the overlapped antecedents of the outgoing
edges of every state in 𝐺 and the resulting assertion graph
is denoted as 𝐺det; that is, 𝐺det = ⟨𝑄, Σ × det, 𝐸, 𝑞

0
, ant ×

det, cons × det, 𝐹⟩. The value domain of “det” is from 1
to the maximal number 𝑛 that we need to distinguish the
overlapped antecedents of the outgoing edges of every state
in the assertion graph 𝐺, denoted as𝐷(det).
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Figure 3: Assertion graph determinization.

Figure 3 illustrates the determinization process: there are
three outgoing edges from state 𝑝: (𝑝, 𝑞

1
), (𝑝, 𝑞

2
), and (𝑝, 𝑞

3
).

Two of these three antecedents ant((𝑝, 𝑞
2
)) = {3, 4} and

ant((𝑝, 𝑞
3
)) = {3, 5} in Figure 3(a) are overlapped. So, it

is a non-deterministic transition. We constrain these two
antecedents by adding a variable “det” with a domain of {1, 2}
and changing ant((𝑝, 𝑞

2
)) to {3, 4}×{det = 1} and ant((𝑝, 𝑞

3
))

to {3, 5} × {det = 2} in Figure 3(b), the determinized
assertion graph 𝐺det. For simplification, the consequents and
the antecedents which are not needed to be constrained will
not be followed by ×det.

The projection of the (finite or infinite) language of
𝐺det is defined as 𝐿

∗

proj(𝐺det) = {𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛 ∈ Σ
∗

|

∃𝑑
𝑖
∈ 𝐷(det), s.t. (𝑥

1
, 𝑑
1
)(𝑥
2
, 𝑑
2
) ⋅ ⋅ ⋅ (𝑥

𝑛
, 𝑑
𝑛
) ∈ 𝐿

∗
(𝐺det)},

𝐿
𝜔

proj(𝐺det) = {𝑥
1
𝑥
2
⋅ ⋅ ⋅ ∈ Σ

𝜔
| ∃𝑑
𝑖
∈ 𝐷(det), s.t. (𝑥

1
, 𝑑
1
)

(𝑥2, 𝑑2) ⋅ ⋅ ⋅ ∈ 𝐿
𝜔
(𝐺det)}.

Lemma 18. 𝐿∗(𝐺) = 𝐿∗proj(𝐺𝑑𝑒𝑡), 𝐿
𝜔
(𝐺) = 𝐿

𝜔

proj(𝐺𝑑𝑒𝑡).

Proof. First, suppose 𝑋 = 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
∈ 𝐿
∗
(𝐺). For any

finite path 𝜌 = 𝑞0𝑞1 ⋅ ⋅ ⋅ 𝑞𝑛 in 𝐺det, it is also a path in 𝐺

according to the construction of 𝐺det (because it does not
change the graph structure of the assertion graph 𝐺). If
𝑋⊨ant𝜌, that is, 𝑥𝑖 ∈ ant((𝑞𝑖−1, 𝑞𝑖)) for 1 ≤ 𝑖 ≤ 𝑛, then
𝑋⊨cons𝜌, namely, 𝑥𝑖 ∈ cons((𝑞𝑖−1, 𝑞𝑖)) for 1 ≤ 𝑖 ≤ 𝑛.
According to the definition of 𝐺det, there exists 𝑑𝑖 ∈ 𝐷(det)
such that ant((𝑞

𝑖−1
, 𝑞
𝑖
)) × 𝑑

𝑖
is the antecedent of the edge

(𝑞
𝑖−1
, 𝑞
𝑖
) in 𝐺det if there is a constraint det = 𝑑

𝑖
for this

antecedent, or a subset of the antecedent of the edge
(𝑞
𝑖−1
, 𝑞
𝑖
) in 𝐺det if there is no constraint for this antecedent.

Therefore, 𝑋det = (𝑥
1
, 𝑑
1
)(𝑥
2
, 𝑑
2
) ⋅ ⋅ ⋅ (𝑥

𝑛
, 𝑑
𝑛
)⊨ant×det𝜌,

and 𝑋det⊨cons×det 𝜌 because there is no constraint for the
consequents. Thus, 𝑋det ∈ 𝐿

∗
(𝐺det). According to the

definition of the projection language of 𝐺det,𝑋 ∈ 𝐿
∗

proj(𝐺det).
Second, suppose that 𝑋 = 𝑥

1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛 ∈ 𝐿
∗

proj(𝐺det).
Then there exists 𝑑

𝑖
∈ 𝐷(det) such that 𝑋det = (𝑥

1
, 𝑑
1
)

(𝑥
2
, 𝑑
2
) ⋅ ⋅ ⋅ (𝑥

𝑛
, 𝑑
𝑛
) ∈ 𝐿
∗
(𝐺det), which implies that if (𝑥

𝑖
, 𝑑
𝑖
) ∈

ant((𝑞
𝑖−1
, 𝑞
𝑖
)) × 𝑑

𝑖
for 1 ≤ 𝑖 ≤ 𝑛, then (𝑥

𝑖
, 𝑑
𝑖
) ∈

cons((𝑞
𝑖−1
, 𝑞
𝑖
))×det. And (𝑥

𝑖
, 𝑑
𝑖
) ∈ ant((𝑞

𝑖−1
, 𝑞
𝑖
))×𝑑
𝑖
implies

𝑥
𝑖
∈ ant((𝑞

𝑖−1
, 𝑞
𝑖
)), (𝑥
𝑖
, 𝑑
𝑖
) ∈ cons((𝑞

𝑖−1
, 𝑞
𝑖
)) × det implies

𝑥
𝑖
∈ cons((𝑞

𝑖−1
, 𝑞
𝑖
)).

Therefore𝑋 ∈ 𝐿
∗
(𝐺).

Combining these two cases, we have 𝐿∗(𝐺) = 𝐿∗proj(𝐺det).
Similarly, 𝐿𝜔(𝐺) = 𝐿𝜔proj(𝐺det) is also true.

Theorem 19. (𝐺𝑟𝑒𝑓
𝑑𝑒𝑡

⇒ 𝐺
𝑑𝑒𝑡
) ⇒ (𝐺

𝑟𝑒𝑓
⇒ 𝐺).

Proof. (𝐺ref
det ⇒ 𝐺det) ⇔ (𝐿(𝐺

ref
det) ⊆ 𝐿(𝐺det)) (definition of

implication).

⇒ (𝐿proj(𝐺
ref
det) ⊆ 𝐿proj(𝐺det)) (definition of projection

language).
⇒ (𝐿(𝐺ref) ⊆ 𝐿(𝐺)) (Lemma 18).
⇒ (𝐺

ref
⇒ 𝐺) (definition of implication).

In the above proof, the language 𝐿(𝐺) can be finite
language 𝐿∗(𝐺) or infinite language 𝐿𝜔(𝐺). Thus,Theorem 19
holds for both finite and infinite languages, respectively.

4.2. Case Study. An FIFO is a common circuit within a
microprocessor design. The design requirements of an FIFO
can be fairly complex due to the variable lengths, different
rates of data throughput, and timing. Therefore, it makes
a good practice to verify the FIFO design against these
requirements. In general, the behavior of an FIFOmust meet
the following requirements: (1) correctness of full and empty
flags, and (2) enqueued data must be dequeued in the correct
order while maintaining uncorrupted data. The FIFO has 0
entry after the reset. If an enqueue only operation occurred,
the total number of entries increases by 1. On the other hand,
if a dequeue only operation occurred, the total number of
entries decreases by 1 when the number of entries is bigger
than 0. The empty flag is set when the number of entries is 0
and the full flag is set when contents reach the depth of the
FIFO.

An assertion graph of a 3-deep FIFO circuit is shown in
Figure 4 without determinization variable det.

The top part of the assertion graph specifies the number
of filled entries. However, it cannot guarantee whether the
enqueued data is corrupted or not. In order to overcome this
situation, an enqueued vector of distinct symbolic constants
is used at an arbitrary time as shown in the bottom portion of
the graph.

The assertion graph shown in Figure 4 without deter-
minization variable det has the potential problem of overap-
proximation. In order to overcome this problem, a refined
assertion graph shown in Figure 5 without determinization
variable det is introduced.

It unfolds the graph at the states where the precision is
lost.

Using the GSTE engine, we can verify the refined asser-
tion graph on the FIFO circuit. To conclude that the original
assertion graph also holds on the circuit, we must establish
that the refined assertion graph implies the original assertion
graph. Since both assertion graphs are non-deterministic, we
first determinize the original assertion graph. A variable “det”
whose domain is {1, 2} is added to determinize the original
assertion graph. We add “det = 1” in the antecedents on the
edges (𝑖-filled, (𝑖 + 1)-filled) and “det = 2” in the antecedents
on the edges (𝑖-filled, 𝑖-ahead), respectively, for 𝑖 = 0, 1, 2.
And We add “det = 1” in the antecedents on the edges
(𝑖-filled, 𝑖-filled) and “det = 2” in the antecedents on the
edges (𝑖-filled, (𝑖 − 1)-ahead), respectively, for 𝑖 = 1, 2. The
determinized assertion graph is shown in Figure 4. We then
refine the assertion graph in Figure 4 by applying the same
refinements that refine the original assertion graph to the
refined assertion graph and get the determinized and refined
assertion graph shown in Figure 5.
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Figure 4: Determinized assertion graph for FIFO.
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!enq & deq/ 
true

deq/ 
true

deq/ 
dout = D[9:0]

!enq & !deq/ 
true

enq & !deq/ 
true

enq & deq/ 
true

enq & !deq/ 
true

!enq & !deq/ 
true

deq/ 
true

!deq/ 
true

deq/ 
dout = D[9:0]

enq & !deq/ 
true

!enq & !deq/ 
true

!deq/ 
true

!deq/ 
true

0 ahead, 1 filled

0 ahead, 2 filled

2 ahead, 3 filled

1 ahead, 3 filled

1 ahead, 2 filled

0 ahead, 3 filled

Figure 5: Determinized and refined assertion graph for FIFO.
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We select COSPAN [24, 25] as themodel checking engine
to perform language containment test. We code the automata
corresponding to the assertion graphs in Figures 4 and 5 in
S/R, the input language of COSPAN, and use COSPAN to
verify that the language of the automaton corresponding to
the assertion graph in Figure 4 is contained in the language
of the assertion graph in Figure 5. COSPAN establishes the
language containment using 0.156 megabytes memory and
0.02CPU seconds on a Pentium IV 2.8GHz computer.

5. Conclusion

In this paper, we have established the complement relation
between GSTE assertion graphs and finite-state automata
with expressiveness of regular languages and 𝜔-regular lan-
guages. We present an algorithm that transforms a GSTE
assertion graph to a finite-state automaton and vice versa.
Using this algorithm, we transform the problem of GSTE
assertion graphs implication to the problem of automata
language containment. We avoid the exponential state
space blowups in checking language containment of non-
deterministic finite-state automata when determining the
implication relation between a nondeterministic assertion
graph and its refinement derived following the refinement
strategies given in [2]. This avoidance is achieved by trans-
forming the implication relation between nondeterministic
assertion graphs to the implication relation between deter-
ministic assertion graphs without adding any states. This
application has been illustrated with a case study for verifying
properties of an FIFO circuit.
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