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Let𝐺 be a simple graph.The incidence energy (𝐼𝐸 for short) of𝐺 is defined as the sum of the singular values of the incidencematrix.
In this paper, a new upper bound for 𝐼𝐸 of graphs in terms of the maximum degree is given. Meanwhile, bounds for 𝐼𝐸 of the line
graph of a semiregular graph and the paraline graph of a regular graph are obtained.

1. Introduction

Let𝐺 be a finite, simple, and undirected graphwith 𝑛 vertices.
Thematrix 𝐿(𝐺) = 𝐷(𝐺)−𝐴(𝐺) (resp., 𝐿+(𝐺) = 𝐷(𝐺)+𝐴(𝐺))
is called the Laplacianmatrix (resp., signless Laplacianmatrix
[1–4]) of 𝐺, where 𝐴(𝐺) is the adjacency matrix and 𝐷(𝐺)
is the diagonal matrix of the vertex degrees. (For details on
Laplacian matrix, see [5, 6].) Since 𝐴(𝐺), 𝐿(𝐺) and 𝐿+(𝐺)
are all real symmetric matrices, their eigenvalues are real
numbers. So, we can assume that 𝜆

1
(𝐺) ≥ 𝜆

2
(𝐺) ≥ ⋅ ⋅ ⋅ ≥

𝜆
𝑛
(𝐺) (resp., 𝜇

1
(𝐺) ≥ 𝜇

2
(𝐺) ≥ ⋅ ⋅ ⋅ ≥ 𝜇

𝑛
(𝐺), 𝜇+

1
(𝐺) ≥ 𝜇

+

2
(𝐺) ≥

⋅ ⋅ ⋅ ≥ 𝜇
+

𝑛
(𝐺)) are the adjacency (resp., Laplacian, signless

Laplacian) eigenvalues of 𝐺. It follows from the Geršgorin
disc theorem that 𝐿(𝐺) and𝐿+(𝐺) are semidefinite.Therefore,
all Laplacian (resp., signless Laplacian) eigenvalues of 𝐺 are
nonnegative. If the graph 𝐺 is connected, then 𝜇

𝑖
(𝐺) > 0 for

𝑖 = 1, 2, . . . , 𝑛 − 1 and 𝜇
𝑛
(𝐺) = 0 [6]. If 𝐺 is a connected

nonbipartite graph, then 𝜇
+

𝑖
(𝐺) > 0 for 𝑖 = 1, 2, . . . , 𝑛

[1].
One of the most remarkable chemical applications of

graph theory is based on the close correspondence between
the graph eigenvalues and the molecular orbital energy levels
of 𝜋-electrons in conjugated hydrocarbons. For the Hüchkel
molecular orbital approximation, the total 𝜋-electron energy
in conjugated hydrocarbons is given by the sum of absolute
values of the eigenvalues corresponding to the molecular

graph𝐺 in which the maximum degree is not more than four
in general. The energy of 𝐺 was defined by Gutman in [7] as

𝐸 (𝐺) =

𝑛

∑

𝑖=1

𝜆𝑖 (𝐺)
 . (1)

Research on graph energy is nowadays very active, as seen
from the recent papers [8–15], monograph [16], and the
references quoted therein.

The singular values of a real matrix (not necessarily
square) 𝑀 are the square roots of the eigenvalues of the
matrix𝑀𝑀𝑡, where𝑀𝑡 denotes the transpose of𝑀. Recently,
Nikiforov [17] extended the concept of graph energy to any
matrix 𝑀 by defining the energy 𝐸(𝑀) to be the sum of
singular values of𝑀. Obviously, 𝐸(𝐺) = 𝐸(𝐴(𝐺)).

Let 𝐼(𝐺) be the (vertex-edge) incidence matrix of the
graph 𝐺. For a graph 𝐺 with vertex set {V

1
, V
2
, . . . , V

𝑛
} and

edge set {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
}, the (𝑖, 𝑗)-entry of 𝐼(𝐺) is 0 if V

𝑖
is not

incident with 𝑒
𝑗
and 1 if V

𝑖
is incident with 𝑒

𝑗
. Jooyandeh et al.

[18] introduced the incidence energy IE of𝐺, which is defined
as the sum of the singular values of the incidencematrix of𝐺.
Gutman et al. [19] showed that

IE = IE (𝐺) =
𝑛

∑

𝑖=1

√𝜇
+

𝑖
(𝐺). (2)

Some basic properties of IE may be found in [18–20].
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A line graph is a classical unary operation of graphs
with finite number and infinite number of vertices. Its basic
properties can be found in any text book on graph theory (see,
e.g., [21–23]). Recently, several papers on line graph have been
published [20, 24–27]. For example, Gao et al. [24] established
a formula and lower bounds for the Kirchhoff index of the
line graph of a regular graph. Bounds for Laplacian-energy-
like invariant (LEL for short) of the line graph of a regular
graph 𝐺 are obtained in [26]. For details on LEL, see the
comprehensive survey [28].

From (2), one can immediately get the incidence energy
of a graph by computing the signless Laplacian eigenvalues
of the graph. However, even for special graphs, it is still
complicated to find the signless Laplacian eigenvalues of
them. Hence, it makes sense to establish lower and upper
bounds to estimate the invariant for some classes of graphs.
Zhou [29] obtained the upper bounds for the incidence
energy using the first Zagreb index. Gutman et al. [20] gave
several lower and upper bounds for IE. In particular, an
upper bound for IE of the line graph of a regular graph was
established in [20].

In this paper, we continue to study the bounds for IE of
graphs. In Section 2, we give a new upper bound for IE of
graphs in terms of the maximum degree. Bounds for IE of
the line graph of a semiregular graph and the paraline graph
of a regular graph are obtained in Section 3.

2. A New Upper Bound for 𝐼𝐸

In this section, we will give a new upper bound for IE of a
nonempty graph. The following fundamental properties of
the IE were established in [18].

Lemma 1 (see [18]). Let 𝐺 be a graph with 𝑛 vertices and 𝑚
edges. Then

(i) IE(𝐺) ≥ 0, and equality holds if and only if𝑚 = 0;
(ii) if 𝐺

1
, . . . , 𝐺

𝑝
are all components of 𝐺, then IE(𝐺) =

∑
𝑝

𝑖
IE(𝐺
𝑖
).

From Lemma 1(ii), when we study the incidence energy
of a graph 𝐺, we may assume that 𝐺 is connected.

The following lemma will be used later.

Lemma 2 (see [3]). Let 𝐺 be a connected graph without
vertices of degree 1 and the maximum degree Δ. Then, 𝜇+

1
≥

1+Δ+ (1/(Δ−1)); the equality holds if and only if𝐺 is a cycle.

Denote by 𝐶
𝑛
the cycle with 𝑛 vertices.

Theorem 3. Let 𝐺 be a connected graph without vertices of
degree 1 and the maximum degree Δ. Then

IE (𝐺) ≤ √1 + Δ + 1

Δ − 1

+ √(𝑛 − 1) (2𝑚 − 1 − Δ −
1

Δ − 1
);

(3)

the equality holds if and only if 𝐺 ≅ 𝐶
3
.

Proof. Note that ∑𝑛
𝑖=2
𝜇
+

𝑖
= 2𝑚 − 𝜇

+

1
. By the Cauchy-Schwarz

inequality

IE (𝐺) ≤ √𝜇+
1
+ √(𝑛 − 1) (2𝑚 − 𝜇

+

1
). (4)

The equality holds if and only if 𝜇+
2
= ⋅ ⋅ ⋅ = 𝜇

+

𝑛
.

We consider the function

𝑓 (𝑥) = √𝑥 + √(𝑛 − 1) (2𝑚 − 𝑥), 𝑥 > 0. (5)

Then

𝑓


(𝑥) =
1

2√𝑥
+

−𝑛 + 1

2√(𝑛 − 1) (2𝑚 − 𝑥)
. (6)

It is easily seen that the function 𝑓(𝑥) is decreasing for 𝑥 >

2𝑚/𝑛. By Lemma 2,
2𝑚

𝑛
≤ Δ < 1 + Δ < 1 + Δ +

1

Δ − 1
≤ 𝜇
+

1
. (7)

Inequality (3) follows now from themonotonicity of𝑓(𝑥) and
(4).

Equality in (3) holds if and only if 𝐺 is a cycle. It is well-
known [4] that the signless Laplacian eigenvalues of 𝐶

𝑛
are

2 + 2 cos 2𝜋
𝑛
𝑗 (𝑗 = 0, 1, . . . , 𝑛 − 1) . (8)

If 𝐺 ≅ 𝐶
3
, then we may verify directly that the equality in (3)

holds.
Conversely, if the equality in (3) holds, then

𝜇
+

1
= 1 + Δ +

1

Δ − 1
, 𝜇

+

2
= ⋅ ⋅ ⋅ = 𝜇

+

𝑛
. (9)

It follows from Lemma 2 that 𝐺 is a cycle. Note that 𝐺 has at
most two distinct signless Laplacian eigenvalues. By virtue of
(8), we now conclude that 𝐺 is a triangle.

Recall from [20] that an upper bound for IE was given as
follows.

Lemma 4 (see [20]). Let 𝐺 be a connected graph with 𝑛 ≥ 3

vertices and𝑚 edges. Then

IE (𝐺) < √1 + Δ + √(𝑛 − 1) (2𝑚 − 1 − Δ). (10)

Remark 5. It should be pointed out that, for a connected
graph without vertices of degree 1, the bound in (3) is better
than the bound in (10). Indeed, it is easily seen that the bound
in (3) is𝑓(1+Δ+(1/(Δ−1))), but the bound in (10) is𝑓(1+Δ).
Note that

2𝑚

𝑛
≤ Δ < 1 + Δ < 1 + Δ +

1

Δ − 1
≤ 𝜇
+

1
. (11)

It follows from the monotonicity of 𝑓(𝑡) that

𝑓(1 + Δ +
1

Δ − 1
) < 𝑓 (1 + Δ) . (12)

That is,

√1 + Δ +
1

Δ − 1
+ √(𝑛 − 1) (2𝑚 − 1 − Δ −

1

Δ − 1
)

< √1 + Δ + √(𝑛 − 1) (2𝑚 − 1 − Δ).

(13)
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3. Bounds for 𝐼𝐸 of Line Graphs of
Semiregular Graphs

In this section, we will investigate the IE of the line graph of
an (𝑟, 𝑠)-semiregular graph and the paraline graph of an 𝑟-
regular graph.

We first consider the case for line graph. The line graph
L(𝐺) of a graph 𝐺 is the graph whose vertex set is in one-
to-one correspondence with the set of edges of 𝐺 where two
vertices ofL(𝐺) are adjacent if and only if the corresponding
edges in 𝐺 have a vertex in common. For instance, the line
graph of a star 𝑆

𝑛
on 𝑛 vertices is a complete graph 𝐾

𝑛−1
on

𝑛 − 1 vertices.
The following result is well known [30].

Lemma 6 (see [30]). Let 𝐴 be a matrix. Then, the matrices
𝐴𝐴
𝑇 and 𝐴𝑇𝐴 have the same nonzero eigenvalues.

A bipartite graph 𝐺 with a bipartition 𝑉(𝐺) = 𝑈 ∪ 𝑊

is called an (𝑟, 𝑠)-semiregular graph if all vertices in 𝑈 have
degree 𝑟 and all vertices in𝑊 have degree 𝑠. Denote by 𝜇+

𝐺
(𝑥)

the signless Laplacian polynomial det(𝑥𝐼 − 𝐿+(𝐺)) of 𝐺. For
an (𝑟, 𝑠)-semiregular graph 𝐺, we can establish the following
relationship between 𝜇+

𝐺
(𝑥) and 𝜇+L(𝐺)(𝑥).

Lemma7. Let𝐺 be an (𝑟, 𝑠)-semiregular graphwith 𝑛 vertices.
Then

𝜇
+

L(𝐺) (𝜇) = (𝜇 − (𝑟 + 𝑠 − 4))
𝑚−𝑛

𝜇
+

𝐺
(𝜇 − (𝑟 + 𝑠 − 4)) , (14)

whereL(𝐺) is the line graph of𝐺 and𝑚 is the number of edges
of 𝐺.

Proof. Let 𝐼(𝐺) be the (vertex-edge) incidence matrix of a
graph 𝐺. Then

𝐼 (𝐺) 𝐼(𝐺)
𝑇

= 𝐿
+

(𝐺) , 𝐼(𝐺)
𝑇

𝐼 (𝐺) = 2𝐼
𝑚
+ 𝐴 (L (𝐺)) ,

(15)

where 𝐼
𝑚
stands for the unit matrix of order𝑚.

Note that if 𝐺 is an (𝑟, 𝑠)-semiregular graph, then the line
graph of 𝐺 is (𝑟 + 𝑠 − 2)-regular graph. Thus

𝐿
+

(L (𝐺)) = (𝑟 + 𝑠 − 2) 𝐼
𝑚
+ 𝐴 (L (𝐺)) . (16)

Combine (15) with (16), we have

𝐿
+

(L (𝐺)) − (𝑟 + 𝑠 − 4) 𝐼
𝑚
= 𝐼(𝐺)

𝑇

𝐼 (𝐺) . (17)

It follows from Lemma 6, (15), and (17) that 𝐿+(𝐺) and
𝐿
+
(L(𝐺)) − (𝑟 + 𝑠 − 4)𝐼

𝑚
have the same nonzero eigenvalues.

Note that the difference between the dimensions of𝐿+(L(𝐺))

and 𝐿+(𝐺) is 𝑚 − 𝑛. The proof is finished by the fact that the
leading coefficient of the characteristic polynomial is equal to
one.

By Lemma 7, the signless Laplacian eigenvalues ofL(𝐺)

are

(
𝑟 + 𝑠 − 4 𝑟 + 𝑠 − 4 + 𝜇

+

1
𝑟 + 𝑠 − 4 + 𝜇

+

2
⋅ ⋅ ⋅ 𝑟 + 𝑠 − 4 + 𝜇

+

𝑛

𝑚 − 𝑛 1 1 ⋅ ⋅ ⋅ 1
) ,

(18)

where 𝜇+
1
≥ 𝜇
+

2
≥ ⋅ ⋅ ⋅ ≥ 𝜇

+

𝑛
are the signless Laplacian

eigenvalues of 𝐺.

Theorem 8. Let 𝐺 be an (𝑟, 𝑠)-semiregular graph with 𝑛

vertices. Then

IE (L (𝐺)) ≤ (
𝑛𝑟𝑠

𝑟 + 𝑠
− 𝑛 + 1)√𝑟 + 𝑠 − 4 + √2 (𝑟 + 𝑠) − 4

+ √(𝑛 − 2) [(𝑛 − 3) (𝑟 + 𝑠) − 4 (𝑛 − 2) +
2𝑛𝑟𝑠

𝑟 + 𝑠
],

(19)

the equality holds if and only if 𝐺 ≅ 𝐾
1,𝑛−1

, or 𝑛 is even and
𝐺 ≅ 𝐾

(𝑛/2),(𝑛/2)
with 𝑛 ≥ 4.

Proof. Let𝑚 be the number of edges of𝐺.Then,𝑚 = 𝑛𝑟𝑠/(𝑟+

𝑠). Note that 𝜇+
1
(𝐺) = 𝑟 + 𝑠. It follows from (2) and (18) that

IE (L (𝐺)) = (𝑚 − 𝑛)√𝑟 + 𝑠 − 4 +

𝑛

∑

𝑖=1

√𝑟 + 𝑠 − 4 + 𝜇
+

𝑖

= (𝑚 − 𝑛)√𝑟 + 𝑠 − 4 + √2 (𝑟 + 𝑠) − 4

+

𝑛

∑

𝑖=2

√𝑟 + 𝑠 − 4 + 𝜇
+

𝑖
.

(20)

Note also that 𝜇+
𝑛
= 0,∑𝑛

𝑖=1
𝜇
+

𝑖
= 2𝑚. By the Cauchy-Schwarz

inequality, we have
𝑛

∑

𝑖=2

√𝑟 + 𝑠 − 4 + 𝜇
+

𝑖

= √𝑟 + 𝑠 − 4 +

𝑛−1

∑

𝑖=2

√𝑟 + 𝑠 − 4 + 𝜇
+

𝑖

≤ √𝑟 + 𝑠 − 4 + √(𝑛 − 2)

𝑛−1

∑

𝑖=2

(𝑟 + 𝑠 − 4 + 𝜇
+

𝑖
)

= √𝑟 + 𝑠 − 4

+ √(𝑛 − 2) [(𝑛 − 2) (𝑟 + 𝑠) − 4 (𝑛 − 2) + (2𝑚 − 𝜇
+

1
)]

= √𝑟 + 𝑠 − 4

+ √(𝑛 − 2) [(𝑛 − 3) (𝑟 + 𝑠) − 4 (𝑛 − 2) +
2𝑛𝑟𝑠

𝑟 + 𝑠
].

(21)

Inequality (19) follows now from (20) and (21).
Clearly, equality in (19) holds if and only if 𝜇+

2
= ⋅ ⋅ ⋅ =

𝜇
+

𝑛−1
. Suppose that 𝜇+

2
= ⋅ ⋅ ⋅ = 𝜇

+

𝑛−1
. Then, the number

of distinct signless Laplacian eigenvalues of 𝐺 is at most 3.
From the result, “the number of distinct signless Laplacian
eigenvalues of a connected graphs with diameter 𝑑 is at least
𝑑 + 1 [1],” we know that the diameter of 𝐺 is at most 2. Note
that 𝐺 is bipartite graph. If the diameter of 𝐺 is 1, then 𝐺
must be 𝐾

2
. If the diameter of 𝐺 is 2, then 𝐺 is a complete

bipartite graph𝐾
𝑝,𝑞

with exactly 3 distinct signless Laplacian
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eigenvalues. It is well known that the signless Laplacian
eigenvalues of 𝐾

𝑝,𝑞
are 𝑝 + 𝑞, 𝑝𝑞−1, 𝑞𝑝−1, and 0. Thus, 𝐺 ≅

𝐾
1,𝑛−1

, or 𝑛 is even and 𝐺 ≅ 𝐾
(𝑛/2),(𝑛/2)

with 𝑛 ≥ 4.
Conversely, if 𝐺 ≅ 𝐾

1,𝑛−1
, then L(𝐺) ≅ 𝐾

𝑛−1
. Note that

the signless Laplacian spectrum of complete graph 𝐾
𝑡
[4] is

(
𝑡 − 2 2𝑡 − 2

𝑡 − 1 1
) . (22)

It follows from (2) and (22) that

IE (L (𝐺)) = IE (𝐾
𝑛−1
) = √2𝑛 − 4 + (𝑛 − 2)√𝑛 − 3. (23)

That is, the left-hand side of (19) is equal to √2𝑛 − 4 +

(n-2)√𝑛 − 3. In this case, 𝑟 = 𝑛−1 and 𝑠 = 1. It is easy to check
that the right-hand side of (19) is also equal to√2𝑛 − 4+ (𝑛−
2)√𝑛 − 3. If 𝐺 ≅ 𝐾

(𝑛/2),(𝑛/2)
, then L(𝐺) ≅ 𝐿

2
(𝑛/2), where

𝑛 ≥ 4 is even. Note also that the signless Laplacian spectrum
of lattice graph 𝐿

2
(𝑝) [31] is

(
2𝑝 − 4 4𝑝 − 4 3𝑝 − 4

(𝑝 − 1)
2

1 2𝑝 − 2
) . (24)

Similarly, it follows from (2) and (24) that the left-hand
side of (19) is equal to (𝑛/2 − 1)

2
√𝑛 − 4 + √2𝑛 − 4 +

(𝑛 − 2)√3𝑛/2 − 4. Note that 𝐾
(𝑛/2),(𝑛/2)

is an (𝑛/2, 𝑛/2)-
semiregular graph. Substituting 𝑟 = 𝑠 = 𝑛/2 into (19), we get
the right-hand side of (19) is still equal to (𝑛/2 − 1)2√𝑛 − 4 +
√2𝑛 − 4 + (𝑛 − 2)√3𝑛/2 − 4.

Hence, we complete the proof of Theorem 8.

Now, we consider the case for paraline graph. Let 𝐺 be a
simple graph. A paraline graph, denoted by 𝐶(𝐺), is defined
as a line graph of the subdivision graph 𝑠(𝐺) (the subdivision
graph 𝑠(𝐺) of a graph 𝐺 is the graph obtained from 𝐺 by
inserting a vertex to every edge of 𝐺) of 𝐺 (e.g., see Figure 1).
The concept of the paraline graph (or clique-inserted graph
[32]) of a graph was first introduced in [25], where the author
obtained the spectrum of the paraline graph of a regular
graph 𝐺 with infinite number of vertices in terms of the
spectrum of 𝐺.

Remark 9. The subdivision graph of an 𝑟-regular graph is
(𝑟, 2)-semiregular. Hence, the paraline graph of an 𝑟-regular
graph is the line graph of an (𝑟, 2)-semiregular graph.

The following result is well known [5, 6].

Lemma 10. The spectra of 𝐿(𝐺) and 𝐿+(𝐺) coincide if and only
if the graph 𝐺 is bipartite.

Let 𝜇
𝐺
(𝑥) be the Laplacian polynomial det(𝑥𝐼 − 𝐿(𝐺)) of

𝐺.

Corollary 11. Let𝐺 be an 𝑟-regular graphwith 𝑛 vertices.Then

𝜇
+

𝐶(𝐺)
(𝜇) = (−1)

𝑛𝑟

((𝑟 − 𝜇) (𝜇 − 𝑟 + 2))
𝑛𝑟/2−𝑛

× 𝜇
𝐺
((2𝑟 − 𝜇) (𝜇 − 𝑟 + 2)) .

(25)

Proof. Note that 𝑠(𝐺) is a (2, 𝑟)-semiregular graph with 𝑛 +
𝑛𝑟/2 vertices and 𝑛𝑟 edges. By Lemma 7, we obtain

𝜇
+

𝐶(𝐺)
(𝜇) = (𝜇 − 𝑟 + 2)

𝑚−𝑛

𝜇
+

𝑠(𝐺)
(𝜇 − 𝑟 + 2) . (26)

It is shown in [33] that

𝜇
𝑠(𝐺)

(𝜇) = (−1)
𝑚

(2 − 𝜇)
𝑚−𝑛

𝜇
𝐺
(𝜇 (𝑟 + 2 − 𝜇)) . (27)

It follows from (27) and Lemma 10 that

𝜇
+

𝑠(𝐺)
(𝜇) = (−1)

𝑚

(2 − 𝜇)
𝑚−𝑛

𝜇
𝐺
(𝜇 (𝑟 + 2 − 𝜇)) . (28)

Combining (26) with (28), we have

𝜇
+

𝐶(𝐺)
(𝜇) = (−1)

𝑛𝑟

((𝑟 − 𝜇) (𝜇 − 𝑟 + 2))
𝑛𝑟/2−𝑛

× 𝜇
𝐺
((2𝑟 − 𝜇) (𝜇 − 𝑟 + 2)) .

(29)

It follows from Corollary 11 that the signless Laplacian
spectrum of 𝐶(𝐺) is

(

𝑟 𝑟 − 2 𝜇
+

1
(𝐶 (𝐺)) 𝜇

+

1
(𝐶 (𝐺)) ⋅ ⋅ ⋅ 𝜇

+

𝑛
(𝐶 (𝐺)) 𝜇

+

𝑛
(𝐶 (𝐺))

𝑛 (𝑟 − 2)

2

𝑛 (𝑟 − 2)

2
1 1 ⋅ ⋅ ⋅ 1 1

) , (30)

where

𝜇
+

𝑖
(𝐶 (𝐺)) =

3𝑟 − 2 + √(𝑟 + 2)
2

− 4𝜇
𝑖

2
,

𝜇
+

𝑖
(𝐶 (𝐺)) =

3𝑟 − 2 − √(𝑟 + 2)
2

− 4𝜇
𝑖

2
,

(31)

and 𝜇
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 are the Laplacian eigenvalues of 𝐺.

Theorem 12. Let 𝐺 be a connected 𝑟-regular graph with 𝑛
vertices. Then

IE (𝐶 (𝐺)) ≤ (𝑛𝑟
2
+ √2 − 1)√𝑟 + √2 (𝑛 − 1)√𝑟 − 1

+ (
𝑛𝑟

2
− 𝑛 + 1)√𝑟 − 2;

(32)

the equality holds if and only if 𝐺 ≅ 𝐾
2
.
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Figure 1: (a) The graph 𝐺. (b) The graph 𝑠(𝐺). (c) The graph 𝐶(𝐺).

Proof. If 𝑟 = 1, then𝐺 ≅ 𝐾
2
. Note that𝐶(𝐾

2
) ≅ 𝐾
2
. It is easily

seen that

IE (𝐶 (𝐾
2
)) = √2. (33)

In this case, 𝑟 = 1 and 𝑛 = 2. Hence

(
𝑛𝑟

2
+ √2 − 1)√𝑟 + √2 (𝑛 − 1)√𝑟 − 1

+ (
𝑛𝑟

2
− 𝑛 + 1)√𝑟 − 2 = √2.

(34)

Suppose now that 𝑟 ≥ 2. For convenience, let 𝑚 = 𝑛𝑟/2

be the edges of𝐺. Note that𝐺 is an 𝑟-regular graph. It follows
from the definition of paraline graph that 𝐶(𝐺) is still an 𝑟-
regular graph. Note also that 𝜇

𝑖
(𝐺) = 𝑟 − 𝜆

𝑛−𝑖+1
(𝐺), 𝑖 =

1, 2, . . . , 𝑛 and 𝜆
1
(𝐺) = 𝑟. Then by (2) and (30), we have

IE (𝐶 (𝐺))

= (𝑚 − 𝑛)√𝑟 + (𝑚 − 𝑛)√𝑟 − 2

+

𝑛

∑

𝑖=1

√
3𝑟 − 2 + √𝑟2 + 4 (𝜆

𝑖
+ 1)

2

+

𝑛

∑

𝑖=1

√
3𝑟 − 2 − √𝑟2 + 4 (𝜆

𝑖
+ 1)

2

= (𝑚 − 𝑛 + √2)√𝑟 + (𝑚 − 𝑛 + 1)√𝑟 − 2

+

𝑛

∑

𝑖=2

(
√
3𝑟 − 2 + √𝑟2 + 4 (𝜆

𝑖
+ 1)

2

+
√
3𝑟 − 2 − √𝑟2 + 4 (𝜆

𝑖
+ 1)

2
) .

(35)

Note that −𝑟 ≤ 𝜆
𝑖
(𝐺) < 𝑟, 𝑖 = 2, 3, . . . , 𝑛, by the Perron-

Frobenius theorem. Consider the function

𝑔 (𝑡) = √
3𝑟 − 2 + √𝑟2 + 4𝑡 + 4

2

+ √
3𝑟 − 2 − √𝑟2 + 4𝑡 + 4

2
, −𝑟 ≤ 𝑡 < 𝑟.

(36)

The derivative function of 𝑔(𝑡) is

𝑔


(𝑡) = (√
3𝑟 − 2 − √𝑟2 + 4𝑡 + 4

2

−√
3𝑟 − 2 + √𝑟2 + 4𝑡 + 4

2
)

× (2√(2𝑟2 − (3𝑟 + 𝑡)) (𝑟2 + 4𝑡 + 4))

−1

, −𝑟 ≤ 𝑡 < 𝑟.

(37)

It is clear that 𝑔(𝑡) is decreasing for −𝑟 ≤ 𝑡 < 𝑟. Therefore

IE (𝐶 (𝐺)) ≤ (𝑚 − 𝑛 + √2)√𝑟

+ (𝑚 − 𝑛 + 1)√𝑟 − 2 +

𝑛

∑

𝑖=2

𝑔 (−𝑟)

= (
𝑛𝑟

2
+ √2 − 1)√𝑟 + √2 (𝑛 − 1)√𝑟 − 1

+ (
𝑛𝑟

2
− 𝑛 + 1)√𝑟 − 2.

(38)

That is, 𝐼𝐸(𝐶(𝐺)) = (𝑚−𝑛+√2)√𝑟+ (𝑚−𝑛+1)√𝑟 − 2+
∑
𝑛

𝑖=2
𝑔(−𝑟) if and only if 𝐺 is regular graph and 𝜆

1
(𝐺) =

𝑟, 𝜆
2
(𝐺) = ⋅ ⋅ ⋅ = 𝜆

𝑛
(𝐺) = −𝑟. It follows that 𝐺 is a regular

graph with two distinct adjacency eigenvalues 𝑟 and −𝑟 with
multiplicities 1 and 𝑛 − 1, respectively. Then by Proposition
1.3.3 [31], 𝐺 must be a complete graph. Note that the sum
of the adjacency eigenvalues of 𝐺 is equal to zero; that is,
𝑟 + (𝑛 − 1)(−𝑟) = 0. It follows that 𝐺 is a complete graph with
two vertices; that is, 𝐺 ≅ 𝐾

2
. This is impossible since 𝑟 ≥ 2.

Summing up, we complete the proof.
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Theorem13. Let𝐺 be an 𝑟-regular graphwith 𝑛 vertices, 𝑟 ≥ 2.
Then

IE (𝐶 (𝐺)) >
𝑛 (𝑟 + 2√2 − 2)

2
√𝑟 +

𝑛𝑟

2

√𝑟 − 2. (39)

Proof. From the proof of Theorem 12, we know that the
function 𝑔(𝑡) is decreasing for −𝑟 ≤ 𝑡 < 𝑟. Therefore

IE (𝐶 (𝐺)) > (𝑚 − 𝑛 + √2)√𝑟

+ (𝑚 − 𝑛 + 1)√𝑟 − 2 +

𝑛

∑

𝑖=2

𝑔 (𝑟)

=

𝑛 (𝑟 + 2√2 − 2)

2
√𝑟 +

𝑛𝑟

2

√𝑟 − 2.

(40)
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[22] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs.
Theory and Application, Academic Press, New York, NY, USA,
1980.

[23] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New
York, NY, USA, 2001.

[24] X. Gao, Y. Luo, andW. Liu, “Kirchhoff index in line, subdivision
and total graphs of a regular graph,”Discrete AppliedMathemat-
ics, vol. 160, no. 4-5, pp. 560–565, 2012.

[25] T. Shirai, “The spectrum of infinite regular line graphs,” Trans-
actions of the AmericanMathematical Society, vol. 352, no. 1, pp.
115–132, 2000.

[26] W. Wang and Y. Luo, “On Laplacian-energy-like invariant of a
graph,” Linear Algebra and its Applications, vol. 437, no. 2, pp.
713–721, 2012.

[27] W. Yan, Y.-N. Yeh, and F. Zhang, “The asymptotic behavior of
some indices of iterated line graphs of regular graphs,” Discrete
Applied Mathematics, vol. 160, no. 7-8, pp. 1232–1239, 2012.

[28] B. Liu, Y.Huang, andZ.You, “A survey on the Laplacian-energy-
like invariant,”MATCH. Communications in Mathematical and
in Computer Chemistry, vol. 66, no. 3, pp. 713–730, 2011.

[29] B. Zhou, “More upper bounds for the incidence energy,”
MATCH. Communications in Mathematical and in Computer
Chemistry, vol. 64, no. 1, pp. 123–128, 2010.

[30] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, Cambridge, UK, 1985.

[31] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer,
New York, NY, USA, 2012.

[32] F. Zhang, Y.-C. Chen, andZ.Chen, “Clique-inserted-graphs and
spectral dynamics of clique-inserting,” Journal of Mathematical
Analysis and Applications, vol. 349, no. 1, pp. 211–225, 2009.



Journal of Applied Mathematics 7

[33] A. K. Kelmans, “The properties of the characteristic polynomial
of a graph,” in Cybernetics—in the service of Communism, Vol.
4, pp. 27–41, Energija, Moscow, Russia, 1967.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


