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Based on characteristics of the nonlife joint-stock insurance company, this paper presents a compound binomial risk model that
randomizes the premium incomeonunit time and sets the threshold𝑥 for paying dividends to shareholders. In thismodel, the insur-
ance company obtains the insurance policy in unit time with probability 𝑝

0
and pays dividends to shareholders with probability 𝑝

1

when the surplus is no less than𝑥.We thenderive the recursive formulas of the expected discounted penalty function and the asymp-
totic estimate for it. And we will derive the recursive formulas and asymptotic estimates for the ruin probability and the distribution
function of the deficit at ruin. The numerical examples have been shown to illustrate the accuracy of the asymptotic estimations.

1. Introduction

The compound binomial risk model is one of the classical
actuarial models that have been studied extensively. The
classic literatures about the compound risk model primarily
include [1–9]. With the emergence and development of divi-
dend insurance, compoundbinomial riskmodels considering
the case of paying dividends to policyholder are attracting
more and more attention of actuarial scholars; see [10–14].
Reference [10] builds the compound binomial risk model
with randomly dividends payment and derives the ruin pro-
blem by recursive algorithm for cases where the company
pays dividends to its policyholders with a certain probability.
Reference [11] obtains and solves two defective renewal equa-
tions for the Gerber-Shiu penalty function under the com-
pound binomial model proposed in [10]. Reference [12] gen-
eralizes the model of [10] and derives the discounted penalty
function under the compound binomial model with a mul-
tithreshold dividend structure and randomized dividend
payments. Considering the fact that the joint-stock company
may pay dividends to the policyholders and shareholders,
[13] builds the compound binomial risk model with random
dividends payment to the policyholders and shareholders
and studies the ruin problem with the model. furthermore,
[14] derives the arbitrary moments of discounted dividend

payments under the compound binomial risk model with
interest on the surplus and periodically paying dividend.

The previously mentioned models are compound bino-
mial risk models with a constant premium rate suited for
depicting the surplus of the life insurance companies which
collect installment premiums. However, nonlife insurance
companies (e.g., property insurance companies) charge pre-
miums immediately, and insurance policies are obtained ran-
domly in unit time.Thus the model with a constant premium
rate cannot reasonably describe the surplus of the nonlife
insurance companies. Moreover, joint-stock nonlife insur-
ance companies need to pay dividends to the shareholders
randomly (see [10]). However, these characteristics have not
been considered in [10] together.Thus, [10] cannot be suitable
for describing the surplus of the joint-stock nonlife insurance
companies. In order to address the deficiencies of the models
in [10], a compound binomial risk model has been developed
with random premiums and dividends payment to share-
holders, and it derives the recursive formulas and asymptotic
estimates of the ruin probability and the distribution of the
deficit at ruin.

This paper is organized as follows. In Section 2, we build
the compound binomial risk model with randomly charging
premiums and paying dividends to shareholders. In Section
3, we derive the recursive formulas of discounted penalty
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function. In Section 4, we derive the asymptotic estimates
for the discounted penalty function. In Section 5, we obtain
recursive formulas, and asymptotic estimates of the ruin
probability and the distribution function of deficit at ruin are
obtained. Finally, the conclusion is shown in Section 6.

2. The Model and Preliminaries

Consider the compound binomial model with randomized
decisions on paying dividends, which is described by

𝑈 (𝑡) = 𝑢 + 𝑡 − 𝑆 (𝑡) − 𝐷 (𝑡) , 𝑡 = 1, 2, . . . , (1)

with the initial surplus of the insurance 𝑢 (≥0). 𝑆
𝑡
is the

aggregate claim up to time 𝑡; that is,

𝑆 (𝑡) =

𝑡

∑

𝑘=1

𝜃
𝑘
𝑋
𝑘
, 𝑡 = 1, 2, . . . , (2)

where 𝜃
𝑡
denotes whether the claim occurs or not in (𝑡 − 1, 𝑡];

the event in which the claim occurs is denoted by 𝜃
𝑡+1

= 1;
the event in which no claim occurs is denoted by 𝜃

𝑡+1
= 0.

The probability of a claim is 𝑝 and the probability of no claim
is 𝑞 = 1 − 𝑝 in any period (𝑡, 𝑡 + 1]. 𝜃 = {𝜃

𝑡
, 𝑡 = 1, 2, . . .} is

independent and identically distributed random series. 𝑋 =

{𝑋
𝑡
, 𝑡 = 1, 2, . . .} is independent and identically distributed as

𝐹 = {𝑝(𝑘) = Pr(𝑋 = 𝑘); 𝑘 = 1, 2, . . .}. 𝐷(𝑡) is the aggregate
dividends payment; that is,

𝐷 (𝑡) =

𝑡

∑

𝑘=1

𝜖
𝑘
𝐼 (𝑈 (𝑘 − 1) ≥ 𝑥) , 𝑡 = 1, 2, . . . , (3)

where 𝑥 (>0) is the threshold such that the insurance
company may pay dividends to the shareholders, and 𝐼(𝐵) is
the indicator function of a set𝐵. 𝜖

𝑡
denotes whether dividend

is paid or not in (𝑡 − 1, 𝑡]. When the surplus is no less
than 𝑥, the company pays one dividend to the shareholders
with probability 𝑝

1
(denoted by 𝜖

𝑡
= 1) and not with the

probability 𝑞
1

= 1 − 𝑝
1
(denoted by 𝜖

𝑡
= 0); 𝜖 = {𝜖

𝑡
, 𝑡 =

1, 2, . . .} is independent and identically distributed as 𝐵(𝑝
1
)

(0 < 𝑝
1
< 1).

According to the feature of the variety of the surplus in
joint-stock nonlife insurance companies, we further assume
that premium is charged randomly in unit period (𝑡 − 1, 𝑡].
Then the aggregate premium is

𝑀(𝑡) =

𝑡

∑

𝑘=1

𝐼
𝑘
, 𝑡 = 1, 2, . . . , (4)

where 𝐼
𝑡
is variable with distribution 𝐵(𝑝

0
) (0 < 𝑝

0
≤ 1),

𝑞
0

= 1 − 𝑝
0
, and denotes obtaining an insurance policy by

𝐼
𝑡
= 1 in (𝑡−1, 𝑡], as well as denotes not obtaining an insurance

policy by 𝐼
𝑡

= 0. 𝐼 = {𝐼
𝑡
, 𝑡 = 1, 2, . . .} is independent

and identically distributed. Furthermore, the random series
𝜃,𝑋, 𝜖, 𝐼 are assumed to be mutually independent. Then, the
surplus of the nonlife insurance joint-stock company is

𝑈 (0) = 𝑢, (5)

𝑈 (𝑡) = 𝑢 + 𝑀 (𝑡) − 𝑆 (𝑡) − 𝐷 (𝑡) , 𝑡 = 1, 2, . . . . (6)

The model is called as the compound binomial risk model
with randompremiums anddividends payment to sharehold-
ers.

Remark. (1) Model (5) is the general form of the model in [10]
and is the model in [10] if 𝑝

0
= 1. And also, model (5) can be

regarded as general form of the classic risk model and exactly
the classic risk model if 𝑝

0
= 1, 𝑝

1
= 0.

(2) In this model, the initial time 𝑡 = 0 is some time in the
past at which point we begin studying the surplus of the joint-
stock nonlife insurance company, but not the time when the
company is created.

Define ruin time with 𝑇 = inf{𝑡 ≥ 0 | 𝑈(𝑡) < 0}. The
ultimate ruin probability is defined by 𝜓(𝑢) = Pr(𝑇 < +∞ |

𝑈(0) = 𝑢). Define the (expected discounted) penalty function
by

𝜙
𝑟
(𝑢) = 𝐸 [𝑓 (𝑈

𝑇−1
,
󵄨
󵄨
󵄨
󵄨
𝑈
𝑇

󵄨
󵄨
󵄨
󵄨
) 𝐼 (𝑇 < +∞) 𝑟

−𝑇
| 𝑈 (0) = 𝑢] ,

(7)

where 𝑓(𝑥, 𝑦) (𝑥 ≥ 0,𝑦 ≥ 0) is the non-negative bounded
function, 0 < 𝑟 ≤ 1. In this paper, the fact that∑−1

𝑘=0
𝑚
𝑘
= 0 is

adopted.
Let 𝑃(𝑛) = ∑

𝑛

𝑘=1
𝑝(𝑘), 𝑃(𝑛) = 1−𝑃(𝑛). We always assume

that 𝜇 = ∑
+∞

𝑘=1
𝑘𝑝(𝑘) = ∑

+∞

𝑘=0
𝑃(𝑛) < ∞, and the 𝐸[𝐼

𝑘
−𝜃
𝑘
𝑋
𝑘
−

𝜖
𝑘
] = 𝑝
0
− 𝑝𝜇 − 𝑝

1
> 0, which leads to the positive security

loading. Denote that the security loading 𝛿 : 𝛿 = (𝑝
0
− 𝑝𝜇 −

𝑝
1
)/𝑝𝜇 > 0. Let 𝜙(𝑢) = 𝜙

1
(𝑢).

3. The Recursive Formulas of
the Penalty Function

Theorem 1. Let 𝐽(𝑥) = 𝑞
0
𝑝
1
𝑝(𝑥) + (𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
)𝑝(𝑥 + 1) +

𝑝
0
𝑞
1
𝑝(𝑥 + 2), 𝐽(𝑥) = 𝑞

0
𝑝
1
𝑃(𝑥) + (𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
)𝑃(𝑥 + 1) +

𝑝
0
𝑞
1
𝑃(𝑥 = 2), 𝑇(𝑥) = 𝑝

0
𝑝(𝑥 + 1) + 𝑞

0
𝑝(𝑥), 𝑇(𝑥) = 𝑝

0
𝑃(𝑥 +

1) + 𝑞
0
𝑃(𝑥). Then

(1) 𝜙(0), 𝜙(1), . . . , 𝜙(𝑥) satisfy the following linear equa-
tions:

𝑝
0
𝑞𝜙 (0) − 𝑝

1
𝜙 (𝑥 − 1) = 𝛼, (8)

𝑝
0
𝑞𝜙 (𝑢 + 1) + (𝑞𝑞

0
+ 𝑝𝑝
0
𝑝 (1) − 1) 𝜙 (𝑢)

+ 𝑝

𝑢−1

∑

𝑘=0

𝜙 (𝑘) 𝑇 (𝑢 − 𝑘) = 𝛽, 𝑢 = 0, 1, 2, . . . , 𝑥 − 1,

(9)

where

𝛼 = 𝑝𝑞
1

𝑥−1

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖)

+ 𝑝𝑝
1

𝑥−2

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖)
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+ 𝑝

+∞

∑

𝑘=𝑥

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖 − 1) ,

𝛽 = −𝑝

∞

∑

𝑘=𝑢+1

𝑓 (𝑘, 𝑘 − 𝑢) 𝐽 (𝑘) ;

(10)

(2) for 𝑢 ≥ 𝑥, the penalty functions 𝜙(𝑢) satisfy

𝜙 (𝑢 + 1) =

1 − 𝑞 (𝑞
0
𝑞
1
+ 𝑝
0
𝑝
1
)

𝑞𝑝
0
𝑞
1

𝜙 (𝑢) −

𝑞
0
𝑝
1

𝑝
0
𝑞
1

𝜙 (𝑢 − 1)

−

𝑝

𝑞𝑝
0
𝑞
1

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 𝑘 − 1)

−

𝑝

𝑞𝑝
0
𝑞
1

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝐽 (𝑘 − 1) ,

(11)

𝜙 (𝑢 + 1) =

𝑞
0
𝑝
1

𝑝
0
𝑞
1

𝜙 (𝑢) +

𝑝

𝑞𝑝
0
𝑞
1

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑥 − 𝑘 − 1)

+

𝑝

𝑞𝑝
0
𝑞
1

+∞

∑

𝑘=𝑢+1

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖 − 1) .

(12)

Proof. Considering the insurance policy and dividend and
claim number in the first time period (0, 1], there are twelve
cases as follows:

(1) no insurance policy is obtained, no claim occurs, and
no dividend is paid in (0, 1];

(2) an insurance policy is obtained, no claim occurs, and
no dividend is paid in (0, 1];

(3) no insurance policy is obtained, a claim occurs, no
dividend is paid, and 𝑈(1) ≥ 0 in (0, 1];

(4) an insurance policy is obtained, a claim occurs, no
dividend is paid, and 𝑈(1) ≥ 0 in (0, 1];

(5) no insurance policy is obtained, a claim occurs, no
dividend is paid, and 𝑈(1) < 0 in (0, 1];

(6) an insurance policy is obtained, a claim occurs, no
dividend is paid, and 𝑈(1) < 0 in (0, 1];

(7) no insurance policy is obtained, no claim occurs, and
a dividend is paid in (0, 1] (if 𝑈(0) < 𝑥, the case does
not exist);

(8) an insurance policy is obtained, no claim occurs, and
a dividend is paid in (0, 1] (if 𝑈(0) < 𝑥, the case does
not exist);

(9) no insurance policy is obtained, a claim occurs, and a
dividend is paid in (0, 1] (if 𝑈(0) < 𝑥, the case does
not exist);

(10) an insurance policy is obtained, a claim occurs, a
dividend is paid, and 𝑈(1) ≥ 0 in (0, 1] (if 𝑈(0) < 𝑥,
the case does not exist);

(11) no insurance policy is obtained, a claim occurs, a
dividend is paid, and 𝑈(1) ≥ 0 in (0, 1] (if 𝑈(0) < 𝑥,
the case does not exist);

(12) an insurance policy is obtained, a claim occurs, a
dividend is paid, and 𝑈(1) < 0 in (0, 1] (if 𝑈(0) < 𝑥,
the case does not exist).

Using the total probability formula, when 0 ≤ 𝑢 < 𝑥,

𝜙 (𝑢) = 𝑞
0
𝑞𝜙 (𝑢) + 𝑝

0
𝑞𝜙 (𝑢 + 1) +

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝑇 (𝑢 − 𝑘)

+ 𝑝

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝑇 (𝑘) .

(13)

Equation (13) is equivalent to (9).
When 𝑢 ≥ 𝑥,

𝜙 (𝑢) = 𝑞 [𝑞
0
𝑝
1
𝜙 (𝑢 − 1) + (𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
) 𝜙 (𝑢)

+𝑝
0
𝑞
1
𝜙 (𝑢 + 1)] + 𝑝

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 𝑘 − 1)

+ 𝑝

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝐽 (𝑘 − 1) .

(14)

Equation (11) comes from (14). Equation (14) is equivalent to

[1 − 𝑞 (𝑞
0
𝑞
1
+ 𝑝
0
𝑝
1
)] 𝜙 (𝑢) = 𝑞𝑞

0
𝑝
1
𝜙 (𝑢 − 1)

+ 𝑞𝑝
0
𝑞
1
𝜙 (𝑢 + 1)

+ 𝑝

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 𝑘 − 1)

+ 𝑝

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝐽 (𝑘 − 1) .

(15)

Subtracting 𝑞(𝑞
0
𝑝
1
+ 𝑝
0
𝑞
1
)𝜙(𝑢) from (15), we obtain

𝑝𝜙 (𝑢) = 𝑞𝑞
0
𝑝
1
(𝜙 (𝑢 − 1) − 𝜙 (𝑢))

+ 𝑞𝑝
0
𝑞
1
(𝜙 (𝑢 + 1) − 𝜙 (𝑢))

+ 𝑝

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 𝑘 − 1)

+ 𝑝

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝐽 (𝑘 − 1) .

(16)

When 𝑡 ≥ 𝑥, summing (16) over 𝑢 from 𝑥 to 𝑡 yields

𝑝

𝑡

∑

𝑢=𝑥

𝜙 (𝑢) = 𝑞𝑞
0
𝑝
1
(𝜙 (𝑥 − 1) − 𝜙 (𝑡))

+ 𝑞𝑝
0
𝑞
1
(𝜙 (𝑡 + 1) − 𝜙 (𝑥))
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+ 𝑝

𝑡

∑

𝑢=𝑥

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 𝑘 − 1)

+ 𝑝

𝑡

∑

𝑢=𝑥

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝐽 (𝑘 − 1) .

(17)

Interchanging the summing order of the third term in the
right-hand side of (17), we get

𝑝

𝑡

∑

𝑢=𝑥

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 𝑘 − 1)

= 𝑝

𝑡

∑

𝑘=0

𝜙 (𝑘) (1 − 𝐽 (𝑡 − 𝑘 − 1))

− 𝑝

𝑥−1

∑

𝑘=0

𝜙 (𝑘) (1 − 𝐽 (𝑥 − 𝑘 − 2)) .

(18)

Adding (18) to (17), we obtain

𝑞𝑞
0
𝑝
1
(𝜙 (𝑥 − 1) − 𝜙 (𝑡)) + 𝑞𝑝

0
𝑞
1
(𝜙 (𝑡 + 1) − 𝜙 (𝑥))

= 𝑝

𝑡

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑡 − 𝑘 − 1) − 𝑝

𝑥−1

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑥 − 𝑘 − 2)

− 𝑝

𝑡

∑

𝑢=𝑥

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝐽 (𝑘 − 1) .

(19)

The security loading 𝛿 > 0 leads to lim
𝑢→+∞

𝜓(𝑢) = 0.
𝑓(𝑥, 𝑦) is bounded function, 𝜙(𝑢) ≤ 𝜓(𝑢)‖𝑓‖, where ‖𝑓‖ =

sup{𝑓(𝑥, 𝑦) | 𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁}. Therefore, lim
𝑢→+∞

𝜙(𝑢) = 0.
By the Dominated ConvergenceTheorem, we can obtain

𝑝

𝑡

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑡 − 𝑘 − 1)

≤ 𝑝

𝑡+1

∑

𝑘=1

𝜙 (𝑡 + 1 − 𝑘) 𝐽 (𝑘 − 2)

≤ 𝑝

∞

∑

𝑘=1

𝜙 (𝑡 + 1 − 𝑘) 𝐽 (𝑘 − 2) 󳨀→ 0 (𝑡 󳨀→ +∞) .

(20)

Let 𝑡 → +∞ in (19), and we get

𝑞𝑞
0
𝑝
1
𝜙 (𝑥 − 1) − 𝑞𝑝

0
𝑞
1
𝜙 (𝑥)

= −𝑝

𝑥−1

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑥 − 𝑘 − 2)

− 𝑝

+∞

∑

𝑢=𝑥

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝐽 (𝑘 − 1) .

(21)

Subtracting (21) from (19)

− 𝑞𝑞
0
𝑝
1
𝜙 (𝑡) + 𝑞𝑝

0
𝑞
1
𝜙 (𝑡 + 1)

= 𝑝

𝑡

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑥 − 𝑘 − 1)

+ 𝑝

+∞

∑

𝑘=𝑡+1

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖 − 1) .

(22)

Equation (12) is equivalent to (22).
Subtracting𝑝

0
𝑞𝜙(𝑢+1) from both sides of (13), we obtain

𝑝𝜙 (𝑢) = 𝑝
0
𝑞 (𝜙 (𝑢 + 1) − 𝜙 (𝑢)) + 𝑝

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝑇 (𝑢 − 𝑘)

+ 𝑝

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝑇 (𝑘) .

(23)

When 𝑥 ≥ 1, summing (23) over 𝑢 from 0 to 𝑥− 1, we get

𝑝

𝑥−1

∑

𝑢=0

𝜙 (𝑢) = 𝑝
0
𝑞 (𝜙 (𝑥) − 𝜙 (0)) + 𝑝

𝑥−1

∑

𝑢=0

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝑇 (𝑢 − 𝑘)

+ 𝑝

𝑥−1

∑

𝑢=0

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝑇 (𝑘) .

(24)

Interchanging the summation order of the second term on
the right-hand side of (24), (24) is equivalent to

𝑝
0
𝑞 (𝜙 (𝑥) − 𝜙 (0)) = 𝑝

𝑥−1

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑥 − 1 − 𝑘)

− 𝑝

𝑥−1

∑

𝑢=0

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝑇 (𝑘) .

(25)

Replacing 𝑥 by 𝑥 − 1 and adding 𝑝𝜙(𝑥 − 1) to both sides of
(25), we yield

𝑝
0
𝑞 (𝜙 (𝑥) − 𝜙 (0)) + 𝑝𝜙 (𝑥 − 1)

= 𝑝

𝑥−1

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑥 − 1 − 𝑘)

− 𝑝

𝑥−2

∑

𝑢=0

+∞

∑

𝑘=𝑢+1

𝑓 (𝑢, 𝑘 − 𝑢) 𝐽 (𝑘) .

(26)

From 𝑞
1
× (25) + 𝑝

1
× (26), we obtain

𝑞𝑝
0
𝑞
1
𝜙 (𝑥) + (𝑞𝑝

0
𝑝
1
+ 𝑝𝑝
1
) 𝜙 (𝑥 − 1) − 𝑝

0
𝑞𝜙 (0)

= 𝑝

𝑥−1

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑡 − 𝑘 − 2) − 𝑝𝑞
1

𝑥−1

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖)

− 𝑝𝑝
1

𝑥−2

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖) .

(27)

Equation (27)minus (21) is (9).The theoremhas been proved.
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According to Theorem 1, 𝜙(0), 𝜙(1), . . . , 𝜙(𝑥 − 1) can be
obtained by solving the linear equations (8) and (9) when
𝑥 ≥ 1. And we can obtain 𝜙(𝑥 + 1), 𝜙(𝑥 + 2), . . . by (11). The
following problem that needs to be solved is whether there is
a unique solution to the set of linear equations (8) and (9).

Definition 2. Assume that the matrix 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶
𝑛×𝑛, and it

satisfies
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑖

󵄨
󵄨
󵄨
󵄨
> ∑

𝑗 ̸= 𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
. (28)

Then 𝐴 is called a (row) strictly diagonally dominant matrix.

Lemma 3. If 𝐴 is a strictly diagonally dominant matrix, then
𝐴 is a nonsingular matrix.

Proof. For the proof, see [6].

Theorem 4. Under the assumption that the security loading
𝛿 > 0, the set of linear equations (8) and (9) have a unique
solution.

Proof. Let 𝜙 = (𝜙(0), 𝜙(1), 𝜙(2), . . . , 𝜙(𝑥)), Δ = (𝛼, 𝛽(0),

𝛽(1), 𝛽(2), . . . , 𝛽(𝑥)), 𝜒 = 𝑞𝑞
0
+𝑝𝑝
0
𝑝(1)−1, 𝜒󸀠 = 𝑝𝑝

0
𝑝(1)−𝑝,

𝐵 =

(

(

(

(

(

𝑝
0
𝑞 0 0 0 ⋅ ⋅ ⋅ 0 −𝑝

1
0

𝜒 𝑝
0
𝑞 0 0 ⋅ ⋅ ⋅ 0 0 0

𝑝𝑇 (1) 𝜒 𝑝
0
𝑞 0 ⋅ ⋅ ⋅ 0 0 0

𝑝𝑇 (2) 𝑝𝑇 (1) 𝜒 𝑝
0
𝑞 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑝𝑇 (𝑥 − 1) 𝑝𝑇 (𝑥 − 2) 𝑝𝑇 (𝑥 − 3) 𝑝𝑇 (𝑥 − 4) ⋅ ⋅ ⋅ 𝑝𝑇 (1) 𝜒 𝑝
0
𝑞

)

)

)

)

)

; (29)

then, the set of linear equations (8) and (9) can be rewritten
as

𝐵𝜙 = Δ. (30)

The coefficient matrix 𝐵 will be carried out by a series of
elementary row operations as follows: the (𝑥 + 1) row is
replaced by itself plus the first 𝑥 rows; the 𝑥 row is replaced
by itself plus the first 𝑥 − 1 rows, and so on; the second row is
replaced by itself plus the first row. The matrix 𝐵 is changed
into

(

(

(

(

(

(

(

(

(

𝑝
0
𝑞 0 0 0 ⋅ ⋅ ⋅ 0 0 −𝑝

1
0

𝜒
󸀠

𝑝
0
𝑞 0 0 ⋅ ⋅ ⋅ 0 0 −𝑝

1
0

𝑝𝑇 (1) 𝜒
󸀠

𝑝
0
𝑞 0 ⋅ ⋅ ⋅ 0 0 −𝑝

1
0

𝑝𝑇 (2) 𝑝𝑇 (1) 𝜒
󸀠

𝑝
0
𝑞 ⋅ ⋅ ⋅ 0 0 −𝑝

1
0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑝𝑇 (𝑥 − 2) 𝑝𝑇 (𝑥 − 3) 𝑝𝑇 (𝑥 − 4) 𝑝𝑇 (𝑥 − 5) ⋅ ⋅ ⋅ 𝑝𝑇 (1) 𝜒
󸀠

𝑝
0
𝑞 − 𝑝
1

0

𝑝𝑇 (𝑥 − 1) 𝑝𝑇 (𝑥 − 2) 𝑝𝑇 (𝑥 − 3) 𝑝𝑇 (𝑥 − 4) ⋅ ⋅ ⋅ 𝑝𝑇 (2) 𝑝𝑇 (1) 𝜒
󸀠
− 𝑝
1

𝑝
0
𝑞

)

)

)

)

)

)

)

)

)

. (31)

For the first row, because 𝛿 > 0 and 𝜇 = ∑
+∞

𝑛=0
𝑃(𝑛) > 1,

𝑝
0
𝑞 − 𝑝
1
= 𝑝
0
(1 − 𝑝) − 𝑝

1
> 𝑝
0
− 𝑝
1
− 𝑝𝜇 > 0. (32)

For the second row, because 𝑞
0
𝑞 + 𝑝𝑝

0
𝑝(1) − 1 < 0, then

𝑝
0
𝑞 −

󵄨
󵄨
󵄨
󵄨
󵄨
𝜒
󸀠󵄨󵄨
󵄨
󵄨
󵄨
− 𝑝
1
= 𝑝
0
− 𝑝𝑝
0
𝑃 (1) − 𝑝 − 𝑝

1

> 𝑝
0
− 𝑝 (𝑃 (1) + 𝑃 (0)) − 𝑝

1

> 𝑝
0
− 𝑝𝜇 − 𝑝

1
> 0.

(33)

For the 𝑖 row (2 < 𝑖 ≤ 𝑥 − 1),

𝑝
0
𝑞 − 𝑝

𝑖−2

∑

𝑘=1

𝑇 (𝑘) + 𝑝𝑝
0
𝑝 (1) − 𝑝 − 𝑝

1

= 𝑝
0
− 𝑝𝑝
0

𝑖−1

∑

𝑘=1

𝑃 (𝑘) − 𝑝𝑞
0

𝑖−2

∑

𝑘=1

𝑃 (𝑘) − 𝑝 − 𝑝
0

≥ 𝑝
0
− 𝑝𝑝
0
(𝜇 − 1) − 𝑝𝑞

0
(𝜇 − 1) − 𝑝 − 𝑝

0

= 𝑝
0
− 𝑝𝜇 − 𝑝

1
> 0.

(34)
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For the 𝑥 row, owing to 𝑝0𝑞 − 𝑝
1
= 𝑝
0
− 𝑝
1
− 𝑝𝑝
0
> 0,

𝑝
0
𝑞 − 𝑝
1
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜒
󸀠󵄨󵄨
󵄨
󵄨
󵄨
− 𝑝

𝑥−2

∑

𝑘=1

𝑇 (𝑘)

= 𝑝
0
− 𝑝
0
𝑝

𝑥−2

∑

𝑘=1

𝑃 (𝑘) − 𝑞
0
𝑝

𝑥−1

∑

𝑘=1

𝑃 (𝑘)

≥ 𝑝
0
− 𝑝𝑝
0
(𝜇 − 1) − 𝑝𝑞

0
(𝜇 − 1) − 𝑝 − 𝑝

0

= 𝑝
0
− 𝑝𝜇 − 𝑝

1
> 0

(35)

For 𝑥 − 1 row, owing to 𝑝𝑝
0
𝑝(1) − 𝑝 − 𝑝

1
< 0,

𝑝
0
𝑞 −

󵄨
󵄨
󵄨
󵄨
󵄨
𝜒
󸀠
− 𝑝
1

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝑝

𝑥−1

∑

𝑘=1

𝑇 (𝑘)

= 𝑝
0
− 𝑝 − 𝑝

1
− 𝑝𝑝
0

𝑥

∑

𝑘=1

𝑃 (𝑘) − 𝑝𝑞
0

𝑥−1

∑

𝑘=1

𝑃 (𝑘)

≥ 𝑝
0
− 𝑝𝑝
0
(𝜇 − 1) − 𝑝𝑞

0
(𝜇 − 1) − 𝑝

1
− 𝑝

= 𝑝
0
− 𝑝𝜇 − 𝑝

0
> 0.

(36)

Thus, the matrix 𝐵 is a strictly diagonally dominant matrix.
According to Lemma 3, matrix 𝐵 is a nonsingular matrix.
So the set of linear equations have a unique solution. The
theorem has been proved.

4. The Asymptotic Estimate of
the Penalty Function

Let 𝐷 = 𝜃
1
𝑋
1
+ 𝜖
1
− 𝐼
1
denote the generating function of 𝐷;

then

𝐺
𝐷 (

𝑟) = (𝑝𝐺
𝑋
+ 𝑞) (𝑝

1
𝑟 + 𝑞
1
) (

𝑝
0

𝑟

+ 𝑞
0
) , (37)

where 𝐺
𝑋
is the generating function of𝑋.

Assumption 5. There exists a 𝑟
∞

such that 𝐺
𝑋
(𝑟) → +∞

(𝑟 → 𝑟
∞
) (𝑟
∞

is possibly +∞).
This assumption is similar to the one in [11].
Let 𝐺
𝐷
(𝑟) = 1, and then

(𝑝𝐺
𝑋
(𝑟) + 𝑞) (𝑝

1
𝑟 + 𝑞
1
) (𝑝
0
+ 𝑞
0
𝑟) = 𝑟. (38)

Let 𝐻(𝑟) = (𝑝𝐺
𝑋
(𝑟) + 𝑞)(𝑝

1
𝑟 + 𝑞
1
)(𝑝
0
+ 𝑞
0
𝑟). 𝐻(0) = 𝑞𝑞

1
𝑝
0
,

𝐻(1) = 1,𝐻(𝑟) is a convex and increasing function in [0, 𝑟
∞
),

and thus (38) has two real nonnegative roots at most, and one
of them is 1. Because 𝛿 > 0, 𝐻󸀠(1) = 1 − (𝑝

0
− 𝑝𝜇 − 𝑝

1
) <

1. Because 𝐻
󸀠󸀠
(𝑟) > 0 in [0, 𝑟

∞
), 𝐻(𝑟) is strictly convex in

[0, 𝑟
∞
). Therefore, there exist two real roots in (38). Denote

the other root by 𝑅, and then 𝑅 > 1.
Note that if 𝑞

0
= 0, (38) becomes

(𝑝𝐺
𝑋
(𝑟) + 𝑞) (𝑝

1
𝑟 + 𝑞
1
) = 𝑟, (39)

which is just the adjustment coefficient equation of the
compound binomial model with randomized decisions on
dividends payment (see [10]). The following lemma will be
used to derive the asymptotic estimates of 𝜙(𝑢).

Lemma 6. 𝑍 is a set of integers, {𝑎
𝑘
, 𝑘 ∈ 𝑍}, {𝑏

𝑘
, 𝑘 ∈ 𝑍},

{𝑢
𝑘
, 𝑘 ∈ 𝑍} are sequences that satisfy 𝑎

𝑘
≥ 0, ∑+∞

−∞
𝑎
𝑘

= 1,
∑
+∞

−∞
|𝑘|𝑎
𝑘
< +∞, ∑+∞

−∞
𝑘𝑎
𝑘
> 0, ∑+∞

−∞
|𝑏
𝑘
| < +∞, the greatest

common divisor of the integers 𝑘 for which 𝑎
𝑘
> 0 is 1, and the

bounded series 𝑢
𝑘
satisfies the following renewal equation:

𝑢
𝑛
=

+∞

∑

𝑘=−∞

𝑎
𝑛−𝑘

𝑢
𝑘
+ 𝑏
𝑛
, 𝑛 = 0, ±1, ±2, . . . ; (40)

then lim
𝑛→∞

𝑢
𝑛

and lim
𝑛→−∞

𝑢
𝑛

exist. Furthermore, if
lim
𝑛→−∞

𝑢
𝑛
= 0, then

lim
𝑛→∞

𝑢
𝑛
=

∑
∞

𝑘=−∞
𝑏
𝑘

∑
∞

𝑘=−∞
𝑘𝑎
𝑘

. (41)

Proof. The proof can be seen in Karlin and Taylor [5]
(Chapter 3).

Theorem 7. The asymptotic estimate for the penalty 𝜙(𝑢) is

𝜙 (𝑢) ∼ 𝐾𝑅
−𝑢

, (42)

where

𝐾 = ([𝑞𝑝
0
𝑝
1 (

𝑅 − 1) + 𝑝
0
𝑞𝑅 (𝑅

𝑥
− 1)] 𝜙 (0)

+ (𝑅 − 1) (𝑞𝑞
0
𝑝
1
− 𝑞𝑝
0
𝑝
1
− 𝑝𝑝
1
)

𝑥

∑

𝑚=1

𝑅
𝑚
𝜙 (𝑚 − 1)

+𝐾
1 (

𝑅 − 1)) ×((𝑅 − 1)(𝐾
2
𝑅 + 𝑝

+∞

∑

𝑘=2

𝐽 (𝑘 − 2)))

−1

,

𝐾
1
= −𝑝𝑞

1
𝐾
3
− 𝑝𝑝
1
𝐾
4
+ 𝐾
5
,

𝐾
2
= 𝑞𝑞
0
𝑝
1
+ 𝑝𝑝
0
𝑞
1
𝑃 (1) + 𝑝𝑞

0
𝑝
1
+ 𝑝 (𝑝

0
𝑝
1
+ 𝑞
0
𝑞
1
) ,

𝐾
3
=

𝑥

∑

𝑚=1

𝑅
𝑚

𝑚−1

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖) ,

𝐾
4
=

𝑥

∑

𝑚=1

𝑅
𝑚

𝑚−2

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖) ,

𝐾
5
=

+∞

∑

𝑚=𝑥+1

𝑅
𝑚

+∞

∑

𝑘=𝑚+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖 − 1) .

(43)

Proof. When 𝑢 > 𝑥, from (12), we can obtain

𝜙 (𝑢) = (𝑞
0
+ 𝑝
0
𝑝
1
+ 𝑝𝑝
1
𝑞
1
) 𝜙 (𝑢)

+ (𝑞𝑞
0
𝑝
1
+ 𝑝𝑝
0
𝑞
1
𝑃 (1) + 𝑞

0
𝑝
1
𝑝 + 𝑝 (𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
))

× 𝜙 (𝑢 − 1) + 𝑝

𝑢−2

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 2 − 𝑘)

+ 𝑝

+∞

∑

𝑘=𝑢

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖 − 1) .

(44)
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Equation (27) is equivalent to

𝜙 (𝑢) = (𝑞
0
+ 𝑝
0
𝑝
1
+ 𝑝𝑝
1
𝑞
1
) 𝜙 (𝑢)

+ (𝑞𝑞
0
𝑝
1
+ 𝑝𝑝
0
𝑞
1
𝑃 (1) + 𝑞

0
𝑝
1
𝑝 + 𝑝 (𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
))

× 𝜙 (𝑢 − 1) + 𝑝

𝑢−2

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 2 − 𝑘) + 𝑝
0
𝑞𝜙 (0)

+ (𝑞𝑞
0
𝑝
1
− 𝑝
0
𝑝
1
𝑞 − 𝑝𝑝

1
) 𝜙 (𝑢 − 1)

− 𝑝𝑞
1

𝑢−1

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖)

− 𝑝𝑝
1

𝑢−2

∑

𝑘=0

∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖) .

(45)

Combining (44) and (45), we can obtain the renewal equation

𝜙 (𝑢) = (𝑞
0
+ 𝑝
0
𝑝
1
+ 𝑝𝑝
1
𝑞
1
) 𝜙 (𝑢) + (𝑞𝑞

0
𝑝
1
+ 𝑝𝑝
0
𝑞
1
) 𝑃 (1)

+ 𝑞
0
𝑝
1
𝑝 + 𝑝 (𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
) 𝜙 (𝑢 − 1)

+ 𝑝

𝑢−2

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 2 − 𝑘)

+

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑝
0
𝑞𝜙 (0) + (𝑞𝑞

0
𝑝
1
− 𝑝
0
𝑝
1
𝑞 − 𝑝𝑝

1
) 𝜙 (𝑢 − 1) ,

−𝑝𝑞
1

𝑢−1

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖)

−𝑝𝑝
1

𝑢−2

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖) ,

0 < 𝑢 ≤ 𝑥,

𝑝

+∞

∑

𝑘=𝑢

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖 − 1) , 𝑥 < 𝑢.

(46)

Denoting that 𝜙(𝑢) = 𝜙(𝑢)𝑅
𝑢,

𝑎
𝑢
=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝑞
0
+ 𝑝
0
𝑝
1
+ 𝑝𝑝
1
𝑞
1
, 𝑢 = 0,

𝑅(𝑞𝑞
0
𝑝
1
+ 𝑝𝑝
0
𝑞
1
𝑃 (1) + 𝑞

0
𝑝
1
𝑝 + 𝑝 (𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
)),

𝑢 = 1,

𝑝𝑅
𝑢
𝐽 (𝑢 − 2) , 𝑢 ≥ 2,

𝑏
𝑢
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑞𝑝
0
𝑞
1
, 𝑢 = 0,

𝑝
0
𝑞𝜙 (0) + (𝑞𝑞

0
𝑝
1
− 𝑝
0
𝑝
1
𝑞 − 𝑝𝑝

1
) 𝜙 (𝑢 − 1)

−𝑝𝑞
1

𝑢−1

∑

𝑘=0

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖)

−𝑝𝑝
1

𝑢−2

∑

𝑘=0

∑

𝑖=𝑘+1

+∞𝑓 (𝑘, 𝑖 − 𝑘) 𝑇 (𝑖) ,

0 < 𝑢 ≤ 𝑥,

𝑝

+∞

∑

𝑘=𝑢

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖 − 1) , 𝑥 < 𝑢,

𝑏
𝑢
= 𝑝𝑅
𝑢

+∞

∑

𝑘=𝑢

+∞

∑

𝑖=𝑘+1

𝑓 (𝑘, 𝑖 − 𝑘) 𝐽 (𝑖 − 1) , 𝑢 > 𝑥.

(47)

Multiplying (46) by 𝑅
𝑢, we can obtain

𝜙 (𝑢) =

𝑢

∑

𝑘=0

𝑎
𝑛−𝑘

𝜙 (𝑘) + 𝑏
𝑢
, 𝑢 = 0, 1, 2, . . . . (48)

We will prove that (48) satisfies the conditions of Lemma 6.
Consider

+∞

∑

𝑘=0

𝑎
𝑘
= 𝑞
0
+ 𝑝
0
𝑝
1
+ 𝑝𝑝
0
𝑞
1

+ (𝑞𝑞
0
𝑝
1
+ 𝑝𝑝
0
𝑞
1
𝑃 (1) + 𝑞

0
𝑝
1
𝑝 + 𝑝(𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
))𝑅

+

+∞

∑

𝑘=2

𝑝𝐽 (𝑘 − 2) 𝑅
𝑘

= 𝑞
0
+ 𝑝
0
𝑝
1
+ 𝑞
0
𝑝
1
𝑅 + 𝑅

2
𝑝𝑞
0
𝑝
1

+∞

∑

𝑘=0

𝑃 (𝑘) 𝑅
𝑘

+ 𝑝 (𝑞
0
𝑞
1
+ 𝑝
0
𝑝
1
)

+∞

∑

𝑘=0

𝑃 (𝑘) 𝑅
𝑘
+ 𝑝𝑝
0
𝑞
1

+∞

∑

𝑘=0

𝑃 (𝑘) 𝑅
𝑘

= 𝑞
0
+ 𝑝
0
𝑝
1
+ 𝑞
0
𝑝
1
𝑅

+ (𝑅
2
𝑝𝑞
0
𝑝
1
+ 𝑝 (𝑞

0
𝑞
1
+ 𝑝
0
𝑝
1
) + 𝑝𝑝

0
𝑞
1
)

𝐺
𝑋 (

𝑅) − 1

𝑅 − 1

= 1,

(49)

where the last equation is valid because 𝑅 is the root of (38).
The following steps will prove that∑+∞

𝑘=0
|𝑏
𝑘
| < ∞. For 𝑢 > 𝑥,

0 ≤ 𝑏
𝑢
≥ 𝑝

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
𝑅
𝑢

+∞

∑

𝑘=𝑢

𝐽 (𝑘 − 1) ; (50)
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then

+∞

∑

𝑢=𝑥+1

𝑏
𝑢
≤ 𝑝

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

+∞

∑

𝑢=1

𝑅
𝑢

+∞

∑

𝑘=𝑢

𝐽 (𝑘 − 1) ,

𝑝

+∞

∑

𝑢=1

𝑅
𝑢

+∞

∑

𝑘=𝑢

𝐽 (𝑘 − 1) = 𝑝

+∞

∑

𝑘=1

𝑘

∑

𝑢=1

𝐽 (𝑘 − 1) 𝑅
𝑢

= 𝑝

+∞

∑

𝑘=1

𝐽 (𝑘 − 1)

𝑅
𝑘
− 𝑅

𝑅 − 1

=

𝑝

𝑅 (𝑅 − 1)

∞

∑

𝑘=2

𝑅
𝑘
𝐽 (𝑘 − 2)

−

𝑅

𝑅 − 1

+∞

∑

𝑘=2

𝐽 (𝑘 − 2)

≤

𝑝

𝑅 (𝑅 − 1)

∞

∑

𝑘=2

𝑎
𝑘
≤

𝑝

𝑅 (𝑅 − 1)

.

(51)

From (51), we can obtain∑
+∞

𝑢=𝑥+1
𝑏
𝑢
< +∞. And because |𝑏

𝑘
| <

+∞ (0 ≤ 𝑢 ≤ 𝑥), ∑+∞
𝑢=0

𝑏
𝑢
< +∞. Further, we can get

+∞

∑

𝑘=0

𝑏
𝑘
= [𝑞𝑝

0
𝑝
1
+ 𝑝
0
𝑞

𝑅 (𝑅
𝑥
− 1)

(𝑅 − 1)

𝜙 (0)]

+ (𝑞𝑞
0
𝑝
1
− 𝑞𝑝
0
𝑝
1
− 𝑝𝑝
1
)

𝑥

∑

𝑚=1

𝑅
𝑚
𝜙 (𝑚 − 1) + 𝐾

1

+∞

∑

𝑘=1

𝑘𝑎
𝑘
= 𝐾
2
+ 𝑝

+∞

∑

𝑘=2

𝑘𝑅
𝑘
𝐽 (𝑘 − 2) .

(52)

According to Lemma 6, we can derive

lim
𝑢→+∞

𝜙 = ([𝑞𝑝
0
𝑝
1
+ 𝑝
0
𝑞

𝑅 (𝑅
𝑥
− 1)

𝑅 − 1

] 𝜙 (0)

+ (𝑞𝑞
0
𝑝
1
− 𝑞𝑝
0
𝑝
1
− 𝑝𝑝
1
)

𝑥

∑

𝑚=1

𝑅
𝑚
𝜙 (𝑚 − 1) + 𝐾

1
)

× (𝐾
2
𝑅 + 𝑝

+∞

∑

𝑘=2

𝑘𝐽 (𝑘 − 2))

−1

.

(53)

Equation (53) is equivalent to (42). The theorem has been
proved.

5. The Application of the Penalty Function

We will give some examples of ruin quantities such as the
ultimate ruin probability, the distribution of the surplus of
the deficit at ruin to illustrate the application of the recursive
formulas, and asymptotic estimates for the penalty function
𝜙(𝑢).

Table 1: Adjustment coefficients.

𝑃 (0.9, 0.015) (0.75, 0.015) (0.75, 0.055) (0.65, 0.055)

𝑅 1.02157 1.01547 1.01274 1.010447

5.1. Ruin Quantities

Example 8. Let 𝑓(𝑥, 𝑦) = 1, 𝜙(𝑢) = Pr(𝑇 < +∞ | 𝑈(0) =

𝑢) = 𝜓(𝑢), which is the ultimate ruin probability. ByTheorem
1, we can show that

(1) 𝜓(0), 𝜓(1), . . . , 𝜓(𝑥) satisfy the following linear equa-
tions:

𝑝
0
𝑞𝜓 (0) − 𝑝

1
𝜓 (𝑥 − 1) = 𝛼,

𝑝
0
𝑞𝜓 (𝑢 + 1) + (𝑞𝑞

0
+ 𝑝𝑝
0
𝑝 (1) − 1) 𝜓 (𝑢)

+ 𝑝

𝑢−1

∑

𝑘=0

𝜓 (𝑘) 𝑇 (𝑢 − 𝑘) = 𝛽,

𝑢 = 0, 1, 2, . . . , 𝑥 − 1,

(54)

where

𝛼 = 𝑝𝑞
1

𝑥−1

∑

𝑘=0

𝑇 (𝑘) + 𝑝𝑝
1

𝑥−2

∑

𝑘=0

𝑇 (𝑘) + 𝑝

+∞

∑

𝑘=𝑥

𝐽 (𝑢 − 1) ,

𝛽 = −𝑝𝑇 (𝑢) ;

(55)

(2) for 𝑢 ≥ 𝑥, the penalty functions 𝜙(𝑢) satisfy

𝜓 (𝑢 + 1) =

1 − 𝑞 (𝑞
0
𝑞
1
+ 𝑝
0
𝑝
1
)

𝑞𝑝
0
𝑞
1

𝜓 (𝑢) −

𝑞
0
𝑝
1

𝑝
0
𝑞
1

𝜓 (𝑢 − 1)

−

𝑝

𝑞𝑝
0
𝑞
1

𝑢

∑

𝑘=0

𝜓 (𝑘) 𝐽 (𝑢 − 𝑘 − 1) −

𝑝

𝑞𝑝
0
𝑞
1

𝐽 (𝑘 − 1) .

(56)

By Theorem 7, the asymptotic estimates of the ultimate ruin
probability are

𝜓 (𝑢) ∼ 𝐾
𝜓
𝑅
−𝑢

, (57)

where

𝐾
𝜓
= ( [𝑞𝑝

0
𝑝
1
(𝑅 − 1) + 𝑝

0
𝑞𝑅 (𝑅

𝑥
− 1)] 𝜓 (0)

+ (𝑅 − 1) (𝑞𝑞0
𝑝
1
− 𝑞𝑝
0
𝑝
1
− 𝑝𝑝
1
)

×

𝑥

∑

𝑚=1

𝑅
𝑚
𝜓 (𝑚 − 1) + 𝐾

1 (
𝑅 − 1))

× ((𝑅 − 1)(𝐾
2
𝑅 + 𝑝

+∞

∑

𝑘=2

𝐽 (𝑘 − 2)))

−1

,
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Table 2: Exact values and asymptotic values for the ruin probability.

𝑢

𝑃 = (0.9, 0.015) 𝑃 = (0.75, 0.015) 𝑃 = (0.75, 0.055) 𝑃 = (0.65, 0.055)

E.V A.V E.V A.V E.V A.V E.V A.V
0 0.5011 — 0.5684 — 0.5791 — 0.6804 —
1 0.4992 — 0.5631 — 0.5747 — 0.6721 —
2 0.4816 — 0.5589 — 0.5704 — 0.6665 —
3 0.4781 — 0.5544 — 0.5658 — 0.6601 —
4 0.4636 — 0.5392 — 0.5601 — 0.6565 —
5 0.4601 — 0.5331 — 0.5548 — 0.6424 —
6 0.4557 0.4701 0.5288 0.5324 0.5503 0.4831 0.6301 0.6417
7 0.4516 0.4602 0.5034 0.5243 0.5482 0.5619 0.6295 0.6351
8 0.4494 0.4505 0.4985 0.5163 0.5435 0.5549 0.6206 0.6285
9 0.4373 0.4409 0.4916 0.5084 0.5401 0.5479 0.6156 0.6220
10 0.4264 0.4316 0.4884 0.5007 0.5384 0.5410 0.6104 0.6156
20 0.3095 0.3134 0.3856 0.3977 0.4452 0.4474 0.5243 0.5267
30 0.2503 0.2532 0.3385 0.3411 0.3939 0.3942 0.4710 0.4747
40 0.2027 0.2045 0.2914 0.2925 0.3465 0.3474 0.4254 0.4279
50 0.1641 0.1652 0.2501 0.2509 0.3056 0.3060 0.3829 0.3856
60 0.1332 0.1335 0.2152 0.2152 0.2695 0.2697 0.3467 0.3476
80 0.0871 0.0871 0.1583 0.1583 0.2092 0.2093 0.2816 0.2823
100 0.0568 0.0568 0.1164 0.1164 0.1625 0.1625 0.2292 0.2293

𝐾
1
= −𝑝𝑞

1
𝐾
3
− 𝑝𝑝
1
𝐾
4
+ 𝐾
5
,

𝐾
2
= 𝑞𝑞
0
𝑝
1
+ 𝑝𝑝
0
𝑞
1
𝑃 (1) + 𝑝𝑞

0
𝑝
1
+ 𝑝 (𝑝

0
𝑝
1
+ 𝑞
0
𝑞
1
) ,

𝐾
3
=

𝑥

∑

𝑚=1

𝑅
𝑚

𝑚−1

∑

𝑘=0

𝑇 (𝑘) , 𝐾
4
=

𝑥

∑

𝑚=1

𝑅
𝑚

𝑚−2

∑

𝑘=0

𝑇 (𝑘) ,

𝐾
5
=

+∞

∑

𝑚=𝑥+1

𝑅
𝑚
𝐽 (𝑚 − 1) .

(58)

Example 9. Let 𝑓(𝑥, 𝑦) = 𝐼(𝑦 ≤ 𝑧) (𝑧 = 1, 2, . . .), and then
𝜙(𝑢) = Pr((|𝑈(𝑇)| ≤ 𝑧, 𝑇 < +∞ | 𝑈(0) = 𝑢)) = 𝐹(𝑢, 𝑧),
which is the distribution of the surplus of the deficit at ruin.
ByTheorem 1, we can show that

(1) 𝐹(0, 𝑧), 𝐹(1, 𝑧), . . . , 𝐹(𝑥 − 1, 𝑧) satisfy the following
linear equations:

𝑝
0
𝑞𝐹 (0, 𝑧) − 𝑝

1
𝐹 (𝑥 − 1, 𝑧) = 𝛼,

𝑝
0
𝑞𝐹 (𝑢 + 1, 𝑧) + (𝑞𝑞

0
+ 𝑝𝑝
0
𝑝 (1) − 1) 𝐹 (𝑢, 𝑧)

+ 𝑝

𝑢−1

∑

𝑘=0

𝜙 (𝑘) 𝑇 (𝑢 − 𝑘) = 𝛽, 𝑢 = 0, 1, 2, . . . , 𝑥 − 1,

(59)

where

𝛼 = 𝑝𝑞
1

𝑥−1

∑

𝑘=0

𝑇 (𝑘) − 𝑇 (𝑘 + 𝑧) + 𝑝𝑝
1

𝑥−2

∑

𝑘=0

𝑇 (𝑘)

− 𝑇 (𝑘 + 𝑧) + 𝑝

+∞

∑

𝑘=𝑥

(𝐽 (𝑘 − 1) − 𝐽 (𝑘 + 𝑧 − 1))

𝛽 = −𝑝 (𝑇 (𝑢) − 𝑇 (𝑢 + 𝑧)) ;

(60)

(2) for 𝑢 ≥ 𝑥, the penalty functions 𝜙(𝑢) satisfy

𝐹 (𝑢 + 1, 𝑧) =

1 − 𝑞 (𝑞
0
𝑞
1
+ 𝑝
0
𝑝
1
)

𝑞𝑝
0
𝑞
1

𝐹 (𝑢, 𝑧) −

𝑞
0
𝑝
1

𝑝
0
𝑞
1

𝐹 (𝑢 − 1, 𝑧)

−

𝑝

𝑞𝑝
0
𝑞
1

𝑢

∑

𝑘=0

𝜙 (𝑘) 𝐽 (𝑢 − 𝑘 − 1)

−

𝑝

𝑞𝑝
0
𝑞
1

(𝐽 (𝑢 − 1) − 𝐽 (𝑢 + 𝑧 − 1)) .

(61)

By Theorem 7, we can obtain the asymptotic estimates of the
distribution function of deficit at ruin. Consider

𝐹 (𝑢, 𝑧) ∼ 𝐾
𝐹
(𝑧) 𝑅
−𝑢

, (62)
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Table 3: Exact values and asymptotic values for the distribution function of the deficit at ruin.

𝑢

𝑃 = (0.75, 0.015) 𝑃 = (0.65, 0.055)

𝑧 = 10 𝑧 = 15 𝑧 = 10 𝑧 = 15

E.V A.V E.V A.V E.V A.V E.V A.V
0 0.6387 — 0.4492 — 0.6523 — 0.5457 —
1 0.6236 — 0.4406 — 0.6434 — 0.5347 —
2 0.6129 — 0.4351 — 0.6347 — 0.5238 —
3 0.6012 — 0.4273 — 0.6265 — 0.5124 —
4 0.5984 — 0.4198 — 0.6153 — 0.5004 —
5 0.5837 — 0.4102 — 0.6048 — 0.4961 —
6 0.5710 0.5894 0.4064 0.4219 0.5937 0.6174 0.4874 0.4984
7 0.5654 0.5804 0.4009 0.4155 0.5895 0.6110 0.4806 0.4932
8 0.5635 0.5716 0.3995 0.4091 0.5843 0.6047 0.4754 0.4881
9 0.5578 0.5629 0.3953 0.4029 0.5804 0.5984 0.4705 0.4831
10 0.5499 0.5543 0.3894 0.3968 0.5776 0.5923 0.4659 0.4781
20 0.4359 0.4403 0.3103 0.3152 0.4971 0.5068 0.3947 0.4091
30 0.3738 0.3776 0.2674 0.2703 0.4502 0.4567 0.3604 0.3687
40 0.3201 0.3239 0.2286 0.2318 0.4074 0.4117 0.3294 0.3323
50 0.2754 0.2778 0.1964 0.1988 0.3683 0.3710 0.2957 0.2995
60 0.2364 0.2383 0.1688 0.1705 0.3305 0.3344 0.2673 0.2699
80 0.1746 0.1753 0.1246 0.1255 0.2704 0.2716 0.2184 0.2193
100 0.1287 0.1289 0.0920 0.0923 0.2206 0.2207 0.1779 0.1781

where

𝐾
𝐹
(𝑧) = ( [𝑞𝑝

0
𝑝
1
(𝑅 − 1) + 𝑝

0
𝑞𝑅 (𝑅

𝑥
− 1)] 𝜙 (0)

+ (𝑅 − 1) (𝑞𝑞
0
𝑝
1
− 𝑞𝑝
0
𝑝
1
− 𝑝𝑝
1
)

×

𝑥

∑

𝑚=1

𝑅
𝑚
𝐹 (𝑚 − 1, 𝑧) + 𝐾

1
(𝑅 − 1))

× ((𝑅 − 1)(𝐾
2
𝑅 + 𝑝

+∞

∑

𝑘=2

𝐽 (𝑘 − 2)))

−1

,

𝐾
1
= −𝑝𝑞

1
𝐾
3
− 𝑝𝑝
1
𝐾
4
+ 𝐾
5
,

𝐾
2
= 𝑞𝑞
0
𝑝
1
+ 𝑝𝑝
0
𝑞
1
𝑃 (1) + 𝑝𝑞

0
𝑝
1
+ 𝑝 (𝑝

0
𝑝
1
+ 𝑞
0
𝑞
1
) ,

𝐾
3
=

𝑥

∑

𝑚=1

𝑅
𝑚

𝑚−1

∑

𝑘=0

(𝑇 (𝑘) − 𝑇 (𝑘 + 𝑧)) ,

𝐾
4
=

𝑥

∑

𝑚=1

𝑅
𝑚

𝑚−2

∑

𝑘=0

(𝑇 (𝑘) − 𝑇 (𝑘 + 𝑧)) ,

𝐾
5
=

+∞

∑

𝑚=𝑥+1

𝑅
𝑚
(𝐽 (𝑚 − 1) − 𝐽 (𝑚 + 𝑧 − 1)) .

(63)

5.2. Numerical Illustration. The initial term 𝜙(0), 𝜙(1), . . . ,

𝜙(𝑥) can be obtained by solving the set of linear equations
(8) and (9). 𝜙(𝑥 + 1), 𝜙(𝑥 + 2), . . . can be computed by
two approaches, which are using the recursive formulas and

asymptotic estimation, respectively. We will compare the
asymptotic values for the ruin probability and distribution
of the deficit at ruin with the exact values computed by
the recursive formulas and analysis on the impact of the
randomly paying dividends on the ruin probability and
distribution of the deficit at ruin.

The numerical analysis will be performed using the
following assumed parameters. The distribution of claim
amount 𝑋

𝑖
is a zero-truncated geometric distribution with

parameter 𝛼 = 9/10, and then 𝑓(𝑘) = (1 − 9/10)(9/10)
𝑖−1,

𝑖 = 1, 2, . . .; 𝑝 = 0.05, and the threshold 𝑥 = 5. The four
cases with the probability of paying dividend 𝑃 = (𝑝

0
, 𝑝
1
) =

(0.9, 0.015), (0.75, 0.015), (0.75, 0.055), (0.65, 0.055) will be
performed. The relative security loading are larger than zero
in the four case, then there is a unique solution which is
adjustment coefficient in each case. The adjustment coeffi-
cient 𝑅 is computed and shown in Table 1.

The exact values calculated by recursive formulas (11)-
(12) and the asymptotic values estimated by (42) are shown
in Table 2 and Table 3 for the ruin probability and the
distribution of the deficit at ruin, respectively. In both of the
tables, the E.V means the exact value, and the A.V means the
asymptotic value.

From Table 3, we can find that the asymptotic values of
ruin probability are generally close to the exact values with
the surplus 𝑢 increasing under the cases 𝑃 = (𝑝

0
, 𝑝
1
) =

(0.9, 0.015), (0.75, 0.015), (0.75, 0.055), (0.65, 0.055). It is easy
to see that the ruin probability increases with decreasing
probability of obtaining an insurance policy 𝑝

0
, and increases

with raising the probability of paying dividend 𝑝
1
.

In Table 3, the exact values and asymptotic values for the
distribution of the deficit at ruin when 𝑧 = 10, 15 are shown.
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It suggests that the asymptotic values are more close to the
exact values with the surplus increasing under the cases 𝑃 =

(0.75, 0.015), (0.65, 0.055).

6. Conclusions

In order to describe the surplus of the nonlife insurance
companies reasonably, the compound binomial risk model
with randomly charging premiums and paying dividends to
shareholders is proposed in this paper. Further, we derive
the recursive formulas and asymptotic estimation of penalty
function using classical method. The results about penalty
function are applied to obtain the recursive formulas and
asymptotic estimations of the ruin probability and the dis-
tribution of the deficit at ruin. The numerical examples
show that the actual penalty function can be approached by
asymptotic estimation.The results about themodel aremean-
ingful to analyze the ruin problem about the joint-stock non-
life insurance companies. It may provide the reference for
decision-making of the joint-stock nonlife insurance compa-
nies about risk management.
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