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A new multiscale finite element method is presented for solving the elliptic equations with rapidly oscillating coefficients. The
proposed method is based on asymptotic analysis and careful numerical treatments for the boundary corrector terms by virtue of
the recovery technique. Under the assumption that the oscillating coefficient is periodic, some superconvergence results are derived,
which seem to be never discovered in the previous literature. Finally, some numerical experiments are carried out to demonstrate
the efficiency and accuracy of this method, and it is seen that they agree very well with the analytical result.

1. Introduction

In this paper, we consider the following elliptic boundary
value problem with rapidly oscillatory coefficients:
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where 𝜉 = 𝑥/𝜀, 𝜀 is a small scale parameter. This kind of
equation has widely been applied in many areas, such as the

behavior of flow in porous media or the thermal and mecha-
nical behavior of composite material structure. In practice,
the oscillatory coefficients may span many scales to a great
extent. In such cases, the direct accurate numerical computa-
tion of the solution becomes difficult because it would require
a very fine mesh, and it can easily exceed the limit of
today’s computer resources because of the requirement of
tremendous amount of computer memory and CPU time.
Meanwhile, it is desirable to have a numerical method that
can solve this equation on a large-scale mesh with capturing
the effect of small scales details. Thus, various methods of
upscaling or homogenization have been developed.

Based on the homogenization method, there are many
discussions [1–4] about the numerical methods of (1). A large
amount of examples and applications can also be found
in the classical books [5–8], where the formal asymptotic
expansions for the limit solution are deduced when 𝜀 is small
enough. In these books, the first-order approximation of
these expansions is justified by proving sharp error estimates,
from which a general method that allowed us to treat
some structures with rapidly oscillatory coefficients is also
developed. However, the general method cannot effectively
compute the boundary corrector on boundary layer. It should



2 Journal of Applied Mathematics

be noted that the boundary corrector is the important source
of error estimates. In [9], He and Cui present a novel finite
elementmethod to solve (1)which can effectively compute the
boundary corrector even if the boundary layer is very small.
The crucial idea is to combine the numerical approximation
of the first-order terms of asymptotic expansions with the
numerical approximation of the boundary corrector from
different meshes exploiting the need for different levels of
resolution. The following result (Theorem 2.13 in [9]) can be
obtained.

Lemma 1. Assume that 𝑢𝜀 is the solution of (1) and �̂�ℎ0,ℎ1 ,ℎ is
the finite element solution [9]. For all 𝑝, 1 < 𝑝 < +∞, there
exists a constant 𝐶 such that
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where 𝑢0 is the homogenization solution of (1), and dist(𝑥, 𝜕Ω)
is the distance between the point 𝑥 and the boundary 𝜕Ω.

Unfortunately, the needed CPU time of the method pre-
sented in [9] is𝑂(𝜀1−𝑛ℎ−𝑛). In this paper, a high-effective finite
element method to compute boundary corrector by virtue of
the recovery technique is proposed, and some superconver-
gence results for the multiscale finite element approximation
of (1) are obtained. The rest of this paper is organized as
follows. In the next section, we present a multiscale finite
element method to compute 𝑢𝜀(𝑥). Its convergence analysis
are shown in Section 3. Finally, some numerical results
conforming our analytical estimates are given in Section 4.
Notation. Before closing this section, we would like to fix
some notations. First, the Einstein summation is used. Let
𝑄 = {𝜉 | 0 < 𝜉

𝑖
< 1, 𝑖 = 1, 2}, and the capital letter 𝐶 (with

or without subscripts) denotes a positive constant, which is
independent of the small parameter 𝜀 and the mesh size ℎ
(with or without subscripts).

2. An Improved Multiscale Finite
Element Method

Firstly, let us simply recall the homogenization method des-
cribed in [5].
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where 𝑢0(𝑥) satisfies the homogenization problem
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The boundary corrector term of the homogenization
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In the next two subsections, we will compute numerically
the first-order approximation �̃� and the boundary corrector
term 𝜃

𝜀
, respectively, and furthermore give the multiscale

finite element solution of (1).
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3. Superconvergence Result of �̂�ℎ0,ℎ1,ℎ
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From Lemma 2, one can easily deduce.
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Then, we estimate ‖𝑣𝜀
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≤ 𝐶𝜀
−3/2


𝑢
0
𝐻4(Ω)

≤ 𝐶𝜀
−3/2


𝑢
0
𝐻4(Ω)

(32)

which indicates

𝑣
𝜀

𝑘,2

𝐻2(Ω)
≤ 𝐶𝜀
−3/2


𝑢
0
𝐻4(Ω)

. (33)

Combining (30) with (33), we can derive (24) immediately.
Considering the proof of (23), 𝑣𝜀

𝑘
can be divided into

𝑣
𝜀

𝑘
= 𝑣
𝜀

𝑘,1
+ 𝑣
𝜀

𝑘,2
, (34)

where 𝑣𝜀
𝑘,1

satisfies

𝐿
𝜀
𝑣
𝜀

𝑘,1
= −𝜀
−1
𝜕

𝜕𝑥
𝑖

(

𝜕𝑎
𝑖𝑗
(𝜉)

𝜕𝜉
𝑘

𝜕𝜃
𝜀

𝜕𝑥
𝑗

) , 𝑥 ∈ Ω
𝑟
,

𝑣
𝜀

𝑘,1
= 0, 𝑥 ∈ 𝜕Ω

𝑟
,

(35)

and 𝑣𝜀
𝑘,2

satisfies

𝐿
𝜀
𝑣
𝜀

𝑘,2
= 0, 𝑥 ∈ Ω

𝑟
,

𝑣
𝜀

𝑘,2
=
𝜕𝜃
𝜀

𝜕𝑥
𝑘

, 𝑥 ∈ 𝜕Ω
𝑟
.

(36)

In view of Lemma 2, we have

𝑣
𝜀

𝑘,1

𝐻2(Ω
𝑟
)

≤ 𝐶𝜀
−1𝜃𝜀

𝐻2(Ω
𝑟
)

≤ 𝐶𝜀
−1

𝑟
−1/2


𝑢
0
𝑊2,∞(𝜕Ω)

.

(37)

Following the same line of [5] (1992, Theorem 1.2, pages
124–128), we have


𝑣
𝜀

𝑘,2

𝐻2(Ω
𝑟
)

≤ 𝐶𝜀
−1

𝑟
−1/2

‖𝜃‖
𝑊
1,∞
(Ω
𝑟/2
)
+ 𝐶𝑟
−1/2

‖𝜃‖
𝑊
2,∞
(Ω
𝑟/2
)

≤ 𝐶𝜀
−1

𝑟
−1/2

𝑟
−1

𝜀 (

𝑢
0
𝑊2,∞(𝜕Ω)

+

𝑢
0
𝐻4(Ω)

)

+ 𝐶𝑟
−1/2

𝑟
−1

(

𝑢
0
𝑊2,∞(𝜕Ω)

+

𝑢
0
𝐻4(Ω)

)

≤ 𝐶𝜀
−1

𝑟
−1/2

(

𝑢
0
𝑊2,∞(𝜕Ω)

+

𝑢
0
𝐻4(Ω)

) .

(38)

Combining (37) with (38), we can conclude the result of this
lemma.

Assuming that T
ℎ
is defined as (16), and let 𝜃ℎ

𝜀
and 𝜃𝐼

𝜀

be the linear finite element approximation and the linear
interpolation of 𝜃

𝜀
with respect toT

ℎ
, respectively. Then, we

have the following.

Lemma 4. Assuming that (C1) holds, then there exists 𝐶 such
that



∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)

dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶𝜀
−1/2

ℎ
2

(

𝑢
0
𝑊1,∞(𝜕Ω)

+

𝑢
0
𝐻4(Ω)

) .

(39)

Proof. Assuming that𝑚 is defined as (14) and Ω = ⋃
𝑚

𝑖=𝑘+1
Ω
𝑖

(𝑘 < 𝑚, 𝑘 ∈ N). Considering 𝑎
𝑖𝑗
∈ 𝑊
1,∞

(Ω) and using the
result from Lemma 2, we have

(

∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)
𝐿2(Ω)

)

2

≤ 𝐶



∫
Ω

𝑎
𝑖𝑗
(
𝑥

𝜀
)

𝜕 (𝜃
ℎ

𝜀,𝑟
− 𝜃
𝐼

𝜀
)

𝜕𝑥
𝑖

𝜕 (𝜃
ℎ

𝜀
− 𝜃
𝐼

𝜀
)

𝜕𝑥
𝑗

𝑑𝑥



≤ 𝐶



∫

Ω

𝑎
𝑖𝑗
(
𝑥

𝜀
)

𝜕 (𝜃
𝜀
− 𝜃
𝐼

𝜀
)

𝜕𝑥
𝑖

𝜕 (𝜃
ℎ

𝜀,𝑟
− 𝜃
𝐼

𝜀
)

𝜕𝑥
𝑗

𝑑𝑥



≤

𝑘

∑

𝑖=1



∫
Ω
𝑖

𝑎
𝑖𝑗
(
𝑥

𝜀
)

𝜕 (𝜃
𝜀
− 𝜃
𝐼

𝜀
)

𝜕𝑥
𝑖

𝜕 (𝜃
ℎ

𝜀,𝑟
− 𝜃
𝐼

𝜀
)

𝜕𝑥
𝑗

𝑑𝑥



≤ 𝐶

𝑘

∑

𝑖=1

(2
𝑖/2

𝜀ℎ)
2

(𝜀
−1𝜃𝜀

𝐻2(Ω
𝑖
)


∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀,𝑟
)
𝐿2(Ω

𝑖
)

+
𝜃𝜀
𝐻3(Ω

𝑖
)


∇ (𝜃
𝐼

𝜀
− 𝜃
𝑟,ℎ

𝜀
)
𝐿2(Ω

𝑖
)

)

≤ 𝐶

𝑘

∑

𝑖=1

2
𝑖

𝜀
2

ℎ
2

(𝜀
−1

(2
𝑖

𝜀)
−1/2

(

𝑢
0
𝑊1,∞(𝜕Ω)

+

𝑢
0
𝐻4(Ω)

)

×

∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀,𝑟
)
𝐿2(Ω−Ω

𝑟
)

)
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≤ 𝐶2
𝑘/2

𝜀
1/2

ℎ
2

(

𝑢
0
𝑊1,∞(𝜕Ω)

+

𝑢
0
𝐻4(Ω)

)

×

∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀,𝑟
)
𝐿2(Ω)

≤ 𝐶ℎ
2

(

𝑢
0
𝑊1,∞(𝜕Ω)

+

𝑢
0
𝐻4(Ω)

)

×

∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀,𝑟
)
𝐿2(Ω−Ω

𝑟
)

,

(40)

which indicates that


∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)
𝐿2(Ω)

≤ 𝐶ℎ
2

(

𝑢
0
𝑊1,∞(𝜕Ω)

+

𝑢
0
𝐻4(Ω)

) . (41)

Then Lemma 4 can be easily derived.

Furthermore, we can obtain the following lemma.

Lemma 5. Assuming that (C1) holds, then there exists 𝐶 such
that



∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶 |ln 𝜀| ℎ2 (𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

) .

(42)

Proof. Assume that Ω
𝑟
𝑗

is defined as Lemma 4. Considering
𝜃
ℎ

𝜀
= 𝜃
ℎ

𝜀,𝑟
0

(∀𝑥 ∈ Ω
𝑟
𝑗

), and we divide 𝜃𝐼
𝜀
− 𝜃
ℎ

𝜀
into

𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
= (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀,𝑟
𝑗

) +

𝑗−1

∑

𝑖=0

(𝜃
ℎ

𝜀,𝑟
𝑖

− 𝜃
ℎ

𝜀,𝑟
𝑖+1

) . (43)

Then,


𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀

𝐻1(Ω−Ω
𝑟𝑗
)

≤

𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀,𝑟
𝑗+1

𝐻1(Ω−Ω
𝑟𝑗
)

+

𝑗−1

∑

𝑖=1


𝜃
𝐼

𝜀,𝑟
𝑖

− 𝜃
ℎ

𝜀,𝑟
𝑖+1

𝐻1(Ω−Ω
𝑟𝑗
)

≤ 𝑐𝑟
1/2

𝑗
ℎ
2

(

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

)

+

𝑗−1

∑

𝑖=1


𝜃
𝐼

𝜀,𝑟
𝑖

− 𝜃
ℎ

𝜀,𝑟
𝑖+1

𝐻1(Ω−Ω
𝑟𝑗
)

≤ 𝐶𝑟
1/2

𝑗
ℎ
2

(

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

)

+ 𝐶𝑟
𝑗
𝑗ℎ
2

(

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

)

≤ 𝐶𝑟
1/2

𝑗
ℎ
2

(

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

) .

(44)

Using the result from (44), we have



∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶

𝑚

∑

𝑗=1



∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω
𝑟𝑗
−Ω
𝑟𝑗−1
)

≤

𝑚

∑

𝑗=1

𝐶𝑟
−1/2

𝑗


∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)
𝐿2(Ω

𝑟𝑗
−Ω
𝑟𝑗−1
)

≤

𝑚

∑

𝑗=1

𝐶𝑟
−1/2

𝑗


∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)
𝐿2(Ω−Ω

𝑟𝑗−1
)

≤

𝑚

∑

𝑗=1

𝐶𝑟
−1/2

𝑗
𝑟
1/2

𝑗
ℎ
2

(

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

)

≤ 𝐶𝑚ℎ
2

(

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

)

≤ 𝐶 |ln 𝜀| ℎ2 (𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

) .

(45)

Based on the previous lemmas, the estimate of
‖|∇(𝜃
𝐼

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
)|/√dist(⋅, 𝜕Ω) + 𝜀‖

𝐿
2
(Ω)

can be given as
follows.

Lemma 6. Assuming that (C1) holds, then there exists 𝐶 such
that



∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
)


√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶 (ℎ
0
+ ℎ
1
+ ℎ
2

) |ln 𝜀|

× (

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

) .

(46)

Proof. Assuming that 𝜃ℎ0 ,ℎ1
𝜀

satisfies

𝐿
𝜀
𝜃
ℎ
0
,ℎ
1

𝜀
(𝑥) = 0, 𝑥 ∈ Ω,

𝜃
ℎ
0
,ℎ
1

𝜀
(𝑥) = −𝜀𝑁

ℎ
0

𝑘
(
𝑥

𝜀
) 𝑢
ℎ
0
,ℎ
1

𝑘
(𝑥) , 𝑥 ∈ 𝜕Ω,

(47)

and 𝜃𝐼,ℎ0 ,ℎ1
𝜀

is the linear interpolation of 𝜃ℎ0 ,ℎ1
𝜀

onT
ℎ
.

Then, we divide 𝜃𝐼
𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
into

𝜃
𝐼

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
= (𝜃
𝐼

𝜀
− 𝜃
𝐼,ℎ
0
,ℎ
1

𝜀
) + (𝜃

𝐼,ℎ
0
,ℎ
1

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
) . (48)

Firstly, considering the first item of the right-hand side of
(48) and assuming that 𝜃ℎ0 ,ℎ1

𝜀
(𝑥) satisfies the problem

𝐿
𝜀
𝜃
ℎ
0
,ℎ
1

𝜀
(𝑥) = 0, 𝑥 ∈ Ω,

𝜃
ℎ
0
,ℎ
1

𝜀
(𝑥) = −𝜀𝑁

ℎ
0

𝑘
(
𝑥

𝜀
) 𝑢
ℎ
0
,ℎ
1

𝑘
(𝑥) , 𝑥 ∈ 𝜕Ω,

(49)
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we have

∇ (𝜃
𝐼

𝜀
− 𝜃
𝐼,ℎ
0
,ℎ
1

𝜀
)
𝐿2(Ω)

≤ 𝐶

∇ (𝜃
𝜀
− 𝜃
ℎ
0
,ℎ
1

𝜀
)
𝐿2(Ω)

≤ 𝐶(

∇ (𝜃
𝜀
− 𝜃
ℎ
0
,ℎ
1

𝜀
)
𝐿2(Ω)

+

∇ (𝜃
ℎ
0
,ℎ
1

𝜀
− 𝜃
ℎ
0
,ℎ
1

𝜀
)
𝐿2(Ω)

) .

(50)

Using the same method of Lemma 2, we have


𝜃
𝜀
− 𝜃
ℎ
0
,ℎ
1

𝜀

𝐿∞(Ω)
≤ 𝐶𝜀 (ℎ

0
+ ℎ
1
) , (51)


∇ (𝜃
𝜀
− 𝜃
ℎ
0
,ℎ
1

𝜀
)
𝐿2(Ω)

≤ 𝐶𝜀
1/2

(ℎ
0
+ ℎ
1
) . (52)

Then, we have



𝜀𝑁
ℎ
0

𝑘
(
𝑥

𝜀
) 𝑢
ℎ
0
,ℎ
1

𝑘
(𝑥) − 𝜀𝑁

𝑘
(
𝑥

𝜀
)
𝜕𝑢
0

𝜕𝑥
𝑘

𝐿∞(Ω)

≤ 𝐶𝜀 (ℎ
0
+ ℎ
1
)

𝑢
0
𝑊2,∞(Ω)

,

(53)


∇ (𝜃
ℎ
0
,ℎ
1

𝜀
− 𝜃
ℎ
0
,ℎ
1

𝜀
)
𝐿2(Ω)

≤ 𝐶𝜀
1/2

(ℎ
0
+ ℎ
1
)

𝑢
0
𝑊2,∞(Ω)

.

(54)

Combining (52) with (54), we have


∇ (𝜃
𝐼

𝜀
− 𝜃
𝐼,ℎ
0
,ℎ
1

𝜀
)
𝐿2(Ω)

≤ 𝐶𝜀
1/2

(ℎ
0
+ ℎ
1
)

𝑢
0
𝑊2,∞(Ω)

. (55)

Next, considering the second item of the right-hand side
of (48), 𝜃𝐼,ℎ0 ,ℎ1

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
can be divided into

𝜃
𝐼,ℎ
0
,ℎ
1

𝜀
− 𝜃
ℎ,ℎ
0
,ℎ
1

𝜀
= (𝜃
𝐼,ℎ
0
,ℎ
1

𝜀
− 𝜃
𝐼

𝜀
) + (𝜃

𝐼

𝜀
− 𝜃
ℎ

𝜀
)

+ (𝜃
ℎ

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
) .

(56)

Similarly, we have


∇ (𝜃
𝐼,ℎ
0
,ℎ
1

𝜀
− 𝜃
𝐼

𝜀
)
𝐿2(Ω)

≤ 𝐶𝜀
1/2

(ℎ
0
+ ℎ
1
)

𝑢
0
𝑊2,∞(Ω)

,


∇ (𝜃
𝐼

𝜀
− 𝜃
ℎ

𝜀
)
𝐿2(Ω)

≤ 𝐶𝜀
1/2

(ℎ
0
+ ℎ
1
)

𝑢
0
𝑊2,∞(Ω)

,

(57)


∇ (𝜃
ℎ

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
)
𝐿2(Ω)

≤ 𝐶𝜀
1/2

(ℎ
0
+ ℎ
1
)

𝑢
0
𝑊2,∞(Ω)

. (58)

Combining Lemma 6 with (55)–(58), we have (46).

Next, using the extrapolation technique [10], we are in a
position to estimate

𝜃
𝜀
(𝑥) − 𝑅

ℎ

4𝜃
ℎ
0
,ℎ
1
,ℎ/2

𝜀
(𝑥) − 𝜃

ℎ
0
,ℎ
1
,ℎ

𝜀
(𝑥)

3

(59)

instead of

𝜃
𝜀
(𝑥) − 𝑅

ℎ
𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
(𝑥) . (60)

Lemma 7. Assuming that (C1) holds, then there exists 𝐶 such
that



∇ (𝜃
𝜀
− 𝑅
ℎ
((4𝜃
ℎ
0
,ℎ
1
,ℎ/2

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
) /3))

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶 (ℎ
0
+ ℎ
1
+ ℎ
2

) |ln 𝜀| (𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

) .

(61)

Proof. LetT
ℎ
and 𝜃𝐼
𝜀
be defined as above.Assuming that 𝜃𝐼,ℎ/2

𝜀

is the linear interpolation of 𝜃
𝜀
onT
ℎ/2

, we have



∇(𝜃
𝜀
− 𝑅
ℎ

4𝜃
ℎ
0
,ℎ
1
,ℎ/2

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀

3
)

𝐿2(Ω)

≤



∇(𝜃
𝜀
− 𝑅
ℎ

4𝜃
𝐼,ℎ/2

𝜀
− 𝜃
𝐼

𝜀

3
)

𝐿2(Ω)

+



∇𝑅
ℎ
(
4𝜃
𝐼,ℎ/2

𝜀
− 𝜃
𝐼

𝜀

3
−
4𝜃
ℎ
0
,ℎ
1
,ℎ/2

𝜀
− 𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀

3
)

𝐿2(Ω)

≤ 𝐶𝜀
1/2

ℎ
2

|ln 𝜀| (𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

)

+ 𝐶𝜀
1/2

(ℎ
0
+ ℎ
1
+ ℎ
2

) (

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

)

≤ 𝐶𝜀
1/2

(ℎ
0
+ ℎ
1
+ ℎ
2

|ln 𝜀|) (𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

) .

(62)

Then, (61) can be easily derived.

Next, we turn to estimate ‖∇𝑤𝜀/√dist(⋅, 𝜕Ω) + 𝜀‖
𝐿
2
(Ω)

.

Lemma 8. Assuming that (C1) holds, then there exists 𝐶 such
that



∇𝑤
𝜀

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶𝜀 |ln 𝜀| 𝑢
0
𝑊2,∞(Ω)

. (63)

Proof. Following the same line of [5] and 𝜔𝜀 = 𝑢
𝜀

− �̃� − 𝜃
𝜀
,

there exists 𝐶 such that



∇𝑤
𝜀

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶
∇𝑤
𝜀𝐿2| ln 𝜀|(Ω) ×



1

√dist (⋅, 𝜕Ω) + 𝜀

𝐿4| ln 𝜀|/(2| ln 𝜀|−1)(Ω)

≤ 𝐶𝜀|ln 𝜀|1/2𝑢
0
𝑊2,2| ln 𝜀|(Ω)

|ln 𝜀|1/2

≤ 𝐶𝜀 |ln 𝜀| 𝑢
0
𝑊2,∞(Ω)

.

(64)
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Table 1: Comparison of computational results with 𝜀 = 1/30.

ℎ
0
↓ ℎ

1
↓ ℎ ↓ 𝑒

0
𝑒
1

1/8 1/8 1/8 0.1856 0.0426
1/32 1/32 1/16 0.1629 0.0178
1/128 1/128 1/32 0.1573 0.0043

Finally, noting the definitions of �̃�, �̃�ℎ0 ,ℎ1 , 𝜃
𝜀
,𝑅
ℎ
𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
, and𝜔𝜀,

and combining Lemma 3 with Lemmas 7-8 and Lemma 2.4
in [9], we have


∇ (𝑢
𝜀

− �̂�
ℎ
0
,ℎ
1
,ℎ

)

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤



∇ (�̃� − �̃�
ℎ
0
,ℎ
1)

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

+



∇ (𝜃
𝜀
− 𝑅
ℎ
𝜃
ℎ
0
,ℎ
1
,ℎ

𝜀
)

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

+



∇𝜔
𝜀

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶 (ℎ
1
+ ℎ
0
+ 𝜀 + ℎ

2

) |ln 𝜀|

× (

𝑢
0

‖
𝑊
2,∞
(Ω)
+

𝑢
0

‖
𝐻
4
(Ω)
) .

(65)

Combining the above lemmas, we can conclude the fol-
lowing result.

Theorem9. Assuming that (C1) holds, then there exists𝐶 such
that


∇ (𝑢
𝜀

− �̂�
ℎ
0
,ℎ
1
,ℎ

)

√dist (⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

≤ 𝐶 [(ℎ
1
+ ℎ
0
+ 𝜀 + ℎ

2

) |ln 𝜀|]

× (

𝑢
0
𝑊2,∞(Ω)

+

𝑢
0
𝐻4(Ω)

) .

(66)

4. Numerical Example

In this section, somenumerical results will be shown. In order
to show the numerical accuracy of the method presented in
this paper, the exact solution of problem (1) should firstly be
obtained. However, it is very difficult to find them out. Then,
the exact solution will be replaced by the finite element
solution in a fine mesh with the mesh size 1/256.

It should not be confused that 𝑢∗ denotes the finite
element solution of (1) in a finemesh, and �̂�ℎ0,ℎ1 ,ℎ, obtained by
the multiscale finite element scheme presented in the above
section, is the multiscale finite element solution of problem
(1). Some numerical results will be presented by solving the
following model problem:

𝑎
11
= 0.3 + 2𝑥

1
(1 − 𝑥

1
) ,

𝑎
12
= 𝑎
21
= 𝑥
1
(1 − 𝑥

1
) 𝑥
2
(1 − 𝑥

2
) ,

𝑎
22
= 0.1 + 2𝑥

2
(1 − 𝑥

2
) ,

Table 2: Comparison of error order.


∇(𝑢
∗

− �̃�
ℎ0 ,ℎ1 )

√dist(⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

𝑂 (1)



∇(𝑢
∗

− �̂�
ℎ0 ,ℎ1 ,ℎ)

√dist(⋅, 𝜕Ω) + 𝜀

𝐿2(Ω)

𝑂 ((ℎ
1
+ ℎ
0
+ 𝜀 + ℎ

2

)| ln 𝜀|)

𝑓 (𝑥) = 𝑒
𝑥
1
+𝑥
2 , 𝑔 (𝑥) = 2 sin (𝑥

1
) + 4 cos (𝑥

2
) ,

Ω = {𝑥 | (𝑥
1
− 0.5)

2

+ (𝑥
1
− 0.5)

2

< 0.25} .

(67)

Moreover, let

𝑒
0
=


∇ (𝑢
∗

− �̃�
ℎ
0
,ℎ
1) /√dist (⋅, 𝜕Ω) + 𝜀𝐿2(Ω)


∇𝑢∗/√dist (⋅, 𝜕Ω) + 𝜀𝐿2(Ω)

,

𝑒
1
=


∇ (𝑢
∗

− �̂�
ℎ
0
,ℎ
1
,ℎ

) /√dist (⋅, 𝜕Ω) + 𝜀𝐿2(Ω)

∇𝑢∗/√dist (⋅, 𝜕Ω) + 𝜀𝐿2(Ω)

.

(68)

In Table 1, the numerical results of the multiscale method for
𝑒
0
and 𝑒

1
are given. It can be seen that the improvement

obtained in the final approximation by considering the
numerical approximation for the boundary corrector, and the
numerical result agree well with the theoretical result from
Theorem 9.

According to Table 2, it can be seen that ∇𝑢𝜀(𝑥) can
effectively be computed for problem (1) by using the above
method, even if dist(𝑥, Ω) is very small. If we only need to get
a good numerical solution for problem (1) in Sobolev space
𝐻
1
(Ω), the boundary corrector needs not to be computed.

However, the boundary corrector is a very important part of
error estimate in the real applications. It can be concluded
that this method is an exceedingly important and effective
finite element algorithm.
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