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Functional validation is an important task in complex embedded system. The formal modeling of PLC system for verification is a
rough task. Good verificationmodel should be faithful and concise. At one hand, themodelmust be consistent with the system at the
other hand, themodelmust have suitable scale because of the state explosion problemof verification.This paper proposes a systemic
method for the construction of verification model. PLC system architecture and PLC features are modeled as components. This is
universal for all PLC applications. We give an automatic translation method for software modeling based on operational semantics.
A small example is demonstrated for our approach.

1. Introduction

As embedded control systems are more and more complex,
the safety of systems plays a critical role for high depend-
ability. A tiny error may cause financial losses or even cost
human lives. Formal methods are an effective way to analyze
and assure the reliability of complex systems. Programmable
logic controller (PLC), a typical control system, is popular
in industry. A PLC controls several processes concurrently.
It receives input signals from sensors, processes them, and
produces control signals.

Model checking has proved to be a powerful automatic
verification technique [1]. It has been successfully applied to
hardware design and communication protocol verification.
In recent years, this technique has been used to verify a
certain type of software and achieved some success. Model
checking process has three main steps. First, the system is
modeled as a Kripke structure. Then, certain properties are
expressed by temporal logic formulas. Model checking algo-
rithm checks if the model satisfies the required properties. If
the property is not satisfied, a counterexample is provided.
The critical precondition of verification is modeling.

The International Electrotechnical Commission (IEC)
published IEC61131 standard [2] for programmable con-
troller. Five PLC program languages defined by IEC are

instruction list (IL), ladder diagram (LD), structured test
(ST), function block diagram (FBD), and sequential function
chart (SFC). Most researches about PLC focus on IL pro-
grams. In [3], Canet et al. translate simple IL program into
SMV input languages manually. The model is one cycle of
the PLC execution, and authors do not consider counters and
integer type. Huuck uses abstract interpretation-based static
analysis to find running errors in [4]. However, the model
is static; only general properties can be checked. Loeis et al.
[5] model the control systems cyclic behavior first and then
IL programs; they are integrated as one model. SMV is the
verification tool. In order to find an automatic translation
to formal specification, mealy automaton [6] and XML [7]
are used as medial format between programs and verification
tool input, but, the program should firstly be rewritten as if-
then-else format. Petri net and timed automata are all used
to model PLC programs. A PLC program translation tool
is given in [8]. It translates IL programs to timed automata
which can be checked by 𝑈𝑝𝑝𝑎𝑎𝑙 [9]. The data types are
restricted to Booleans and donot include function block calls.
Heiner and Menzel define a Petri nets semantics of IL in
[10], but verification phase is not included. In [11, 12], signal
interpreted petri net (SIPN) which extended Petri net with
input and output signals is adopted to model PLC system.
Such extension is powerful for modeling, but Petri net tool
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is not strong enough to analyze SIPN; authors still have
to use SMV. The methods presented above only consider
the software itself. The PLC environment and features of
hardware platform are not mentioned.

This paper presents a method of modelling PLC system
for verification. The common parts of PLC hardware plat-
form are modeled as BIP (Behavior, Interaction, Priority)
[13] components. Function call, timer invoking, and PLC
cyclic mode are formalized by BIP synchronization with
connectors. This part is same for different PLC applications.
We define the operational semantics of PLC instructions.The
PLC software is formalized as a transition system according
to operational semantics. An example is demonstrated for
this modelling procedure. The paper is organized as follows.
Section 2 introduces the BIP concepts and related tools. The
modeling of PLC architecture and PLC features is shown in
Section 3. Section 4 defines the operational semantics of PLC
language and the translation-based method of software. In
Section 5, we conclude the paper.

2. The BIP Framework

The BIP (Behavior, Interaction, Priority) component frame-
work is a formalism supporting rigorous design for het-
erogeneous component-based systems [14]. It allows the
description of systems as the composition of atomic compo-
nents characterized by their behavior and their interfaces. It
supports a system construction methodology based on the
use of two families of composition operators: interactions and
priorities. Components are composed by layered application
of two operators.

In BIP, atomic components are finite-state automata
extended with variables and ports. Variables are used to store
local data. Ports are action names and may be associated
with variables. They are used for interaction with other
components. States denote control locations at which the
components await for interaction. A transition is a step,
labeled by a port, from a control location to another. It
has associated a guard and an action that are, respectively,
a Boolean condition and a computation defined on local
variables. In BIP, data and their transformations are writ-
ten in C. Interactions describe synchronization constrains
between ports of the composed components. Interactions are
two types: rendezvous (strong symmetric synchronization)
and broadcast (weak asymmetric synchronization). Priorities
between interactions are used to restrict nondeterminism
inherent to parallel systems. BIP separates behavioral and
architectural aspects in modelling. Architecture is meaning-
fully defined as the combination of interactions and priority.
Moreover, it presents a discussion about the expressivity of
BIP and related component-based frameworks. It shows that
the combination of interactions and priorities confers BIP a
universal form of expressiveness. Numerous translations are
defined from existing models of computation and domain-
specific language into BIP.

The BIP framework is concretely implemented by the
BIP language and an extensible toolbox [15]. The toolbox
provides front-end tools for editing and parsing of BIP

programs, as well as for generating an intermediate model,
followed by code generation (in C++). Intermediate models
can be subject to various model transformations focusing on
construction of optimizedmodels for, respectively, sequential
[16] and distributed execution [17]. It provides also back-end
tools including runtime for analysis (through simulation) and
efficient execution on particular platforms. Validation of BIP
models can be achieved by using static or runtime validation
techniques. The static validation techniques are provided by
the D-Finder tool [18]. The runtime validation technique of
BIP is based on construction and execution of monitored
systems. Monitors are atomic components that observe the
system state and react by moving to error state where the
safety properties are violated, that is, if an interaction has
been executed or an invalid sequence of interactions has been
executed.

3. Formalization of PLC Features

3.1. PLC System Architecture. This section proposes the
modelling framework for complicated software-hardware
mixed system. The execution of software is highly related to
the hardware platform and the environment, so we should
model hardware platform and the environment. Therefore,
PLC system model includes three parts; the software model,
hardware platform model, and environment model. PLC
hardware platform has the same model and is not related
to application software. For the existing PLC software, the
model can be obtained by automatic translation. Then the
system model can do simulation or verification with the help
of BIP tools. This framework is extendible. We can easily add
more components.

PLC system architecture shown in Figure 1 is composed of
three layers. Software includes all application program orga-
nizations. The software is modeled as separate components.
Main programcan call functions or function blocks. Function
block can call nested function block or nested function.
CAL instruction is modelled as a CallCon connectors. The
call port of calling program component sends signals by
broadcastmechanism. It compares the names of all connected
components with the names of called functions and decides
which one is called. PLC can handle interrupts.The interrupt
handler is modelled as a component. Timer is a separate
function and is modeled as a component. When timer starts,
this component is aroused by call port. This layer describes
the software structure explicitly.

The second layer is the abstractionmodel of the hardware
platform. This layer simulates the features of PLC, that is,
cyclic execution mode and interruption handling.

The bottom layer is environment. In order to make
the system closed and available for verification, this layer
includes the model of controlled devices. Sensors collect
data of environments. This information is written to PLC
at the beginning of every execution cycle through startCyc
port. After the computation of PLC programs, commands are
given to actuators through finishCyc port. Interrupt events
of environment such as communication interrupt, alarm
interrupt, and clock interrupt are modelled as components.
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Figure 1: PLC system architecture.

3.2. Formalization of Cyclical Operation Mode. PLC runs in a
cyclical way of three stages. At the first stage, it scans signals
from the sensors and stores them in the input registers.Then,
the instructions in memory are read out and executed. The
results are stored in the output registers at the second stage.
At last, all the data in the output registers will be output to
actuators.

In view of that operation mode, two kinds of models
can be extracted. One model at a higher level of extraction
ignores the operation details, which is easy to analyze and
verify. The other one considers the cyclical operation mode
through a scheduling component, which displays the read-in,
operation, and read-out of data.

The cyclic scheduler component is shown in Figure 2.
It comprises two states. At the beginning, it transmits from
the initial state idle to the exe state, synchronizing with the
environment and PLC main program through startCyc. The
EXE state indicates the execution of PLC. After a delay of
CycleTime which signifies the cycle time, the component
moves back to the idle state through a synchronization port
finCyc. That is all for a PLC cycle. Such an explicit model
shows the details of the implementation in a cycle. And due
to the lower abstraction, we obtain models of a larger scale.

3.3. Formalization of Interrupt Scheduler. Interrupt is a vital
feature of PLC. If an interrupt happens, the running program
switches to handle it and returns to the original program
when finished. PLC admits kinds of interrupts, such as
external I/O interrupt, communication interrupt, and time
base interrupt. They have different priorities, and the com-
munication interrupt has the top priority. According to the
principle of first-come, first-served, a running interrupt is not
allowed to interrupt for most PLCs. Until the running one
finishes, another interrupt of the highest priority is chosen to
execute from interrupt queue. Since the cycle time of PLC is
short as tens of milliseconds, in general, interrupts are judged
periodically and then get executed.

Figure 3 presents the model of interrupt scheduler
model. It answers the request signals from hardware and
environment. An interrupt (𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡

𝑖
) delivers its name to

the component that dispatches it. The scheduler component

collects all the interrupts in a priority queue and chooses
the high priority one to preempt main program by pre port.
When the component moves to the Rea state, it broadcasts
scheduling of the interrupt handler, which will be executed
by corresponding components in the software model. In that
process, the interrupt scheduler can accept new arrivals of
interrupts and add them into the queue. When finishing that
process, the component transmits to the PRE state through a
port fin. If the queue is empty at that time, it moves back to
the initial state and synchronizes with main program by ret
port. Otherwise, it will continue to handle interrupts.

3.4. Formalization of Function Call. As IEC 61131-3 defines,
program organization units (POU) is composed of program,
function block (FB), and function, which are the minimum
and independent software units in user programs. The PLC
softwares organized by POU have good performance on
modularity. FBmay call functions or other function blocks in
a nested way but not recursive. Different from FB, however,
function cannot do this owing to no static variables and
storage space.

The general pattern of function invoking is presented in
this paragraph. The main program calls functions through
a broadcast port call with parameters of FBid which is the
name of FB component to communicate with the function
arguments which will be valued. As shown in Figure 4, the
called component runs after receiving call signal. When it
comes to the RET instruction at the end, a stop signal will
be sent out through ret port to the program that makes the
call.

3.5. Formalization of Timer. Real time is a significant feature
for embedded system. PLC has strict time constraints as well,
which is implemented by an internal timer. A special signal
tick is introduced to model clock.That definition is similar to
the clock variables in timed automata. Here, tickworks with a
fixed frequency. All the components that concern about time
have such a strong synchronization signal tick.

Three types of timer are included in PLC: TON, TONRs
and TOF. These three timers have equivalent function,
although suitable for different scenarios.Themost commonly
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used TON will be discussed in this paper. In IEC 61131-3, the
TON and sequence chart are illustrated in Figure 5.The input
port IN is enabled, and the input port for integers PT provides
the preset value for the timer. The output 𝑄 denotes whether
the timer reaches the preset value. Current time is measured
by an output ET. When IN becomes true, the timer gets
started. ET will increase as time elapses. When it increases
to PT, 𝑄 keeps true until IN turns to false.

Mader and Wupper [19] have given the equivalent PLC
function block and the timed automatamodel for TON timer
instruction.They used the signal synchronization and shared
data to implement the timer model. BIP language is more
safe because it does not support shared variables. The input
and output of timer is modeled as ports. Preset value is the
parameter of timer component.

PLC-BIP model of timer is shown in Figure 6. Timer
works together with PLC programs. The enabled input
variable is modeled by assigning port set to 1 and reset port
to 0. Event 𝑟𝑒𝑎𝑑𝑄 happening at any state can read the value
of 𝑄. The component is at Idle state initially; when receiving
set signal, it transmits toBusy state and assigns num to 0. State
Busy indicates that the timer has started.When synchronized
with tick, the value of num increases to 1. If the num is larger
than PT, the component transmits to Timeout state and set𝑄
to 1.

4. Translation-Based Modeling of Software
For the existing system, the main program and functional
block in Figure 1 can be achieved by automatic translation.
The main program and functional block are translated to
automatic components. We define the connectors for func-
tion calls. Software models are composed by these automatic
components and connectors. The system model obtained by
this method has kept the topology structure of software. This
section introduces the IL instructions of PLC, defines the
operational semantics of these instructions, and proposes the
translation method and rules.

4.1. IL Instructions. In order to make this method more
common, we choose IL language defined in IEC 61131-3 as
the source code. IEC 61131-3 defines the modifier, function,
and function block. Compared with other PLC languages, IL
is more concise and assembly-like text language. IL language
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supports bool, integer, and float. The (current result) cr
register stores current computing result. Some instructions
are related to the value of cr.

Timer is implemented by hardware. IEC 61131-3 defines
the timer as a system function call. When starting a timer,
the program uses CAL instruction. Except for timer, other
instructions are all real time independent. Our method
models PLC POU as an atomic component. The calling of
interrupt handler is similar to function call.

(i) Bit logic instructions: AND, OR, XOR, and NOT.
(ii) Set and reset instructions: S, R.
(iii) Data load and transfer instructions: LD, ST.
(iv) Logic control instructions: JMP, CAL, and RET.
(v) Integermath instructions: ADD, SUB,MUL,DIV, and

MOD.
(vi) Comparison instructions: GT, GE, EQ, NE, LE, and

LT.

IL instruction can have one operand or none. The
operands of instructions can be variable, constant, label,
or address. Table 1 shows the meaning of common IL
instructions. There are three kinds of variables: 𝐼 is the input
variable, 𝑄 is the output variable, and𝑀 is the local variable.

4.2. The Semantics of IL Instructions. The PLC programming
organization unit P has three types; program (Prog), func-
tion (Fun), and function block (FB). Program configuration
is the program execution environment including all data of
the program.

Definition 1. The configuration of programming organiza-
tion unit P is 𝐶

𝑃
= ⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩:

(i) ID is the name of current execution program,
(ii) PC is the program counter,
(iii) 𝑉 is the set of variables, including cr, cr ∈ 𝑉,
(iv) 𝑃IN is the variables of input port of programP. IfP

has the type of Prog, this port is synchronous with the
cyclic component with 𝑠𝑡𝑎𝑟𝑡𝐶𝑦𝑐 port. IfP is FB type,
this port is synchronous with call port,

(v) 𝑃OUT is the variables of the output port of P. If P
has the type of Prog this port is synchronous with the
cyclic component with port finishCyc. IfP is FB type,
this port is synchronous with ret port.

IL program P is a sequence of instructions 𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑚
,

where 𝑚 ∈ N is the number of P. For any instruction 𝑙
𝑖
,

the operational semantics S⟦𝑙
𝑖
⟧ is a transition system. The

program configuration is the state, and the execution of an IL
instruction causes a state transition fromone configuration to
another configuration. We define the BIP component model
of program as follows.

Definition 2. Transition system is a triple Δ = ⟨𝐶
𝑃
, 𝑇, 𝐶
0

𝑃
⟩,

where

(i) 𝐶
𝑃
is PLC program configuration,

(ii) 𝑇 ⊆ 𝐶
𝑃
× 𝐶
𝑃
is the set of transition relations,

(iii) 𝐶0
𝑃
∈ 𝐶
𝑃
is the initial state.

For the common denotation of all instructions, we add
an IO instruction at the beginning with PC assigning 0. This
instruction is used for synchronization with startCyc port
and call port. It does not have data operation. The initial
configuration is ⟨ID, 0, 𝑉init

, 𝑃
init
IN , 𝑃

init
OUT⟩.

(1) The operational semantics of input instruction
P(0) = IO is defined as follows. If P is Prog type,
the data of port is transmitted. If the type is FB, the
real parameter is passed by ports. “ 󳨃→” denotes the
change of variables.

󳨀→

𝐼 means the data vector of port.
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
𝑠𝑡𝑎𝑟𝑡𝐶𝑦𝑐(P) means combining data vector with
input port of program P, if the type of P is Prog.
Therefore,

S �𝑖𝑜� =
PC󸀠 = 1, 𝑃󸀠IN = 𝑃IN [

󳨀→

𝐼 󳨃󳨀→
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
𝑠𝑡𝑎𝑟𝑡𝐶𝑦𝑐 (P)]

⟨ID, 0, 𝑉, 𝑃IN, 𝑃OUT⟩ 󳨀→ ⟨ID,PC󸀠, 𝑉, 𝑃󸀠IN, 𝑃OUT⟩
.

(1)
IfP’s type is FB, then

𝑆 �𝑖𝑜�

=

PC󸀠 = 1, 𝑃󸀠IN = 𝑃IN [
󳨀→

𝐼 󳨃󳨀→
󳨀󳨀󳨀󳨀󳨀󳨀→
𝑐𝑎𝑙𝑙 (P)]

⟨ID, 0, 𝑉, 𝑃IN, 𝑃OUT⟩ 󳨀→ ⟨ID,PC󸀠, 𝑉, 𝑃󸀠IN, 𝑃OUT⟩
.

(2)

(2) IfP(PC) = AND op, the operational semantics is
S �AND�

=
PC󸀠 = PC + 1, 𝑉󸀠 = 𝑉 [cr 󳨃󳨀→ cr ∧ op]

⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩ 󳨀→ ⟨ID,PC󸀠, 𝑉󸀠, 𝑃IN, 𝑃OUT⟩
.

(3)
This instruction only changes the value of program
counter and cr. Other logical instructions such as
OR, XOR, and NOT have the similar operational
semantics. The type of op is BOOL.

(3) IfP(PC) = 𝑆 op, the operational semantics is
S �𝑆�

=
PC󸀠=PC+1, 𝑉󸀠=𝑉 [if (cr=1) op 󳨃󳨀→1, else op 󳨃󳨀→0]
⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩󳨀→⟨ID,PC󸀠, 𝑉󸀠, 𝑃IN, 𝑃OUT⟩

.

(4)
The value of cr is the execution condition. If cr is 1 the
operand is set to 1; otherwise, operand is set to 0.

(4) If P(PC) = LD op, assign the value of op to register
cr. Therefore,

S �LD�

=
PC󸀠 = PC + 1, 𝑉󸀠 = 𝑉 [cr 󳨃󳨀→ op]

⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩ 󳨀→ ⟨ID,PC󸀠, 𝑉󸀠, 𝑃IN, 𝑃OUT⟩
.

(5)
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Table 1: The meaning of IL instructions.

Instruction Modifier Type Description
AND N,( Variable, constant Logical AND
OR N,( Variable, constant Logical OR
XOR N,( Variable, constant Logical XOR
NOT None Logical NOT
S Variable Set
R Variable Reset
LD N Variable, constant Assign the value of operand to cr
ST N Variable Assign the value of cr to operand
JMP C,N Label Jump to label instruction
CAL C,N Function name Function call
RET C,N None Function return
ADD ( Variable, constant Add operation
SUB ( Variable, constant Subtraction operation
MUL ( Variable, constant Multiply operation
DIV ( Variable, constant Division operation
MOD ( Variable, constant Mode operation
GT ( Variable, constant Compare the result is BOOL

(5) If P(PC) = ADD op, this math instruction assigns
the value of opwith cr and saves it to cr.The semantics
of other math instructions are similar. Therefore,

S �ADD�

=
PC󸀠 = PC + 1, 𝑉󸀠 = 𝑉 [cr 󳨃󳨀→ cr + op]

⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩󳨀→⟨ID,PC󸀠, 𝑉󸀠, 𝑃IN, 𝑃OUT⟩
.

(6)

(6) If P(PC) = GT op, compare instruction compares
the operandwith cr, theBOOL result is saved in register
cr. Therefore,

S �GT�

=
PC󸀠=PC+1, 𝑉󸀠=𝑉 [if (cr>op) cr 󳨃󳨀→1, else cr 󳨃󳨀→0]
⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩ 󳨀→ ⟨ID,PC󸀠, 𝑉󸀠, 𝑃IN, 𝑃OUT⟩

.

(7)

(7) If P(PC) = 𝐽𝑀𝑃𝐶 label and cr is 1, then jump
to instructions with the name of label; otherwise,
execute the next instruction. Therefore,

S �𝐽𝑀𝑃𝐶�

=
if (cr = 1)PC󸀠 = label, else PC󸀠 = PC + 1

⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩󳨀→⟨ID,PC󸀠, 𝑉, 𝑃IN, 𝑃OUT⟩

(8)

(8) If P(PC) = CAL op, here op is the name of called
POU; operand is passed by the first instruction IO.
Therefore,

S �PC�

=
ID󸀠 = op, PC󸀠 = 0

⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩󳨀→⟨ID󸀠,PC󸀠, 𝑉, 𝑃IN, 𝑃OUT⟩
.

(9)

(9) If P(PC) = RET, return instruction gives the result
to calling program through connectors and ports. pre
(PC) is the value of calling program. pre (ID) is the
name of calling program. Therefore,

S �RET�

= (PC󸀠 = 𝑝𝑟𝑒 (PC) + 1, ID󸀠 = 𝑝𝑟𝑒 (ID) ,

𝑃
󸀠

OUT = 𝑃OUT [
󳨀→
𝑂 󳨃󳨀→

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
𝑓𝑖𝑛𝐶𝑦𝑐 (P)])

× (⟨ID,PC, 𝑉, 𝑃IN, 𝑃OUT⟩ 󳨀→ ⟨ID
󸀠
,PC󸀠, 𝑉, 𝑃IN, 𝑃

󸀠

OUT⟩)
−1

.

(10)

4.3. Automatic Translation Rules. The instruction semantics
explains the execution effect of the configuration. We can
extract the translation rule in line with instruction semantics.

Assuming that programP is composed of 𝑛 instructions
then P = {IO, 𝑙

1
, . . . , 𝑙
𝑛
}. The initial state of the translation

system is ⟨ID, 0, 𝑉init
, 𝑃

init
IN , 𝑃

init
OUT⟩. The transition for instruc-

tion 𝑙
𝑖
is 𝐶𝑖
𝑝

𝑒𝑥𝑒(𝑙𝑖)

󳨀󳨀󳨀󳨀→ 𝐶
𝑖+1

𝑃
.

PLC program control instruction will change the struc-
ture of the transition system. We conclude these instructions
into four kinds as shown below. stm stands for one instruction
and code is a segment of instructions.

(1) Basic instructions

𝐶𝑜𝑑𝑒 = (𝑠𝑡𝑚𝑖) , (11)

The statemachine for this kind of instruction is shown
in Figure 7.

(2) Sequence instructions

𝐶𝑜𝑑𝑒 = (
𝑠𝑡𝑚
𝑖

𝑠𝑡𝑚
𝑖+1

) , (12)
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𝑒𝑥𝑒(𝑠𝑡𝑚𝑖)
𝑒𝑛𝑑𝑖𝑏𝑒𝑔𝑖𝑛𝑖

Figure 7: Basic instruction translation rule.

𝑒𝑥𝑒(𝑠𝑡𝑚𝑖) 𝑒𝑥𝑒(𝑠𝑡𝑚𝑖+1)
𝑏𝑒𝑔𝑖𝑛𝑖 𝑒𝑛𝑑𝑖 𝑒𝑛𝑑𝑖+1

Figure 8: Sequence instruction translation rule.

Sequence instructions are two instructions executed
one by one. Figure 8 combines the finishing state of
𝑠𝑡𝑚
𝑖
with the beginning state of 𝑠𝑡𝑚

𝑖+1
.

(3) Branch instruction

𝐶𝑜𝑑𝑒 = (

𝐽𝑀𝑃 (𝐶) 𝑙𝑎𝑏𝑒𝑙

𝑐𝑜𝑑𝑒
1

𝑙𝑎𝑏𝑒𝑙 𝑐𝑜𝑑𝑒
2

) . (13)

Jump instruction is used for branching control. 𝐽𝑀𝑃
instruction is for uncondition jump.The programwill
directly jump to 𝑐𝑜𝑑𝑒

2
. When the value of cr is 1,

JMPC instructionwill jump; otherwise, it executes the
next instruction (see Figure 11). Figure 9models jump
instructions.

(4) Function call instruction

𝐶𝑜𝑑𝑒 = (
𝐶𝐴𝐿 FB name
𝑐𝑜𝑑𝑒
1

) , (14)

In BIP model, CAL instruction is synchronous with
called component through call port. When the called
function finished execution, it returns to the main
program with values through ret port.

While translating according to the rules strictly, the state
space is large. The transition for sequence instruction only
changes the value of local variable and dose not commu-
nicate with other components through ports. For example,

transitions 𝐶𝑖
𝑝

𝑟(𝑙𝑖)

󳨀󳨀󳨀→ 𝐶
𝑖+1

𝑝

𝑟(𝑙𝑖+1)

󳨀󳨀󳨀󳨀→ 𝐶
𝑖+2

𝑝

𝑟(𝑙𝑖+2)

󳨀󳨀󳨀󳨀→ 𝐶
𝑖+3

𝑝
are all

internal transitions. BIP is a high-level modelling language
and expressiveness. Transitions in BIP component always
have communication signals. So when the program segments
only have sequence instructions, we can compress these steps

into one step, that is,𝐶𝑖
𝑝

𝑟(𝑙𝑖);𝑟(𝑙𝑖+1);𝑟(𝑙𝑖+2)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝐶
𝑖+3

𝑝
. One transition has

three assigned operations.
In conclusion, the steps of translation-based modelling

method are as follows.

(1) Translate the program organization units into atomic
components.

(2) Define the type of connectors based on the commu-
nication ports.

(3) Instantiate atomic components and connectors.

𝑏𝑒𝑔𝑖𝑛

𝑒𝑥𝑒(𝐽𝑀𝑃)

== 0

== 1

𝑏𝑒𝑔𝑖𝑛𝑐𝑜𝑑𝑒1 𝑏𝑒𝑔𝑖𝑛𝑐𝑜𝑑𝑒2

𝑏𝑒𝑔𝑖𝑛 𝑏𝑒𝑔𝑖𝑛𝑐𝑜𝑑𝑒1 𝑏𝑒𝑔𝑖𝑛𝑐𝑜𝑑𝑒2

cr

cr

Figure 9: Branch instruction translation rule.

𝑐𝑎𝑙𝑙
𝑤𝑎𝑖𝑡

𝑟𝑒𝑡

𝑏𝑒𝑔𝑖𝑛𝑐𝑜𝑑𝑒

𝑏𝑒𝑔𝑖𝑛

Figure 10: Function call instruction translation rule.

(4) Compose software model, platform model, and envi-
ronment model into a compound component (see
Figure 10).

Here is an example demonstrating the translation-based
modellingmethod. Figure 12 is the IL program for computing
the square root. Figure 2 is the corresponding formal models.
This component has two ports: calling port call and returning
port call. Port call binds the input data 𝑥, and port ret binds
the square root of 𝑥. The segments without jump instruction
and call instruction can be compressed into one transition.
This method reduces the scale of model.

5. Conclusion

Computer-aided verification is an important task in complex
embedded system. The formal modelling of PLC system for
verification is a rough task. At one hand, the model must be
faithful with the system; at the other hand, the model must
have suitable scale because of the state explosion problem of
verification. This paper has proposed a systemic method for
the construction of verification model. PLC system architec-
ture and PLC features have been modelled as components.
This is universal for all PLC applications. The operational
semantics of PLC instructions have been formally defined.
We have given an automatic translation method for software
modelling based on operational semantics. The automatic
translation method ensures that the model is consistent with
the source code. A small example has been demonstrated for
our approach.
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x: INT;

result:INT;

VAR
V:INT;
vsqr:INT;

LD
ST

start:
ADD
ST
MUL
ST
LD
GT
JMPC
LD
EQ
JMPC
LD
SUB
ST
JMP

equal:
ST

end:

VAR INPUT

END VAR

END VAR

END VAR

VAR OUTPUT

V
V

V
V

0

1

1

V

V

vsqr

vsqr

vsqr
x

x
start

equal

result

result
LD

RET

LD

Figure 11: IL program.

Data int  result

Data int  vsqr

𝑐𝑎𝑙𝑙

𝑉 := 0

cr == 1

cr == 1

cr == 0

cr == 0

result = 𝑉 − 1

result = 𝑉

𝑟𝑒𝑡

cr := (𝑥 == vsqr?)

cr := (𝑥 > vsqr?)
𝑐𝑎𝑙𝑙(𝑥)

𝑟𝑒𝑡(result)

Data int 𝑥

Data int V

vsqr:= 𝑉 ∗ (𝑉 + 1)

Figure 12: Program model.
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