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A new deblurring and denoising algorithm is proposed, for isotropic total variation-based image restoration.The algorithm consists
of an efficient solver for the nonlinear system and an acceleration strategy for the outer iteration. For the nonlinear system, the split
Bregmanmethod is used to convert it into linear system, and an algebraicmultigridmethod is applied to solve the linearized system.
For the outer iteration, we have conducted formal convergence analysis to determine an auxiliary linear term that significantly
stabilizes and accelerates the outer iteration. Numerical experiments demonstrate that our algorithm for deblurring and denoising
problems is efficient.

1. Introduction

The purpose of image restoration is to recover original image
𝑢 from an observed data 𝑧 (noisy and blurred image) from
the relation

𝑧 = 𝐾𝑢 + 𝑛, (1)
where 𝐾 is a known linear blurring operator and 𝑢 is a
Gaussian white noise. The well-known minimization prob-
lem for image denoising and deblurring based on isotropic
total variation (TV) is proposed by Rudin et al. [1]:

min
𝑢

(𝛼 ∫

Ω

√|∇𝑢|
2

+ 𝛽𝑑𝑥𝑑𝑦 +

1

2

‖𝐾𝑢 − 𝑧‖
2

𝐿
2

) . (2)

Here 𝛼 > 0 is the penalty parameter, and 𝛽 > 0 is the
diffusion regularization parameter and is typically small. The
functional in (2) is strictly convex with a unique global
minimizer. The paper [2] showed the well-posedness of
problem (2) as 𝛽 → 0

+ and the existence of a unique global
minimizer. The corresponding Euler-Lagrange equation for
(2) is given by

−𝛼∇ ⋅ (

∇𝑢

√|∇𝑢|
2

+ 𝛽

) + 𝐾
∗

(𝐾𝑢 − 𝑧) = 0, (3)

where𝐾
∗ is the adjoint operator of𝐾with respect to standard

𝐿
2
inner product.
In addition to the isotropic models, the anisotropic mod-

els for a qualitative improvement at corners are shown in [3]
with that a transfer of the discretization from the anisotropic
model to the isotropic setting results in an improvement of
rotational invariance. The anisotropic TV defined in [3] is

TV
2

(𝑢) = ∫

Ω

(




∇
𝑥
𝑢





+






∇
𝑦
𝑢






) 𝑑𝑥𝑑𝑦. (4)

The existence and uniqueness of solutions of the anisotropic
total variation flow are shown in [4]. The explicit time-
marching schemes are applied in [1, 5]. Zuo and Lin [6] pro-
posed a generalized accelerated proximal gradient (GAPG)
approach for solving TV-based image restoration problems
by replacing the Lipschitz constant with an appropriate
positive-definite matrix, resulting in faster convergence, and
the TV regularization can be either isotropic or anisotropic.
The convergence rate of 𝑂(𝑘

2

) is maintained by GAPG,
where 𝑘 is the number of iterations. The introduction of an
anisotropy to TV regularization [7] indeed leads to improved
denoising: the staircasing effect is reduced while at the same
time the creation of artifacts is suppressed.
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There are different algorithms to solve (3). Earlier works
include the time-marching scheme [1], the affine scaling
algorithm [8], the Newton’s method with a continuation
procedure on 𝛽 [9], a fixed point iteration with multigrid
method [10–12], the combination of fixed point iteration
and preconditioned conjugate gradient which method is
proposed in [13], a fast algorithm based on the discrete cosine
transform [14, 15], a new modular solver [16], a proximity
algorithm [17], and a nonlinear primal-dual method [18].
Though the corresponding linear system of the nonlinear
primal-dual method is twice as large as the primal system,
it is shown to be better conditioned. In [19], the combination
of the algebraic multigrid (AMG) methods [20, 21], Krylov
subspace acceleration, and extrapolation of initial data are
successfully combined to give an efficient algorithm for the
purely denoising problem. In [22], the authors proposed
the split Bregman method to solve image denoising and
compressed sensing problem rapidly. Chang et al. [23] added
a linear matrix to speed up the computational process.

In this paper, we propose an efficient and rapid algo-
rithm for minimization problem (2) rather than solving the
Euler-Lagrange equation (3) directly which combines the
split Bregman method, the algebraic multigrid method, and
Krylov subspace acceleration. Our algorithm consists of two
steps. One uses the split Bregman method to convert (2) into
linear system in the outer iteration, and the other adopts an
AMG method previously developed by one of the authors
for other applications [23, 24] to solve a linear system in the
inner iteration. Moreover, the outer iteration is accelerated
by Krylov subspace extrapolation. One 𝑉-cycle per inner
iteration is sufficient in all our simulations. For the outer
iteration, we have developed a stabilizing technique adapted
to the blur operator 𝐾. This is done by adding a linear term
on both sides of the equation [23]. Motivated by that, a wider
linear term different from that in [23] is considered here.This
linear stabilizing term is obtained via formal convergence
analysis and is expressed explicitly in terms of the mask
of 𝐾. The inclusion of the linear stabilizing term plays a
crucial role in our scheme. The outer iteration indeed may
diverge without a proper linear stabilizing term (Table 6,
Section 5).

The rest of the paper is organized as follows. In Section 2,
we discuss the purely image denoising problem by describing
briefly the AMG method and the split Bregman method for
the isotropic TV model and the anisotropic TV model. In
Section 3, we discuss the image denoising and deblurring
problem and present the formal convergence analysis and the
framework of our scheme. In Section 4, we give out explicit
formulae of the linear stabilizing term, together with other
implementation details. Numerical results are also compared
among several algorithms in Section 5. We end this paper
with a brief summary in Section 6.

2. The Algebraic Multigrid
In this section, we will show how to directly use AMG in
solving (3). We first show some denotations to discretize (3)
(cf. [19]). We partition the domain Ω = (0, 1) × (0, 1) into
𝐿 × 𝐿 uniform cells with mesh size ℎ = 1/𝐿. The cell centers

are
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𝑙
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𝑘
) = ((𝑙 −
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) ℎ) , 𝑙, 𝑘 = 1, . . . , 𝐿. (5)

Following the ideas of [12, 19], we discretize (3) by standard
five-point finite difference scheme to get
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with homogeneous Neumann boundary condition:
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(9)

and so forth.
To simplify the notation, we abbreviate (6) as

𝛼𝐿 (𝑢) 𝑢 = −𝐾
∗

(𝐾𝑢 − 𝑧) , (10)

where

𝐿 (V) 𝑤 = −∇
ℎ

⋅ (

∇
ℎ
𝑤

√




∇
ℎ
V





2

+ 𝛽

) , (11)

which is fully nonlinear with wildly varying coefficient.
Consider the general system (10) in an 𝐿

2

× 𝐿
2:

𝐴𝑈 = 𝐹, (12)

with the matrix 𝐴 = 𝛼𝐿(𝑢) in (10). In general, 𝐴 varies
wildly near areas of high contrast of the image and need
not be diagonally dominant. Nevertheless, 𝐴 is symmetric
and positive definite. Moreover, the matrix 𝐾

∗

𝐾 is wide-
banded, and the spectra of the matrices 𝐿(𝑢) and 𝐾

∗

𝐾 are
quite differently distributed. It is difficult to compute (10). In
[13], Vogel and Oman adopted the combination of a fixed
point iteration and a product PCG to handle the nonlinear
term and the linear system, respectively. In [15], Chan et al.
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proposed another preconditioner based on the fast cosine
transform.

Algebraic multigrid method is considered in [19, 24,
25] as a linear solver. In contrast to geometric multigrid
method, the construction of the coarse grids Ω

𝑚 is solely
based on the algebraic information provided by the matrix
𝐴 in an AMG setting. The details and effectiveness can be
found, for example, in [23, 24, 26]. For the restriction and
coarse grid operators, a simple and popular approach is the
Galerkin type construction. Namely, 𝐼

𝑚+1

𝑚
= (𝐼
𝑚

𝑚+1
)
∗ and

𝐴
𝑚+1

= 𝐼
𝑚+1

𝑚
𝐴
𝑚

𝐼
𝑚

𝑚+1
. How to construct the interpolation

operators 𝐼
𝑚

𝑚+1
is the most important part in the method.

The convergence proof for this improved AMG method was
given in [25] when 𝐴

𝑚 is symmetric positive definite. The
robustness of these interpolation formulae is supported by
plenty of numerical evidence [24, 25].The detailed algorithm
using the AMGmethod to solve (10) is in Algorithm 1.

2.1.The Split BregmanMethod for Isotropic TVModel. In [22],
the split Bregman method is applied to the ROF model for
image denoising problem. For completeness, we show the
main progress about the split Bregmanmethod applied to the
ROF model. Firstly, consider discretizing ROF model into

∫
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𝑥

≈ ∇
𝑥
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𝑦
≈ ∇
𝑦
𝑢, the split Bregman formula-

tion of the isotropic problem then becomes
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where
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Consider it into the following three subproblems:
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The formula (16) is 𝑙
2
-norm; it can be solved using

the variation approach. The corresponding Euler-Lagrange
equation for (16) is
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The difference scheme is
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When 𝐾 = 𝐼, the difference scheme of the previous formula
is simplified as
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Using Gauss-Seidel method for (21), we have
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Problem (17) can be solved using the fast shrinkage
operators:
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Initialize: 𝑢0 = 𝑧

While
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𝑘

− 𝑢
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𝑘
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𝑘
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− 𝑧).
end

Algorithm 1

The optimal value of 𝑑 can be explicitly gotten using
the above shrinkage operators. The formula (18) can be
discretized directly. Thus the split Bregman algorithm of the
isotropic TV denoising is as in Algorithm 2.

2.2.The Split BregmanMethod Based on AMG for Isotropic TV
Model. It is easy to find that the accuracy of the split Bregman
method is not high because the Gauss-Seidel iteration of 𝑢

is executed only once per loop. At the same time, the AMG
algorithm has fast convergence and high precision. It can
be applied to large signal-to-noise ratio of image denoising,
which has strong stability. So, we consider the combination of
the twomethods, and get a new denoising algorithmwhich is
the split Bregman method based on AMG (here we call it as
Algorithm 3). This algorithm contains four steps.

Moreover, we useKrylov technique to accelerate subspace
extrapolation.

2.3.The Split BregmanMethod for Anisotropic TVModel. The
anisotropic total variation of 𝑢 [27] is represented by
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The anisotropic TVmodel for denoising can be formulated as
the following minimization problem:

min
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where 𝜇 is an appropriately chosen positive parameter. Define
an operator [27]
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With the previous operator, we have Algorithm 4 to solve the
anisotropic TV denoising problem.

It should be noticed that there is no need to solve any
equations like the isotropic model. This algorithm need not
solve any elliptic equation of 𝑢 in [27], so the procedure is
rapid, simple, and not costly.

3. Convergence Analysis

We consider the discretized system with general noise and
blur:
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− 𝑢
𝑘+1

𝑖,𝑗+1
− 𝑢
𝑘+1

𝑖,𝑗−1
)

= 𝜇(𝐾
∗

𝑧)
𝑖𝑗

+ 𝜆 [(𝑑
𝑘

𝑥
− 𝑏
𝑘

𝑥
)
𝑖−1,𝑗

− (𝑑
𝑘

𝑥
− 𝑏
𝑘

𝑥
)
𝑖,𝑗

+(𝑑
𝑘

𝑦
− 𝑏
𝑘

𝑦
)
𝑖,𝑗−1

− (𝑑
𝑘

𝑦
− 𝑏
𝑘

𝑦
)
𝑖,𝑗

] = 𝐹
𝑖𝑗
.

(27)

To simplify the notation, we abbreviate (27) as

−𝜆Δ𝑢 = −𝜇𝐾
∗

𝐾𝑢 + 𝐹. (28)

In general, the matrix 𝐾
∗

𝐾 would be dense.There is one way
to completely avoid the matrix inversion. A natural approach
would then be

−𝜆Δ𝑢
(𝑠+1)

= −𝜇𝐾
∗

𝐾𝑢
(𝑠)

+ 𝐹. (29)

It turns out that the iteration (29) is not robust and may
diverge even for weak blur operator corresponding to the
mask (1/64)(1, 1, 4, 1, 1)

𝑇

(1, 1, 4, 1, 1) with 𝜎 = 10. To
overcome this instability, we propose to add a linear term
𝐵 + 𝜂𝐼 on both sides of (29) and get

(−𝜆Δ + 𝐵 + 𝜂𝐼) 𝑢
(𝑠+1)

= − (𝜇𝐾
∗

𝐾𝑢
(𝑠)

− 𝐵 − 𝜂𝐼) 𝑢
(𝑠)

+ 𝐹,

(30)

where 𝜂 is arbitrary small positive number and 𝐵 is a
symmetric and positive definite matrix to be determined
through the following formal analysis. Now we will analyze
the convergence property of (29).

Theorem 1. If the matrix 𝐵 satisfies

2𝐵 − 𝜇𝐾
∗

𝐾 ≥ 0, (31)

the equation (30) is locally convergent.

Let 𝑢
∞ be the solution of (29); that is,

−𝜆Δ𝑢
(∞)

= −𝜇𝐾
∗

𝐾𝑢
(∞)

+ 𝐹. (32)

We then define 𝑒
(∞)

= 𝑢
(𝑠)

− 𝑢
(∞), and the error equation is

(−𝜆Δ + 𝐵 + 𝜂𝐼) 𝑒
(𝑠+1)

= − (𝜇𝐾
∗

𝐾𝑢
(𝑠)

− 𝐵 − 𝜂𝐼) 𝑒
(𝑠)

, (33)
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Initialize: 𝑢0 = 𝑧, 𝑑
0

𝑥
= 0, 𝑑

0

𝑦
= 0, 𝑏

0

𝑥
= 0, 𝑏

0

𝑦
= 0.

While





𝑢
𝑘

− 𝑢
𝑘−1





2





𝑢
𝑘



2

> 𝜖,

𝑢
𝑘+1

= 𝐺
𝑘 by (22),

𝑑
𝑘+1

𝑥
= max(𝑠

𝑘

−

1

𝜆

, 0) ⋅

∇
𝑥
𝑢
𝑘+1

+ 𝑏
𝑘

𝑥

𝑠
𝑘

,

𝑑
𝑘+1

𝑦
= max(𝑠

𝑘

−

1

𝜆

, 0) ⋅

∇
𝑦
𝑢
𝑘+1

+ 𝑏
𝑘

𝑦

𝑠
𝑘

,

𝑏
𝑘+1

𝑥
= 𝑏
𝑘

𝑥
+ (∇
𝑥
𝑢
𝑘+1

− 𝑑
𝑘+1

𝑥
),

𝑏
𝑘+1

𝑦
= 𝑏
𝑘

𝑦
+ (∇
𝑦
𝑢
𝑘+1

− 𝑑
𝑘+1

𝑦
).

End

Algorithm 2

Step 1: Decomposing the denoising model of ROF to three subproblems (16)–(18) using the split
Bregman method.

Step 2: To get 𝑢 by solving (22) using the AMGmethod.
Step 3: To get 𝑑

𝑥
, 𝑑
𝑦
, using the shrinkage operator (23).

Step 4: To directly discretize 𝑏
𝑥
, 𝑏
𝑦
, using difference scheme.

Algorithm 3

which is equivalent to

𝜂 (𝑒
(𝑠+1)

− 𝑒
(𝑠)

) = − (𝑃𝑒
(𝑠+1)

− 𝑄𝑒
(𝑠)

) (34)

with

𝑃 = (−𝜆Δ + 𝐵) , 𝑄 = (𝐵 − 𝜇𝐾
∗

𝐾) . (35)

It is easy to show that the matrices 𝑃 and 𝑄 are symmetric.
Taking the inner product on both sides of (34) with 𝑃𝑒

(𝑠+1)

−

𝑄𝑒
(𝑠) gives

𝜂 (𝑒
(𝑠+1)

− 𝑒
(𝑠)

, 𝑃𝑒
(𝑠+1)

− 𝑄𝑒
(𝑠)

) = −






𝑃𝑒
(𝑠+1)

− 𝑄𝑒
(𝑠)







2

2

≤ 0,

(36)

and we will now rearrange the formula (36) as

𝜂(𝑒
(𝑠+1)

− 𝑒
(𝑠)

)

𝑇

× (

𝑃 − 𝑄

2

(𝑒
(𝑠+1)

+ 𝑒
(𝑠)

) +

𝑃 + 𝑄

2

(𝑒
(𝑠+1)

− 𝑒
(𝑠)

)) ≤ 0.

(37)

Rewrite the previous formula as

(𝑒
(𝑠+1)

)

𝑇

(𝑃 − 𝑄) 𝑒
(𝑠+1)

− (𝑒
(𝑠)

)

𝑇

(𝑃 − 𝑄) 𝑒
(𝑠)

+ (𝑒
(𝑠+1)

− 𝑒
(𝑠)

)

𝑇

(𝑃 + 𝑄) (𝑒
(𝑠+1)

− 𝑒
(𝑠)

) ≤ 0.

(38)

If (𝑃 − 𝑄) and (𝑃 + 𝑄) are symmetric and positive definite, it
follows from (38) that






(𝑒
(𝑠+1)

)







2

𝑃−𝑄

−






(𝑒
(𝑠)

)







2

𝑃−𝑄

+






𝑒
(𝑠+1)

− 𝑒
(𝑠)







2

𝑃+𝑄

≤ 0, (39)

where ‖V‖
2

𝐴
= V
𝑇

𝐴V with positive definite matrix 𝐴. The
behavior of (39) leads to






(𝑒
(𝑠+1)

)







2

𝑃−𝑄

≤






(𝑒
(𝑠)

)







2

𝑃−𝑄

. (40)

In other words, the iteration (30) is locally convergent if both

𝑃 − 𝑄 = −𝜆Δ + 𝜇𝐾
∗

𝐾,

𝑃 + 𝑄 = −𝜆Δ + 2𝐵 − 𝜇𝐾
∗

𝐾

(41)

are symmetric and positive definite which means

𝑃 − 𝑄 = −𝜆Δ + 𝜇𝐾
∗

𝐾 > 0,

𝑃 + 𝑄 = −𝜆Δ + 2𝐵 − 𝜇𝐾
∗

𝐾 > 0.

(42)

Since −𝜆Δ and 𝜇𝐾
∗

𝐾 are symmetric and positive definite, a
sufficient condition for (42) is given by (31).
Remark. We can see that (31) indeed is a good guideline
for devising the iteration of 𝑢. We will elaborate on the
choice of 𝐵 better suited for numerical purposes in Section 4.
Indeed, the iteration (30) may fail to converge when (31) is
not satisfied. See Section 4.2 for more details. In addition,
the preprocessing of initial data proposed in [19] is no longer
required when (31) is satisfied.

4. Numerical Experiments and Discussion

4.1. Images and Blurring Operators. The numerical examples
given in this paper are based on the three images shown
in Figure 1. The first one is a satellite image (Image I), the
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Initialize: 𝑢1 = 𝑧, 𝑏
0

𝑥
= 0, 𝑏

0

𝑦
= 0.

While





𝑢
𝑘

− 𝑢
𝑘−1





2





𝑢
𝑘



2

< 𝜖,

𝑏
𝑘

𝑥
= cut(∇

𝑥
𝑢
𝑘

+ 𝑏
𝑘−1

𝑥
,

1

𝜆

),

𝑏
𝑘

𝑦
= cut(∇

𝑦
𝑢
𝑘

+ 𝑏
𝑘−1

𝑦
,

1

𝜆

),

𝑢
𝑘+1

= 𝑧 −

𝜆

𝜇

(∇
𝑇

𝑥
𝑏
𝑘

+ ∇
𝑇

𝑦
𝑏
𝑘

).

End

Algorithm 4

second one is made up of simple shapes (Image II) used in
the literature [15], and the last one is Lena image (Image III).
We have experiments on restoring the three images blurred
by the following three different blurring operators [23].

Blur operator I:
1.5

784

(1, 2, 3, 16, 3, 2, 1)
𝑇

(1, 2, 3, 16, 3, 2, 1)

=

1.5

784

[

[

[

[

[

[

[

[

[

[

1 2 3 16 3 2 1

2 4 6 32 6 4 2

3 6 9 48 9 6 3

16 32 48 256 48 32 16

3 6 9 48 9 6 3

2 4 6 32 6 4 2

1 2 3 16 3 2 1

]

]

]

]

]

]

]

]

]

]

.

(43)

Blur operator II: an out-of-focus blur with the kernel of
convolution given by the kernel

V
𝑘,𝑙

=

{

{

{

𝑐

13

, if 𝑘
2

+ 𝑙
2

≤ 4,

0, otherwise,
(44)

where 𝑐 = 1.2188.
Blur operator III: a truncated Gaussian blur given by

V
𝑘,𝑙

= {

𝑐𝑒
−𝜏(𝑘
2
+𝑙
2
) if |𝑘| , |𝑙| ≤ 5,

0, otherwise,
(45)

where 𝑐 = 0.176 and 𝜏 = 0.38.

4.2. The Linear Stabilizing Term. The condition (31) serves as
a general guideline for the choice of thematrix. In this section,
we will consider a quinta-diagonal matrix 𝐵 to be compared
with a diagonal matrix 𝐵 [23].

4.2.1. Diagonal Matrix 𝐵. In order to solve (30) efficiently, an
obvious candidate is diagonal matrices of the form

𝐵 = 𝜀𝐼. (46)

The condition (31) then reads

𝜀 ≥ 𝜀
∗

=

1

2

𝜆max (𝜇𝐾
∗

𝐾) =

1

2

𝜆max (𝜇𝐾
2

) . (47)

To proceed with the estimate of 𝜆max(𝐾), we notice that
our sample blurring operators I–III can be represented by a
mask of the form

𝑉 =

[

[

[

[

[

V
−𝑟,−𝑟

V
−𝑟,−𝑟+1

⋅ ⋅ ⋅ V
−𝑟,𝑟

V
−𝑟+1,−𝑟

V
−𝑟+1,−𝑟+1

⋅ ⋅ ⋅ V
−𝑟+1,𝑟

...
...

...
...

V
𝑟,−𝑟

V
𝑟,−𝑟+1

⋅ ⋅ ⋅ V
𝑟,𝑟

]

]

]

]

](2𝑟+1)∗(2𝑟+1)

, (48)

with V
𝑘,𝑙

= V
𝑙,𝑘

= V
−𝑘,𝑙

= V
𝑘,−𝑙

. It is easy to see that, under
theNeumann boundary conditions, the largest eigenvalue for
such 𝐾 is given by

𝜆max (𝐾) =

𝐿
2

∑

𝑖=1

𝐾
𝑖,𝑗

=

𝑟

∑

𝑘,𝑙=−𝑟

V
𝑘,𝑙

, (49)

where the second term of (49) is independent and the
corresponding eigenfunction is a constant. In summary, we
have the following sufficient condition for (31):

𝐵 = 𝜀𝐼, 𝜀 ≥ 𝜀
∗

=

1

2

𝜇(

𝑟

∑

𝑘,𝑙=−𝑟

V
𝑘,𝑙

)

2

. (50)

Similar conditions can be derived for variants of (50),
such as

𝐵 =

1

2

diag (𝐾
∗

𝐾) +

1

2

𝛿𝐼,

𝛿 ≥ 𝛿
∗

= max
𝑖

∑

𝑗 ̸= 𝑖

𝜇(𝐾
∗

𝐾)
𝑖,𝑗

= 𝜇(

𝑟

∑

𝑘,𝑙=−𝑟

V
𝑘,𝑙

)

2

−

𝑟

∑

𝑘,𝑙=−𝑟

V
2

𝑘,𝑙
,

𝛿 ≥ 𝛿
∗

= max
𝑖

(∑

𝑗 ̸= 𝑖

𝜇(𝐾
∗

𝐾)
𝑖,𝑗

− (𝐾
∗

𝐾)
𝑖,𝑖

)

= 𝜇(

𝑟

∑

𝑘,𝑙=−𝑟

V
𝑘,𝑙

)

2

−

𝑟

∑

𝑘,𝑙=−𝑟

V
2

𝑘,𝑙
,

(51)
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Figure 1: Original images. Image I, Image II, and Image III.

Table 1: Critical values of the parameters, 𝜀∗, 𝛿∗, 𝛾∗ and the solution
to (55).

Blur operator 𝑏
∗

𝛿
∗

𝛾
∗

(𝑎, 𝑏)
∗

I 1.13 1.95 0.83 (0.72, 0.17)
II 0.74 1.37 0.63 (0.49, 0.09)
III 1.06 1.98 0.93 (0.65, 0.15)

or

𝐵 = diag (𝐾
∗

𝐾) + 𝛾𝐼,

𝛾 ≥ 𝛾
∗

=

1

2

max
𝑖

(∑

𝑗 ̸= 𝑖

𝜇(𝐾
∗

𝐾)
𝑖,𝑗

− 2(𝐾
∗

𝐾)
𝑖,𝑖

)

=

1

2

𝜇(

𝑟

∑

𝑘,𝑙=−𝑟

V
𝑘,𝑙

)

2

−

𝑟

∑

𝑘,𝑙=−𝑟

V
2

𝑘,𝑙
.

(52)

In our examples, the diagonal entries of 𝐾
∗

𝐾 are
constant-valued except for the near-boundary pixels. We
expect the performances of (50), (51), and (52) to be com-
parable to each other. In this paper, most of our numerical
experiments are conducted using (52) with 𝛾 = 1. See
Section 5 for more details.

4.2.2. Quinta-Diagonal Matrix 𝐵. In addition to diagonal
matrices, we have also explored quinta-diagonalmatrices𝐵

𝑎,𝑏

given by the mask

[

[

0 𝑏 0

𝑏 𝑎 𝑏

0 𝑏 0

]

]

. (53)

𝐵
𝑎,𝑏

has the same support as laplace operator Δ; therefore
the computational cost in the AMG step is comparable to
diagonal 𝐵. In view of (33) and (31), it is clear that the optimal
𝐵
(𝑎,𝑏)
∗ is the one that solves

min
𝑎,𝑏

𝜌 ((−𝜆Δ + 𝐵
(𝑎,𝑏)

)
−1

(𝐵
(𝑎,𝑏)

− 𝜇𝐾
∗

𝐾))

subject to 2𝐵
(𝑎,𝑏)

− 𝜇𝐾
∗

𝐾 ≥ 0,

(54)

Table 2: Results of Figure 2.

Algorithm (𝜎, 𝜇, 𝜆)
Iteration
step 𝑒2 𝑒0 Time

(10, 0.1, 0.2)
𝑁 = 3 6.88 87.36 0.0625

Algorithm 2 𝑁 = 50 1.16 30.64 0.9218

(40, 0.05, 0.1)
𝑁 = 3 11.98 93.46 0.0468

𝑁 = 50 10.04 106.16 0.6562

Algorithm 4 (10, 0.1, 0.2) 𝑁 = 50 4.88 46.25 0.5156

(40, 0.1, 0.2) 𝑁 = 50 19.24 156.89 0.5156

Algorithm 3 (10, 0.2, 0.2) 𝑁 = 3 4.40 73.23 0.3125

(40, 0.03, 0.06) 𝑁 = 3 9.29 111.18 0.3125

where 𝜌(𝐴) is the spectral radius of 𝐴. The actual minimizer
of (54) depends on the true image 𝑢

(∞) and there is no simple
way of finding it. An accessible approximation is given by the
following modified minimization problem:

min
𝑎,𝑏

𝜌 (𝐵
(𝑎,𝑏)

− 𝜇𝐾
∗

𝐾) subject to 2𝐵
(𝑎,𝑏)

− 𝜇𝐾
∗

𝐾 ≥ 0.

(55)

In our examples, the common eigenbasis of 𝐵
𝑎,𝑏

and 𝐾 is
given by

𝑒
𝑚,𝑛

(𝑥
𝑘
, 𝑦
𝑙
) = cos (𝑚𝜋𝑥

𝑘
) cos (𝑛𝜋𝑦

𝑙
) , 𝑚, 𝑛 = 1, . . . , 𝐿.

(56)

It is straightforward to compute the corresponding eigenval-
ues for (𝐵

(𝑎,𝑏)
− 𝜇𝐾
∗

𝐾) and the numerical solution of (55)
by varying 𝑎 and 𝑏 over a suitable range. The optimal (𝑎, 𝑏)

∗,
together with the critical values of 𝜀, 𝛿, and 𝛾, is given in
Table 1. It is not clear a priori why (55) should result in better
performance. Nevertheless, we find fromour experiment that
𝐵
(𝑎,𝑏)
∗ indeed performs no worse than diagonal 𝐵 and can

be significantly faster in some cases. See more details in
Section 5.

4.3. The Stopping Criterion and Acceleration Technique. The
outer iteration is stopped upon a relative decrease of the
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Figure 2: (a) Original image. (b) Noisy image contaminated by 𝜎 = 10 (SNR =14.90%). (c) Denoised image with 3 iterations of Algorithm 2.
(d) Denoised image with 50 iterations of Algorithm 2. (e) Denoised image with 50 iterations of Algorithm 4. (f) Denoised image with 3
iterations of Algorithm 3.

(normalized) residual by a factor of 10
−4 for the blurring

operators, namely, when the condition






𝑟
(𝑁)





𝑙
2





𝑟
(1)




𝑙
2

≤ 10
−4 (57)

is reached. Here the normalization of the residual is given by

𝑟
(𝑠+1)

= (𝐷
(𝑠+1)

)

−1

× ((−𝜆Δ + 𝐵) V
(𝑠+1)

+ (𝜇𝐾
∗

𝐾 − 𝐵) V
(𝑠+1)

− 𝐹) ,

(58)
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Figure 3: (a) Original image. (b) Noisy image contaminated by 𝜎 = 40 (SNR = 26.725%). (c) Denoised image with 3 iterations of Algorithm 2.
(d) Denoised image with 50 iterations of Algorithm 2. (e) Denoised image with 50 iterations of Algorithm 4. (f) Denoised image with 3
iterations of Algorithm 3.

where V
(𝑠+1) is an approximate solution of (28) obtained

with one 𝑉-cycle iteration (see also Section 5) and 𝐷
(𝑠+1)

=

diag(−𝜆Δ + 𝐵). Note that the larger entries of the normal-
izing factor (𝐷

(𝑠+1)

)
−1 correspond to regions where V

(𝑠+1)

is less smooth. It amplifies the (unnormalized) residual on
regions where V

(𝑠+1) either has a jump or requires further
denoising, therefore doing a better job measuring the image

quality. Numerical experiments confirmed that the normal-
ized residual is indeed a good indicator for the quality of
denoising and deblurring.

To accelerate and stabilize the outer iteration, we have
incorporated the Krylov subspace method [19, 28, 29] in
our implementation. The approximate solution is optimized
every 𝑝 steps on a subspace of dimension 𝑀 ≤ 𝑝. To be more
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Figure 4: (a) Original image. (b) Blurred and noisy image. (c) Denoised and deblurred image with 20 iterations of Algorithm 1. (d) Denoised
and deblurred image with 5 iterations of Algorithm 3.

Table 3: Results of Figure 3.

Algorithm (𝜎, 𝜇, 𝜆) Iteration step 𝑒2 𝑒0 Time
(10, 0.1, 0.2) 𝑁 = 3 5.94 133.24 0.2500

Algorithm 2 𝑁 = 50 5.96 139.42 3.7187

(40, 0.05, 0.1) 𝑁 = 3 12.04 146.55 0.1875

𝑁 = 50 12.12 147.62 2.750

Algorithm 4 (10, 0.1, 0.2) 𝑁 = 50 8.27 56.69 2.0625

(40, 0.03, 0.00375) 𝑁 = 50 19.71 139.02 2.0781

Algorithm 3 (10, 0.2, 0.2) 𝑁 = 2 5.64 112.07 1.156

(40, 0.03, 0.06) 𝑁 = 2 10.51 109.00 1.156

precise, we take two fixed integers 0 ≤ 𝑀 ≤ 𝑝, and for any
integer 𝑛 > 0, let

�̃� (𝑐
1
, . . . , 𝑐

𝑀
) = 𝑢
(4𝑛)

+

𝑀

∑

𝑚=1

𝑐
𝑚

(𝑢
(4𝑛+1−𝑚)

− 𝑢
(4𝑛−𝑚)

) . (59)

The residual of �̃�(𝑐
1
, . . . , 𝑐

𝑀
) can be approximated by

�̃� (𝑐
1
, . . . , 𝑐

𝑀
)

def
= 𝑟
(4𝑛)

+

𝑀

∑

𝑚=1

𝑐
𝑚

(𝑟
(4𝑛+1−𝑚)

− 𝑟
(4𝑛−𝑚)

) .
(60)

One can minimize �̃�(𝑐
1
, . . . , 𝑐

𝑀
) with respect to

(𝑐
1
, . . . , 𝑐

𝑀
) to get

min
𝑐
1
,...,𝑐
𝑀





�̃� (𝑐
1
, . . . , 𝑐

𝑀
)



𝑙
2 =





�̃� (𝑐
∗

1
, . . . , 𝑐

∗

𝑀
)



𝑙
2 (61)

and reset 𝑢
(𝑝𝑛) to �̃�(𝑐

∗

1
, . . . , 𝑐

∗

𝑀
) before going to (𝑝𝑛 + 1) the

outer iteration. The numerical results demonstrate that the
Krylov acceleration method is an efficient way to accelerate
the outer iteration. See Section 5.
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Figure 5: (a) Original image. (b) Blurred and noisy image. (c) Denoised and deblurred image with 10 iterations of Algorithm 1. (d) Denoised
and deblurred image with 5 iterations of Algorithm 3.

5. Numerical Results

To generate an observed image 𝑧, a Gaussian white noise with
mean 0 and variance𝜎 is added to the blurred image.The level
of noise can be measured by the signal-to-noise ratio (SNR):

SNR =

‖𝐾𝑢 − 𝑧‖
𝑙
2

‖𝑢‖
𝑙
2

. (62)

The signal-to-blur ratio (SBR)

SBR =

‖𝐾𝑢 − 𝑢‖
𝑙
2

‖𝑢‖
𝑙
2

(63)

measures the strength of the blurring operator 𝐾. The two
kinds of error 𝑒2 = ‖𝑢

𝑘+1

− 𝑢
𝑘

‖
𝐿
2 and 𝑒0 = ‖𝑢

𝑘+1

− 𝑢
𝑘

‖
𝐿
∞ are

used to judge the iterative error as the iteration ends.The cost
of the iterative process is denoted by “time.”These indexes are
captioned in each example for readers’ convenience.

In all our examples, the iteration begins with the observed
image 𝑢

(0)

= 𝑧 and all images are contaminated with small
noise 𝜎 = 10 and large noise 𝜎 = 40. We choose 𝐵 according
to (52) with 𝛾 = 1.0 except in Table 6 where we demonstrate
the necessity of the linear stabilizing term and the overall
efficiency of our scheme by varying 𝛾. It is enough to apply
one single 𝑉-cycle in the AMG step with the Gauss-Seidel
iteration as the smoother. We apply the Krylov acceleration
procedure every 4 steps with the Krylov dimension 𝑀 = 2.
The rate of convergence of the outer iteration can be signifi-
cantly improved by the Krylov subspace technique.

5.1. Image Denoising. Table 2 shows the contrast results of
Image II with the split Bregman method for isotropic TV
model (Algorithm 2), the split Bregman method based on
AMG (Algorithm 3), and the split Bregman method for
anisotropic TV model (Algorithm 4). Figure 2 shows the
denoising image for Image II with noise contamination of
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Table 4: Results of Figure 4.

Algorithm (𝜎, ite, 𝛼)/(𝜎, ite, 𝜇, 𝜆) Blur operator 𝑒0 𝑒2 Time
I 93.91 8.47 5.8906

(10, 10, 0.02) II 155.95 12.22 5.1250

Algorithm 1 III 149.45 12.09 8.2500
I 167.84 14.67 7.2500

(40, 20, 0.15) II 167.72 15.61 6.8906
III 168.29 15.08 11.1093
I 161.52 13.34 1.7500

(10, 5, 0.04, 0.08) II 172.19 15.61 1.2812

Algorithm 3 III 172.62 14.96 2.9062
I 151.96 15.17 1.7343

(40, 5, 0.04, 0.08) II 170.75 16.24 1.2968
III 170.94 15.62 2.9531

Table 5: Results of Figure 5.

Algorithm (𝜎, ite, 𝛼)/(𝜎, ite, 𝜇, 𝜆) Blur operator 𝑒0 𝑒2 Time
I 82.67 3.30 5.4375

(10, 10, 0.05) II 104.79 4.36 5.2187

Algorithm 1 III 104.68 4.99 8.3437
I 122.00 5.86 5.4843

(40, 20, 1.0) II 126.02 6.99 6.9375
III 123.50 6.61 11.0468
I 100.84 6.51 1.7500

(10, 5, 0.04, 0.08) II 113.03 8.29 1.2812

Algorithm 3 III 111.03 8.01 3.0156
I 109.85 9.79 1.7656

(40, 5, 0.04, 0.08) II 117.62 9.40 1.2812
III 117.85 9.09 2.9375

𝜎 = 10 (SNR = 14.90%). Table 3 shows the contrast results
of Image III containing 512 ∗ 512 pixels. Figure 3 shows
the denoising image for Image III (512 ∗ 512) with noise
contamination 𝜎 = 40 (SNR = 26.725%). It is clear that our
algorithm (Algorithm 3) is efficient and suitable for elliptic
equation.

5.2. Image Denoising and Deblurring. The compared results
are given in Tables 4-5. Figure 4 shows the denoising and
deblurring images for Image I contaminated by noise with
𝜎 = 40 and blurring operator III (SNR = 51.34%, SBR =

45.31%). Figure 5 shows the denoising and deblurring images
for Image II contaminated by noise with 𝜎 = 10 and blurring
operator I (SNR = 5.96%, SBR = 48.79%).

We continue our numerical experiments by varying the
parameter 𝛾 and compare their performance. The number
of iterations of a typical example is shown in Table 6. The
combination of 𝛾 ≈ 𝛾

∗ and 𝑀 = 2 gives the optimal result
among possible choices of 𝛾 and 𝑀 in general. The number
of iterations is insensitive to the variation of 𝛾 near 𝛾

∗ and
gradually grows as 𝛾 increases. For simplicity of presentation,
we take 𝛾 = 1 and 𝑀 = 2 in all other numerical examples.
We have also included the results for 𝐵 = 𝐵

(𝑎,𝑏)
∗ in Table 6 for

comparison. In general, 𝐵 = 𝐵
(𝑎,𝑏)
∗ performs no worse than

(52) with 𝛾 = 𝛾
∗. In some cases, 𝐵 = 𝐵

(𝑎,𝑏)
∗ can be up to 25%

faster. In addition, if the blur operator is mild, our method
can be used to solve 𝐾𝑢 = 𝑧 directly.

According to the previous figures and tables, we get some
conclusions here. First of all, in the second part of (42), we
have neglected the −𝜆Δ term to obtain a sufficient condition
(31), from which we further derived the critical value 𝛾

∗ in
(52). We therefore expect 𝛾

∗ to be slightly overestimated. In
other words, the outer iteration should converge for 𝛾 ≥ 𝛾

∗,
but not necessarily for 𝛾 < 𝛾

∗. This is in accordance with
our numerical result. See the row with 𝑀 = 0 in Table 6.
Secondly, the Krylov subspace technique helps to stabilize the
outer iteration for 𝛾 < 𝛾

∗, but eventually fails if 𝛾 becomes
too small. This result demonstrates the necessity of the linear
stabilizing term.

6. Conclusion

In this paper, we propose a new algorithm by adding a
linear term for the total variation-based image denoising
and deblurring which combine the split Bregman method,
the algebraic multigrid method, and Krylov subspace accel-
eration. Through formal convergence analysis, we derived
an explicit formula for a linear stabilizing term. Numerical
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Table 6: Number of outer nonlinear iterations 𝑁 for various 𝛾. Here 𝛼 = 0.05, 𝜎 = 29.72 for Image I and 𝛼 = 2.5, 𝜎 = 89.16 for Image II.

Blur Image 𝑀 0.2 0.4 0.6 0.8 0.9 1.2 2 4 10 𝐵
𝑎
∗
, 𝑏
∗

0 ∞ ∞ ∞ ∞ 53 60 81 136 297 46
I 1 ∞ ∞ 148 50 48 28 32 48 93 23

III 2 ∞ ∞ 37 28 28 27 29 41 78 22
0 ∞ ∞ 109 109 109 113 119 131 162 109

II 1 ∞ 39 37 36 36 37 40 44 65 36
2 ∞ 34 32 32 33 33 35 42 57 32

experiments demonstrate that our algorithm is efficient and
robust for deblurring and denoising problems.
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