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Using the finite element analysis programABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall weremade
to investigate the bending moment computational methods.The analyses demonstrated that the shear locking is not significant for
the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of
grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with
displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it
sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent
sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly
with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the
analysis.

1. Introduction

As the finite element method (FEM) develops, pile founda-
tions are increasingly being analyzed using FEM [1–8]. Solid
elements are used to simulate soil or rock in geotechnical en-
gineering. Other structures embedded in soil such as piles,
cut-off walls, and concrete panels are also often simulated
with solid elements. However, internal force and bending
moment are generally used for engineering design. So it is
necessary to calculate the bending moment with stress and
displacement obtained using FEM.

Theoretically, the following two methods are both appro-
priate.

(a) Calculating Bending Moment with Stress. The bending
moment is directly calculated by summing the total moments
of the elements across the specified pile section. When using
thismethod, sufficient grids are necessary to partition the pile
section.

(b) Calculating Bending Moment with Displacement. The
bending moment is indirectly calculated using the quadratic
differential of deflection (lateral displacement) of the pile.

This method uses fewer grids, but the differential process will
result in reduced accuracy.

The bending moment can also be obtained by integrating
the area of the shear force diagram [9] which is a complex
process and is not considered in this paper.

As we know, shear locking occurs in first-order (linear)
fully integrated elements that are subjected to bending, while
second-order reduced-integration elements can yield more
reasonable results in this case and are often used in the anal-
ysis of piles subjected to lateral pressure [1–4, 10]. However,
calculating second-order elements is time consuming and
increases complexity and computational effort, particularly
when the problem involves contact conditions. So we con-
sider that the linear element method with appropriate mesh-
ing is still useful for the analysis of piles.

A row of piles can be simplified as a plane strain wall
(sheet pile wall) and modeled using 2D plane strain elements
[11–13]. This simplification can greatly reduce computational
effort. However, the influence of bending moment on the
computational results merits further research.

In this paper, a series of calculations on cantilever beam,
pile, and sheet pile wall examples were conducted to study the
abovementioned problems. The main aim of the work was to
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Figure 1: Cantilever beam.
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Figure 2: Computing of bending moment with stress.

Table 1: Deflection error with element CPS4.

Mesh Deflection error (%)
B C D E

1 × 32 −28.57 −28.69 −28.74 −28.76
4 × 32 −27.20 −27.31 −27.34 −27.36
8 × 32 −27.12 −27.23 −27.27 −27.29
16 × 32 −27.10 −27.22 −27.25 −27.27
32 × 32 −27.10 −27.21 −27.25 −27.26
1 × 64 −10.67 −10.83 −10.89 −10.92
4 × 64 −8.45 −8.61 −8.66 −8.68
8 × 64 −8.32 −8.48 −8.54 −8.57
16 × 64 −8.29 −8.45 −8.54 −8.54
32 × 64 −8.28 −8.45 −8.50 −8.53
64 × 64 −8.28 −8.44 −8.50 −8.53
1 × 128 −4.70 −4.87 −4.93 −4.97
4 × 128 −2.12 −2.31 −2.37 −2.40
8 × 128 −1.97 −2.17 −2.23 −2.27
16 × 128 −1.94 −2.13 −2.20 −2.23
32 × 128 −1.93 −2.13 −2.19 −2.23
64 × 128 −1.93 −2.13 −2.19 −2.22
128 × 128 −1.92 −2.13 −2.19 −2.22
2 × 4 −95.94 −95.94 −95.93 −95.92
2 × 8 −85.66 −85.68 −85.68 −85.67
2 × 16 −60.03 −60.08 −60.09 −60.09
2 × 32 −27.50 −27.60 −27.63 −27.65
2 × 64 −8.93 −9.08 −9.12 −9.15
2 × 128 −2.69 −2.86 −2.91 −2.94
2 × 256 −0.99 −1.16 −1.22 −1.25

investigate the computational methods for bending moment
and the influences of element type andmesh partition.Hence,
no interface element was introduced, that is, the pile was
assumed to be fully attached to the soil, and the soil and pile
were both assumed to have linear elastic behavior.
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Figure 3: Calculation versus analytical solution of bending
moment.

Table 2: Deflection error with element CPS8R.

Mesh Deflection error (%)
B C D E

1 × 32 0.15 0.05 0.01 −0.01
2 × 32 0.33 0.15 0.09 0.05
4 × 32 0.38 0.18 0.11 0.07
8 × 32 0.40 0.19 0.12 0.08
1 × 64 0.27 0.12 0.07 0.04
2 × 64 0.36 0.17 0.10 0.07
4 × 64 0.39 0.18 0.12 0.08
8 × 64 0.40 0.19 0.12 0.08

2. Cantilever Beam Example

2.1. Analytical Solution. The cantilever beam example is
shown in Figure 1. The width of the square beam is 1m. The
length 𝐿 is 30m. A distributed load 𝑝 = 0.5 kPa is applied to
the beam. The analytical solution equations are

𝑀 =
1

2
𝑝(𝐿 − 𝑥)

2
, (1a)

𝜔 =
𝑝𝐿
4

2𝐸𝐼
(
𝑘
2

2
−
𝑘
3

3
+
𝑘
4

12
) , (1b)

where 𝑀 = bending moment, 𝑥 = the position coordinate,
𝑘 = 𝑥/𝐿,𝐸 = the Young’smodulus, 𝐼 = themoment of inertia,
𝜔 = −𝑢

𝑦
is the deflection of the beam, and 𝑢

𝑦
= displacement

in the 𝑦 direction.
The beam parameters are taken as Young’s modulus 𝐸 =
2 × 10

4MPa and Poisson’s ratio ] = 0.17 in the computation.
The element used in the FEM is the 4-node first-order plane
stress element (CPS4).The following two methods were used
to calculate the bending moment.
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Figure 4: Bending moment calculated with displacement (with CPS4).
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Table 3: Bending moment error (%).

Element type Mesh Computed with stress Computed with displacement
B C D B C D

CPS4

2 × 8 −89.19 −88.99 −88.02 −89.99 −91.72 −95.28
2 × 16 −70.02 −69.89 −69.22 −66.44 −65.26 −57.81
2 × 32 −45.73 −45.67 −45.37 −32.89 −36.96 −59.74
2 × 64 −31.89 −31.87 −31.78 −13.19 −3.40 −620.48
2 × 128 −27.25 −27.24 −27.22 −24.98 −620.48 −3143.38
4 × 64 −14.42 −14.40 −14.27
8 × 64 −10.03 −10.01 −9.87
16 × 64 −8.93 −8.91 −8.77
4 × 128 −8.56 −8.55 −8.52
8 × 128 −3.86 −3.85 −3.81
16 × 128 −2.68 −2.67 −2.64

CPS8R

2 × 32 −33.25 −33.15 −32.59
2 × 64 −33.31 −33.28 −33.11
2 × 128 −33.32 −33.31 −33.24
4 × 64 −6.65 −6.63 −6.52
8 × 64 −1.57 0.02 0.09
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Figure 5: Bending moment calculated with displacement (2 × 64,
with CPS8R).
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Figure 6: A sheet pile wall subjected to surface load.

Table 4: Horizontal displacement of the wall (with CPE8R).

Item Horizontal displacement
𝑈
𝑚
(m) 0.03647
𝑈
𝑡
(m) −0.00528

Table 5: Calculated bending moment in the wall (with CPE8R).

Item Computed with displacement Computed with stress
𝑀
𝑏
(kN⋅m) 2939.947 2650.037
𝑀
𝑚
(kN⋅m) −906.667 −902.366

(a) Calculating BendingMoment with Stress.Thebendingmo-
ment was directly computed with the normal stress on the
cross-section (see Figure 2):

𝑀 = ∑𝜎
𝑖
𝐴
𝑖
𝑙
𝑖
, (2)

where 𝜎
𝑖
= normal stress at the centroid of the element, 𝐴

𝑖
=

corresponding area of the element, and 𝑙
𝑖
= distance between

the centroid and the midline of the beam section.

(b) Calculating Bending Moment with Displacement. The
bending moment was calculated using the following quad-
ratic differential of deflection [14]:

𝑀 = 𝐸𝐼
𝑑
2
𝜔

𝑑𝑥
2
. (3)

Equation (3) can be transformed into a difference scheme,
and the bending moment was calculated by the difference
operation of lateral displacement. Figure 3 is the comparison
of the computed bending moment with analytically exact
results, where 𝜔 is calculated using (1b) with the number of
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Figure 7: Bending moment calculated with element CPE8R.

Table 6: Calculated horizontal displacement of the wall (with CPE4).

Item Grid number along the length
Grid number across wall section

2 4 8
Displacement (m) Error (%) Displacement (m) Error (%) Displacement (m) Error (%)

𝑈
𝑚

15 0.02875 −21.16 0.02835 −22.25 0.02825 −22.52
30 0.03475 −4.71 0.03411 −6.47 0.03395 −6.89
60 0.03673 0.74 0.03601 −1.24 0.03584 −1.72

𝑈
𝑡

15 −0.00144 −72.71 −0.00122 −76.86 −0.00117 −77.88
30 −0.00450 −14.71 −0.00420 −20.48 −0.00412 −21.90
60 −0.00541 2.49 −0.00509 −3.63 −0.00501 −5.14

Table 7: Calculated bending moment in the wall (with CPE4).

Item Grid number
along the length

Grid number across wall section
2 4 8

Bending
moment
(kN⋅m)

Error
(%)

Bending
moment
(kN⋅m)

Error
(%)

Bending
moment
(kN⋅m)

Error
(%)

𝑀
𝑏

Computed
with stress

15 1096.813 −58.61 1335.297 −49.61 1393.136 −47.43
30 1714.913 −35.29 2052.434 −22.55 2133.281 −19.50
60 2073.363 −21.76 2454.809 −7.37 2546.233 −3.92

Computed
with
displacement

15 1073.083 −63.50 1048.292 −64.34 1042.292 −64.55
30 1966.567 −33.11 1880.900 −36.02 1860.867 −36.70
60 2724.200 −7.34 2521.400 −14.24 2478.267 −15.70

𝑀
𝑚

Computed
with stress

15 −535.650 −40.64 −658.054 −27.07 −687.977 −23.76
30 −657.713 −27.11 −805.006 −10.79 −840.821 −6.82
60 −694.513 −23.03 −850.134 −5.79 −887.903 −1.60

Computed
with
displacement

15 −690.833 −23.81 −679.167 −25.09 −676.667 −25.37
30 −851.667 −6.07 −840.000 −7.35 −836.667 −7.72
60 −900.000 −0.74 −886.667 −2.21 −886.667 −2.21
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Figure 8: Comparison of horizontal displacements.

interpolation points being 10, 30, 60, and 120.This shows that
the method used here achieved a good result for the bending
moment.

2.2. Errors in Displacement and Bending Moment. We used
several meshes to do the computation. Grids along the length
of the beam were 32, 64, and 128 (in the 𝑥 direction, see

Figure 1). Sectional partitions were 1, 2, 4, 8, 16, and 32. Two
element types, CPS4 and the 8-node reduced-integration
element (CPS8R), were employed in the analysis. The results
are shown in Tables 1, 2, and 3 and in Figures 4 and 5, where
the term 𝑚 × 𝑛 denotes that there are 𝑚 grids along the 𝑦
direction and 𝑛 grids along the 𝑥 direction; B, C, D, and E are
positions for error calculation (see Figure 1).
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Figure 9: Comparison of bending moments calculated with displacement.

The errors in the tables are defined as

𝜀
𝜔
=
𝜔
𝑐
− 𝜔

𝜔
× 100 (%) , (4a)

𝜀
𝑀
=
𝑀
𝑐
−𝑀

𝑀
× 100 (%) , (4b)

where 𝜀
𝜔
= relative error of deflection, 𝜀

𝑀
= relative error of

bending moment, 𝜔
𝑐
= calculated deflection using FEM, 𝜔 =

analytically exact deflection from (1b),𝑀
𝑐
= calculated bend-

ing moment using FEM, and𝑀 = analytically exact bending
moment from (1a).

From Table 1, we can see that the deflection using CPS4 is
smaller than the analytical solution, which implies that the
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Figure 10: Comparison of bending moments calculated with stress.

shear locking occurs with the first-order element. Shear lock-
ing can be easily overcome with second-order reduced-inte-
gration elements, that is, using fewer grids can produce ap-
proximately the same results (see Table 2).

Although using the rectangular first-order element in-
duces shear locking in the beam, we can still obtain a good

result with sufficient partitions along the length of the beam;
if we partition the beam lengthways in 128 elements, the rel-
ative error can be smaller than 3% (see Table 1).

Table 3 and Figure 4 show the computational results of
bending moment for the first-order element. They indicate
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Figure 11: Bending moments calculated with displacement for suspended sheet pile wall.

that if the bendingmoment is to be calculatedwith stress, suf-
ficient partitions across the cross-section are necessary. Fluc-
tuation can lead to unreliable results when bending moment
is calculated with displacement.The effect of variation is even
stronger when increasing the grid density.The reasonmay be
that the loss of accuracy occurs for each difference operation
and the initial small error will be greatly magnified after two
operations.

A similar calculation of bending moment was done using
CPS8R. Figure 5 shows even more notable variation occur-
ring for the bending moments calculated with displacement.

Table 8: Horizontal displacement of the pile (with C3D20R).

Item Horizontal displacement (m)
𝑈
𝑚

0.045113
𝑈
𝑡

−0.007570

Table 9: Calculated bending moment in the pile (with C3D20R).

Item Computed with displacement Computed with stress
𝑀
𝑏
(kN⋅m) 3967.200 4706.848
𝑀
𝑚
(kN⋅m) −1146.667 −1101.314
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Figure 13: Bending moment calculated with element C3D20R.

Table 10: Calculated horizontal displacement of the pile (with C3D8).

Item Grid number along the length
Grid number across pile section

2 4 8
Displacement (m) Error (%) Displacement (m) Error (%) Displacement (m) Error (%)

𝑈
𝑚

15 0.042865 −4.98 0.042764 −5.21 0.042740 −5.26
30 0.044506 −1.35 0.044408 −1.56 0.044384 −1.62
60 0.044896 −0.48 0.044796 −0.70 0.044774 −0.75

𝑈
𝑡

15 −0.006532 −13.71 −0.006488 −14.29 −0.006478 −14.43
30 −0.007278 −3.85 −0.007238 −4.38 −0.007229 −4.51
60 −0.007452 −1.56 −0.007414 −2.06 −0.007405 −2.17
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Figure 14: Comparison of horizontal displacements.

3. 2D Analysis of a Sheet Pile Wall

Figure 6 shows a sheet pilewall subjected to a load𝑝 = 1MPa.
The bottom of the domain and the pile tip are fully restrained
frommoving in any direction while both sides of the domain
are restrained in the 𝑥 direction, while free in the 𝑦 direction.
The length of the pile is the same as that of the above beam,

30m, and the width is 1m. We used different mesh partitions
to do the calculation with the rectangular first-order element
(CPE4).

Since there is no analytical solution for this problem, re-
ferring to the above analysis of the cantilever beam, the re-
sults using a grid partition of 8 × 60, the 8-node plane strain
element, reduced integration (CPE8R) were considered as
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Table 11: Calculated bending moment in the pile (with C3D8).

Item Grid number
along the length

Grid number across pile section
2 4 8

Bending
moment
(kN⋅m)

Error
(%)

Bending
moment
(kN⋅m)

Error
(%)

Bending
moment
(kN⋅m)

Error
(%)

𝑀
𝑏

Computed with
stress

15 2184.875 −53.58 2668.929 −43.30 2787.809 −40.77
30 3172.975 −32.59 3831.406 −18.60 3992.286 −15.18
60 3793.750 −19.40 4545.541 −3.43 4729.851 0.49

Computed with
displacement

15 1881.417 −52.58 1863.667 −53.02 1859.417 −53.13
30 3248.333 −18.12 3179.000 −19.87 3163.000 −20.27
60 4082.267 2.90 3933.733 −0.84 3895.867 −1.80

𝑀
𝑚

Computed with
stress

15 −816.513 −25.86 −1004.993 −8.75 −1051.735 −4.50
30 −847.748 −23.02 −1041.848 −5.40 −1089.858 −1.04
60 −858.825 −22.02 −1053.395 −4.35 −1102.111 0.07

Computed with
displacement

15 −1063.333 −7.27 −1060.000 −7.56 −1059.583 −7.59
30 −1108.333 −3.34 −1105.000 −3.63 −1103.333 −3.78
60 −1126.667 −1.74 −1126.667 −1.74 −1120.000 −2.33

Table 12: Soil layers and parameters.

No. Soil layer Elevation of layer top (m) Elevation of layer bottom (m) Poisson’s ratio ] Young’s modulus (MPa)
1 Muck −5.3 −7.2 0.35 1.0
2 Mucky soil −7.2 −24.2 0.40 1.0
3 Silty fine sand −24.2 −36.3 0.25 10
4 Clay −36.3 −54.1 0.33 10
5 Clay −54.1 −56.6 0.33 25
6 Medium sand −56.6 −62.2 0.25 30
7 Clay −62.2 −71.4 0.3 30
8 Clay −71.4 −77.2 0.3 30
9 Clay −77.2 −86.1 0.3 30
10 Clay −86.1 −120.0 0.3 50

“exact.” The displacement at the top of the wall, 𝑈
𝑡
, and the

maximum displacement in the middle, 𝑈
𝑚
, are shown in

Table 4. The bending moment at the tip of the wall,𝑀
𝑏
, and

the maximum bending moment in the middle, 𝑀
𝑚
, are

shown in Table 5. Figure 7 shows the distribution of bending
moment calculated along the wall. Though a small variation
occurs in the bending moment distribution calculated with
displacement (CPE8R-8-60-W), it is quite close to that cal-
culated with stress (CPE8R-8-60-Y).

The calculated results using CPE4 are presented in Tables
6 and 7 and Figures 8, 9, and 10. The relative errors in the ta-
bles are relevant to those calculated with CPE8R. We find
that the displacements calculated with first-order elements
are smaller than those with 8-node elements, reduced-in-
tegration, whereas the values are close if they have the same
partition (8 × 60) along the height of the wall, which implies
that the shear locking is not distinct as for the cantilever
beam. The bending moments calculated with displacement
approximate those with stress and have insignificant varia-
tion.However, if thewall is suspended in the soil, obvious var-
iation occurs for the element CPE8R as shown in Figure 11.

4. Pile Examples

4.1. 3D Analysis of a Pile. Figure 12 shows a pile and its sur-
rounding soil in 3D view. The length of the pile is 30m, and
the width of the square pile is 1m, which is also the same as
that of the above-mentioned beam. The width of the compu-
tational domain is 9m.The applied load, material properties,
and boundary conditions are the same as those of the above-
mentioned sheet pile wall.

3-D analyses were made with different mesh partitions
of the pile shaft. The results with a grid partition of 8 × 60,
a 20-node brick element and reduced integration (C3D20R)
were considered as “exact”. Displacement at the top of the
pile, 𝑈

𝑡
, and maximum displacement in the middle, 𝑈

𝑚
, are

shown in Table 8, while the bending moment at the tip of the
pile,𝑀

𝑏
, andmaximumbendingmoment in themiddle,𝑀

𝑚
,

are shown in Table 9. Figure 13 is the distribution of moment
calculated along the pile. Again, the moment calculated with
displacement (C3D20R-8-60-W) is close to that calculated
with stress (C3D20R-8-60-Y) and insignificant variation is
found.
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Figure 15: Comparison of bending moments calculated with displacement.

The calculation results with first-order element (C3D8)
are presented in Tables 10 and 11 and Figures 14, 15, and 16.
The relative errors in the tables are relevant to those calculated
with C3D20R. As before, displacements calculated with first-
order elements are smaller than those with C3D20R and the
values are close if they have the same partition (8 × 60)
along the length of the pile. Bendingmoments calculatedwith

displacement approximate those with stress and have insig-
nificant variation. This indicates that the response of the pile
is similar to that of the above-mentioned wall for displace-
ment and bending moment computations.

4.2. 3-D Analysis of Piles for a Bridge Abutment. Figure 17
shows the cross-section of the piles of a bridge and a polder
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Figure 16: Comparison of bending moments calculated with stress.

dike. Figure 18 shows one of the meshes for the computation.
The length of the computational domain is 700m and the
width is 60m, which equals the abutment span.The elevation
of the ground surface is −5.3m, the elevation of the bottom
of the domain is −120m, and the elevation of the pile tip is
−90m. Each round pile is represented by an equivalent square
pile with a width of 1.33m, and the four piles are connected

by a pile cap (see Figure 18(b)). The flyash is filled to 4.63m
(see Figure 17).

The weight of the dike and the flyash was simulated with
a distributed load acting on the ground surface, respectively.
The effective unit weight of the dike is 18 kN/m3 above thewa-
ter level and 11 kN/m3 below the water level.The effective unit
weight of the flyash is 13.5 kN/m3 and 5.9 kN/m3, respectively.
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Figure 17: Cross-section of the piles of a bridge and a polder dike (in m).
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Figure 18: 3-D finite element mesh for the piles.

Again, linear elastic model was used to simulate the soil and
the pile. The parameters of the soil strata are presented in
Table 12, while Young’s modulus and Poisson’s ratio for the
pile are the same as those of the above-mentioned sheet pile
wall.

Five meshes (M1 to M5) were used to make the compu-
tation. The partitions of the piles and the total number of el-
ements and nodes in each mesh are listed in Table 13. Mesh
M3 has themost number of elements and nodes and themost
grids (4×42) for the pile. Again, the results forM3, a 20-node
brick element with reduced integration (C3D20R-M3), were
considered as “exact” to calculate the relative errors.

The calculated displacements with different meshes and
element types are presented in Table 14 and the distributions
are shown in Figure 19. The results agree closely with each
other, that is, with fewer linear elements, one can achieve
satisfactory displacement results.

Figure 20 shows the distribution of bendingmomentwith
C3D20R-M3. As a whole, the moment calculated with dis-
placement (C3D20R-M3-W) is similar to that calculated with
stress (C3D20R-M3-Y). However, notable variation occurs
for the moment calculated with displacement, particularly at
the upper part of the pile.

Figure 21 shows the bending moment calculated with
stress obtained from element type C3D8 andmeshesM1, M2,
M3, andM5.MeshM4 has no partition across the pile section
so we cannot calculate the bendingmoment. It is obvious that

the results for M3 and M2 are closer to that of C3D20R-M3
than for M1 and M5. Mesh M5 has only two grids across the
pile section, and the moment calculated for M5 is unreliable
and quite different from other results.

Figure 22 shows the bendingmoment calculatedwith dis-
placement. It is found that unlike C3D20R, the distribution
has insignificant variation for the linear element (C3D8) with
different meshes and agrees closely with each other, which
implies that calculations with linear elements may produce
fewer and smaller fluctuations than high-order elements in
this case.

4.3. 2-D Analysis of a Pile Row. Generally, a pile row can
be replaced by a sheet pile wall with stiffness chosen as the
average of the pile stiffness and that of the soil between the
piles [11–13],

𝐸𝐼 = 𝐸
𝑝
𝐼
𝑝
+ 𝐸
𝑠
𝐼
𝑠
, (5)

where 𝐸 = equivalent modulus of the sheet pile wall, 𝐼 =
moment of inertia of the sheet pile wall, 𝐸

𝑝
, 𝐸
𝑠
= Young’s

moduli of the pile and the soil, respectively, and 𝐼
𝑝
, 𝐼
𝑠
=

moments of inertia of the pile and the soil, respectively.
If the piles are at a spacing of 𝑢 and each pile is squared

with a width of 𝑑, the equivalent modulus can be

𝐸 =

𝐸
𝑝
𝑑 + 𝐸
𝑠
(𝑢 − 𝑑)

𝑢
. (6)
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Table 13: Meshes for the analysis.

Item C3D20R-M3 C3D8-M1 C3D8-M2 C3D8-M3 C3D8-M4 C3D8-M5
Element number 22620 9541 15855 22620 13497 14283
Node number 99996 11208 18264 25824 15600 16488
Grids for pile 4 × 42 4 × 16 4 × 26 4 × 42 1 × 26 2 × 26

CPU-time (s) 1451.8 67.1 132.6 217.5 124.0 121.0

Table 14: Calculated horizontal displacement of pile A.

Item At elevation of
−5.3m

At elevation of
−90m

C3D20R-M3 Displacement (m) 0.02024 0.00642

C3D8-M1 Displacement (m)
Error (%)

0.020093
−0.71

0.006339
−1.22

C3D8-M2 Displacement (m)
Error (%)

0.019967
−1.33

0.006355
−0.96

C3D8-M3 Displacement (m)
Error (%)

0.019897
−1.68

0.006368
−0.77

C3D8-M4 Displacement (m)
Error (%)

0.019971
−1.31

0.006355
−0.96

C3D8-M5 Displacement (m)
Error (%)

0.019967
−1.33

0.006355
−0.97
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Figure 19: Comparison of horizontal displacements.

In the analysis, the spacing of the pile row was assumed
to be 𝑢 = 2m, 9m, 100m, and 1000m. Other parameters are
the same as those of the above analyses. The configurations
are shown in Figures 6 and 12. As in the preceding studies, the
grid partition for the pile shaft was 8×60. The computational
results are shown in Figure 23 and Tables 15 and 16, in which
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Figure 20: Bending moment calculated with element C3D20R.

“-D” denotes that the 2-D analysis was conducted with the
equivalent modulus of the piles and (×𝐸

𝑝
/𝐸) denotes that the

bending moment was modified by multiplying by 𝐸
𝑝
/𝐸. It

is found that the calculated displacements of the “equivalent
sheet pile wall” are in close agreement with that of the pile
row.However, the results for the bendingmoment show some
difference, particularly at the fixed tip of the pile.
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Table 15: Comparison of horizontal displacements calculated by 2-D and 3-D analyses.

Pile spacing 2m 9m 100m 1000m
Element type CPE4-D C3D8 CPE4-D C3D8 CPE4-D C3D8 CPE4-D C3D8
𝑈
𝑚
(m) 0.04008 0.04016 0.04391 0.04477 0.04543 0.04575 0.04608 0.04575
𝑈
𝑡
(m) −0.00675 −0.00672 −0.00776 −0.007405 −0.00782 −0.00732 −0.00766 −0.00732

Table 16: Comparison of bending moments by 2-D and 3-D analyses (𝑢 = 9m).

Element type CPE4-D-W (EI) CPE4-D-W (𝐸
𝑝
𝐼
𝑝
) C3D8-W CPE4-D-Y CPE4-D-Y (×𝐸

𝑝
/E) C3D8-Y

𝑀
𝑏
(kN⋅m) 4422.84 4387.73 3895.87 636.48 5682.86 4729.85
𝑀
𝑚
(kN⋅m) −1061.76 −1053.33 −1120.00 −117.02 −1044.83 −1102.11
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Figure 21: Bending moments calculated with stress.

5. Conclusions

The bending moment computational methods for piles were
investigated using a series of calculation examples in this
study, and the following conclusions were reached.

(1) Compared to a cantilever beam, shear locking is not
significant for the passive pile embedded in soil, so
higher-order elements are not always necessary for
the computation. Computation with first-order (lin-
ear) elements and appropriate grid partition can pro-
duce similar good results as for higher-order ele-
ments.

(2) The number of the grids along the length of the pile
plays an important role in the analysis. With an in-
crease in grid number, the calculated displacement
and bending moment are closer to theoretical results.
Increasing the grid number across the pile section

is helpful for increasing the accuracy of the bending
moment calculated with stress, while it has insignifi-
cant influence on displacement and the related bend-
ing moment calculation.

(3) Calculating bending moment with stress can produce
good results, but many grids are needed to partition
the pile section. Calculating bending moment with
displacement needs fewer grids across the pile
section, but it may result in fluctuations of the
results, especially for the cantilever beam presented
in Section 2. The reason may be that the bending
moment calculated with stress corresponds to the
“integration” operation of stress, while the bending
moment calculated with displacement corresponds
to the “difference” operation of displacement. The
difference operation may amplify the error, and the
initial small error will be greatly magnified after
two operations. Consequently, if the fluctuations of
bending moment calculated with displacement are
evident, it is suggested that the bending moment
should be calculated with stress.

(4) When calculating the displacements of the piles, a
pile row can be suitably represented by an equivalent
sheet pile wall which has the same flexural stiffness
per unit width as the piles and the soil it replaces.The
displacements of thewall can agree closelywith that of
the pile row, while bending moments may differ from
each other.

(5) A special attention should be given to meshing and
the computational method for bendingmoment. Cal-
culated results may differ greatly with different grid
partitions and computational methods. Comparison
of results using different meshes is necessary when
performing the analysis.

It should be noted that, in order to clearly reveal the
influences of element type and mesh partition, only linear
elastic model was used in this study to simulate the soil and
the pile. Obviously, introduction of constitutive models for
the analysis of actual soil and pile will further complicate
the problem, and thus, more attention should be paid to the
calculation methods of bending moment.
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Figure 22: Bending moments calculated with displacement.
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Notation

CPS4: 4-node plane stress element
CPS8R: 8-node plane stress element,

reduced-integration
CPE4: 4-node plane strain element
CPE8R: 8-node plane strain element,

reduced-integration
C3D8: 8-node brick element
C3D2R: 20-node brick element,

reduced-integration
-𝑚-𝑛 or𝑚 × 𝑛: Computation made with𝑚 grids across

the cross-section, and 𝑛 grids along the
length of the pile shaft

-M1: Computation made with mesh M1
-W: Bending moment calculated with

displacement
-Y: Bending moment calculated with stress
-D: Computation of the equivalent sheet pile

wall made with equivalent modulus
-W-𝐸
𝑝
𝐼
𝑝
: Bending moment calculated with

displacement and stiffness of the pile shaft
(𝐸
𝑝
𝐼
𝑝
)

-Y-𝐸
𝑝
/𝐸: Bending moment calculated with stress

and modified by multiplying by 𝐸
𝑝
/𝐸

CPE4-𝑚-𝑛: Computation made with element CPE4
and the mesh division of the pile shaft
being𝑚 × 𝑛

C3D8-M1: Computation made with element C3D8
and mesh M1

𝑈
𝑡
: Displacement at the top of the pile
𝑈
𝑚
: Maximum displacement at the middle of

the pile
𝑀
𝑏
: Bending moment at the tip of the pile
𝑀
𝑚
: Maximum bending moment at the middle

of the pile.
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[4] Z. Yang and B. Jeremić, “Numerical study of group effects for
pile groups in sands,” International Journal for Numerical and
Analytical Methods in Geomechanics, vol. 27, no. 15, pp. 1255–
1276, 2003.

[5] D. A. Brown and C. F. Shie, “Three dimensional finite element
model of laterally loaded piles,”Computers and Geotechnics, vol.
10, no. 1, pp. 59–79, 1990.

[6] C. S. Desai and J. T. Christian, Numerical Methods in Geotech-
nical Engineering, McGraw-Hill, New York, NY, USA, 1977.

[7] A. Muqtadir and C. S. Desai, “Three dimensional analysis of a
pile-group foundation,” International Journal for Numerical and
Analytical Methods in Geomechanics, vol. 10, no. 1, pp. 41–58,
1986.

[8] J. S. Pressley andH.G. Poulos, “Finite element analysis ofmech-
anisms of pile group behavior,” International Journal for Numer-
ical and Analytical Methods in Geomechanics, vol. 10, no. 2, pp.
213–221, 1986.

[9] G. R. Martin and C. Y. Chen, “Response of piles due to lateral
slopemovement,”Computers and Structures, vol. 83, no. 8-9, pp.
588–598, 2005.

[10] O. C. Zienkiewicz and R. L. Taylor,The Finite Element Method,
Elsevier, Singapore, 2005.

[11] E. A. Ellis and S. M. Springman, “Modelling of soil-structure
interaction for a piled bridge abutment in plane strain FEM
analyses,” Computers and Geotechnics, vol. 28, no. 2, pp. 79–98,
2001.

[12] T. Hara, Y. Yu, and K. Ugai, “Behaviour of piled bridge abu-
tments on soft ground: a design method proposal based on 2D
elasto-plastic-consolidation coupled FEM,” Computers and Ge-
otechnics, vol. 31, no. 4, pp. 339–355, 2004.

[13] D. P. Stewart, R. J. Jewell, and M. F. Randolph, “Numerical
modelling of piled bridge abutments on soft ground,”Computers
and Geotechnics, vol. 15, no. 1, pp. 21–46, 1993.

[14] Y. Q. Long and S. H. Bao, Structural Mechanics Course, Ad-
vanced, Education Press, Beijing, China, 2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


