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Using Matrix-Forest theorem andMatrix-Tree theorem, we present some invariants for weighted digraphs under state in-splittings
or out-splittings.

1. Introduction

State in-splittings and out-splittings are very important
operations in the theory of one-sided, or two-sided Markov
shifts ([1, 2]). Lind and Tuncel introduced a spanning tree
invariant forMarkov shifts in [3]. Spanning tree invariants are
further studied in [4–6]. Motivated by these works, we con-
sider some other graph structures like cycles and forests and
present some invariants for weighted digraphs under state in-
splittings or out-splittings.

Firstly we give some basic definitions in graph theory and
a brief introduction of Matrix-Forest theorem for digraphs.
Readers can refer to [7, 8] for more details.

In this paper, a digraph is an ordered pair 𝐷 = (𝑉, 𝐸) of
finite sets, where 𝑉 is called the vertex set and 𝐸 ⊆ 𝑉 × 𝑉 is
called the edge set. For an edge (𝑢, V) ∈ 𝐸, 𝑢 and V are called
the initial and terminal ends of the edge, respectively. The
number of edges having 𝑢 as the initial end is defined to be
the outdegree of 𝑢 and denoted by 𝑑(𝑢). The number of edges
having V as the terminal end is defined to be the indegree of
V. A walk of length 𝑛 is a sequence of edges {(𝑢

𝑖
, 𝑢
𝑖+1
)} (𝑖 =

1, . . . , 𝑛) and can be denoted by (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛+1
); moreover, if

𝑢
𝑛+1

is the same as𝑢
1
, we call thewalk a closed one. A directed

forest is a digraphwithout closedwalks such that the indegree
of each vertex is nomore than one.The vertices with indegree
zero of a forest are called roots. We say that𝐷

0
= (𝑉
0
, 𝐸
0
) is a

spanning subgraph of𝐷 if 𝑉
0
= 𝑉 and 𝐸

0
⊆ 𝐸.

Suppose that 𝐷 is a digraph with vertex set 𝑉(𝐷) = {1,

. . . , 𝑛}. Let𝑤 : 𝐸(𝐷) → R+ be a weight function on the edge

set. We then say that D = (𝐷,𝑤) is a weighted digraph and
𝑀 = (𝑤(𝑖, 𝑗))

𝑛×𝑛
is the weight matrix of D. The Kirchhoff

matrix of D is defined as 𝐿 = 𝑅 − 𝑀, where 𝑅 = (𝑟
𝑖,𝑗
)

is a diagonal matrix and 𝑟
𝑖,𝑖
= ∑
𝑛

𝑗=1
𝑤(𝑖, 𝑗). The product of

the weights of all edges that belong to a subgraph H of D is
defined to be the weight ofH and denoted by 𝑤(H).

Let F(D) = F be the set of all spanning rooted forests
ofD andF𝑖→ 𝑗(D) = F𝑖→ 𝑗 the set of those spanning rooted
forests ofD such that 𝑖 and 𝑗 belong to the same tree rooted at
𝑖. For a matrix 𝐴, 𝐴𝑖,𝑗 denotes the cofactor of the (𝑖, 𝑗)-entry
of 𝐴. The Matrix-Forest theorem then states as follows.

Lemma 1 (cf. [8]). LetD = (𝐷,𝑤) be a weighted digraph. Let
𝐿 be the Kirchhoff matrix ofD. Then one has

(1) ∑
𝐹∈F 𝑤(𝐹) = det(𝐼 + 𝐿);

(2) for any 𝑖, 𝑗 ∈ 𝑉(𝐷), ∑
𝐹∈F𝑖→ 𝑗 𝑤(𝐹) = (𝐼 + 𝐿)

𝑖,𝑗.

2. Invariants for Weighted Digraphs under
State In-Splitting

Before giving the main result, we recall the definition of state
in-splitting.

Definition 2. Let D = (𝐷,𝑤) be a weighted digraph. For a
vertex 𝑢 of 𝐷, 𝐸𝑢 denotes the set of edges of 𝐷 with term-
inal end 𝑢. The state in-splitting of D at 𝑢 induces a new
weighted digraph D̃ = (𝐷,𝑤) in the following way: let S =
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{𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑟
} be a partition of 𝐸𝑢. The vertex set of the new

digraph is𝑉(𝐷) = (𝑉(𝐷)\{𝑢})⋃{𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑟
}.The edge set

𝐸(𝐷) and weight 𝑤 of D̃ are defined as follows.

(i) For 𝑥, 𝑦 ∈ 𝑉(𝐷) \ {𝑢}, (𝑥, 𝑦) ∈ 𝐸(𝐷) if and only if
(𝑥, 𝑦) ∈ 𝐸(𝐷) and in this case 𝑤(𝑥, 𝑦) = 𝑤(𝑥, 𝑦).

(ii) For𝑥 ∈ 𝑉(𝐷)\{𝑢}, (𝑥, 𝑢
𝑖
) ∈ 𝐸(𝐷) if and only if (𝑥, 𝑢) ∈

𝑆
𝑖
and in this case 𝑤(𝑥, 𝑢

𝑖
) = 𝑤(𝑥, 𝑢).

(iii) For𝑥 ∈ 𝑉(𝐷)\{𝑢}, (𝑢
𝑖
, 𝑥) ∈ 𝐸(𝐷) if and only if (𝑢, 𝑥) ∈

𝐸(𝐷) and in this case 𝑤(𝑢
𝑖
, 𝑥) = 𝑤(𝑢, 𝑥).

(iv) If (𝑢, 𝑢) ∈ 𝑆
𝑖
, then (𝑢

𝑗
, 𝑢
𝑖
) ∈ 𝐸(𝐷), for 𝑗 = 1, 2, . . . , 𝑟,

and in this case 𝑤(𝑢
𝑗
, 𝑢
𝑖
) = 𝑤(𝑢, 𝑢).

Formore details about state splittings, readers can refer to
[2, 3, 9]. Now we give the definition of our new invariant.

Definition 3. Let D = (𝐷,𝑤) be a weighted digraph. We
define𝑊

𝑘
(D) (𝑘 ≥ 1) as

𝑊
𝑘 (D) = ∑

V

𝑑 (V) ∑

𝐶∈𝐶
𝑘

V

𝑤 (𝐶) , (1)

where V runs over𝑉(𝐷) and𝐶𝑘V denotes the set of closedwalks
of D with length 𝑘 at vertex V. Furthermore, we define the
generating function𝑊D(𝑡) as

𝑊D (𝑡) = ∑

𝑘≥1

𝑊
𝑘 (D) 𝑡

𝑘
. (2)

Let 𝐴 be a square matrix. The trace of 𝐴 is defined to be
the sum of the elements on the main diagonal and denoted
by tr(𝐴). For a digraph 𝐷, the diagonal matrix 𝑂(𝐷) = (𝑜

𝑖,𝑖
)

denotes the outdegree matrix of 𝐷 that is, 𝑜
𝑖,𝑖
= 𝑑(V

𝑖
). Then

we have the following result.

Theorem 4. Let D be a weighted digraph with weight matrix
𝑀. Then𝑊D(𝑡) is an invariant under state in-splitting and can
be computed in the following way:

𝑊D (𝑡) =
tr (𝑂 ⋅ adj (𝐼 − 𝑡𝑀))

det (𝐼 − 𝑡𝑀)
− tr (𝑂) . (3)

Proof. We firstly prove the invariance of 𝑊
𝑘
(D) for 𝑘 ≥ 1.

Without loss of generality, if there is a loop at vertex 𝑢, we
assume that it belongs to 𝑆

1
, where S = {𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑟
}

denotes the partition of 𝐸𝑢 as in the definition of state in-
splitting.

We define the mapping

𝜑 : ⋃

V∈𝑉(𝐷)

𝐶
𝑘

V (D) 󳨀→ ⋃

V∈𝑉(�̃�)

𝐶
𝑘

V (D̃) (4)

in the following way: for a closed walk 𝐶 of D with length
𝑘, if 𝐶 = (𝑢, 𝑢, . . . , 𝑢), then 𝜑(𝐶) = (𝑢

1
, 𝑢
1
, . . . , 𝑢

1
); other-

wise, we replace each maximum path of 𝐶 of the form
(V, 𝑢, 𝑢, . . . , 𝑢) (V ̸= 𝑢) with (V, 𝑢

𝑖
, 𝑢
1
, . . . , 𝑢

1
) if (V, 𝑢) ∈ 𝑆

𝑖
. it

is not difficult to see that

𝜑 : 𝐶
𝑘

V (D) 󳨀→ 𝐶
𝑘

V (D̃) , (5)

𝑒
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Figure 1

where V ̸= 𝑢, and

𝜑 : 𝐶
𝑘

𝑢
(D) 󳨀→

𝑟

⋃

𝑖=1

𝐶
𝑘

𝑢𝑖
(D̃) (6)

are both weight-preserving bijections.
Since 𝑑(V) (V ̸= 𝑢) is the same for D and D̃ and 𝑑(𝑢) =

𝑑(𝑢
1
) = 𝑑(𝑢

2
) = ⋅ ⋅ ⋅ = 𝑑(𝑢

𝑟
), we know that𝑊

𝑘
(D) = 𝑊

𝑘
(D̃)

for 𝑘 ≥ 1, and the invariance of𝑊D(𝑡) follows.
Finally, we notice that𝑊

𝑘
(D) = tr(𝑂𝑀𝑘). Thus

𝑊D (𝑡) = ∑

𝑘≥1

tr {𝑂 ⋅ (𝑡𝑀)𝑘}

= tr{𝑂 ⋅ ∑
𝑘≥1

(𝑡𝑀)
𝑘
}

=
tr (𝑂 ⋅ adj (𝐼 − 𝑡𝑀))

det (𝐼 − 𝑡𝑀)
− tr (𝑂) .

(7)

Example 5. Let D = (𝐷,𝑤) be a weighted digraph as in
the left of Figure 1. 𝐷 is the opposite of 𝐷 (see the right of
Figure 1), that is, the digraph obtained from 𝐷 by reversing
the direction of all its edges. It is easy to see that 𝐷 and 𝐷
have the same outdegree sequence {1, 1, 2, 2, 3}. The weight
of any edge (𝑢, V) ∈ 𝐸(𝐷) or (𝑢, V) ∈ 𝐸(𝐷) is defined to be
1/𝑑(𝑢). Since𝑊

3
(D) = 5/4 and𝑊

3
(D̂) = 19/9, we know that

D̂ cannot be obtained fromD by a sequence of in-splittings
or reverse operations.

Let 𝑃 be a nonnegative matrix. 𝑃 is called row stochastic
if the summation of each row equals 1 and column stochastic
if the summation of each column equals 1 𝑃 is called double
stochastic if it is row and column stochastic.

Definition 6. Let 𝑃 be a row-stochastic matrix and 𝑡 a real
positive number. LetD be the weighted digraph with weight
matrix𝑀 = 𝑡𝑃. We define 𝐾(D, 𝑡) as

𝐾 (D, 𝑡) = (1 + 𝑡)
∑V 𝑑 (V) ∑𝐹V 𝑤 (𝐹V)

∑
𝐹
𝑤 (𝐹)

, (8)

where V runs over all vertices of 𝑉(𝐷), 𝐹 runs over all
spanning directed forests of𝐷, and 𝐹V runs over all spanning
directed forests including V as a root.



Journal of Applied Mathematics 3

In general, 𝐾(D, 𝑡) is not an invariant under state in-
splitting, but the following result shows that it indeed reflects
some invariance.

Corollary 7. Let𝑃 be a row-stochastic matrix and 𝑡 a real pos-
itive number. LetD be a weighted digraph with weight matrix
𝑀 = 𝑡𝑃. Then 𝐾(D, 𝑡) − 𝐾(D̃, 𝑡) is an integer independent of
𝑡.

Proof. Let 𝑂 = (𝑜
𝑖,𝑗
) be the outdegree matrix of 𝐷. Then we

get by Lemma 1 that

𝐾 (D, 𝑡) = (1 + 𝑡)
∑V 𝑑 (V) ∑𝐹V 𝑤 (𝐹V)

∑
𝐹
𝑤 (𝐹)

= (1 + 𝑡)
tr (𝑂 ⋅ adj [𝐼 + (𝑡𝐼 − 𝑀)])

det [𝐼 + (𝑡𝐼 − 𝑀)]

= tr(𝑂 ⋅ [𝐼 − 𝑡

1 + 𝑡
𝑃]

−1

) .

(9)

Since 𝑃 is stochastic and 1/(1 + 𝑡) ∈ (0, 1), we have

[𝐼 −
𝑡

1 + 𝑡
𝑃]

−1

= [𝐼 − 𝑟 (𝑡𝑃)]
−1
= ∑

𝑖≥0

(𝑀)
𝑖
𝑟
𝑖
, (10)

where 𝑟 = 1/(1 + 𝑡).
Therefore

𝐾 (D, 𝑡) = tr(𝑂 ⋅ [𝐼 − 𝑡

1 + 𝑡
𝑃]

−1

)

= ∑

𝑖≥0

tr {𝑂(𝑀)𝑖} 𝑟𝑖

= 𝑊D (𝑟) + tr (𝑂) .

(11)

ByTheorem 4, we know that𝑊D(𝑟) is an invariant under
in-splitting; thus

𝐾 (D, 𝑡) − 𝐾 (D̃, 𝑡) = tr (𝑂) − tr (𝑂) ∈ Z. (12)

The result follows.

Lind and Tuncel defined a spanning tree invariant 𝜏(D)
for Markov shifts in [3] as follows:

𝜏 (D) = ∑
𝑇

𝑤 (𝑇) . (13)

Here the weight matrix 𝑃 ofD is an irreducible row-stocha-
stic matrix, and 𝑇 runs over all spanning trees ofD.

By considering the outdegree matrix as in Definitions 3
and 6, we can define a new spanning tree invariant as

𝜏
𝑑 (D) = ∑

𝑇

𝑑 (𝑇)𝑤 (𝑇) , (14)

where 𝑇 is as above, and 𝑑(𝑇) denotes the outdegree of the
root of 𝑇.

Corollary 8. 𝜏
𝑑
(D) is an invariant under in-splitting.

Proof. Let 𝑃 be the weight matrix of D and thus row
stochastic as in [3]. By the Matrix-Tree theorem (Theorem 2
in [8]), we have

𝜏
𝑑 (D) = tr (𝑂 ⋅ adj [𝐼 − 𝑃])

= lim
𝑡→1
−

{det [𝐼 − 𝑡𝑃] ⋅ tr (𝑂 ⋅ [𝐼 − 𝑡𝑃]−1)}

= lim
𝑡→1
−

{det [𝐼 − 𝑡𝑃] ⋅ ∑
𝑖≥0

tr (𝑂𝑃𝑖) 𝑡𝑖}

= lim
𝑡→1
−

{det [𝐼 − 𝑡𝑃] ⋅ (𝑊D (𝑡) + tr (𝑂))} .

(15)

ByTheorem 4, we know that𝑊D(𝑡) is an invariant under
state in-splitting. it is also well known that det[𝐼 − 𝑡𝑃] is an
invariant under state splitting. Therefore

𝜏
𝑑 (D) − 𝜏𝑑 (D̃) = lim

𝑡→1
−

{det [𝐼 − 𝑡𝑃] ⋅ (tr (𝑂) − tr (𝑂))} .

(16)

Since tr(𝑂) − tr(𝑂) is a constant and lim
𝑡→1
− det[𝐼 − 𝑡𝑃] = 0,

we have

𝜏
𝑑 (D) − 𝜏𝑑 (D̃) = 0. (17)

The result follows.

Let D = (𝐷,𝑤) be a weighted digraph. The out-
weighted line digraph 𝐿

+
(D) = (𝐿(𝐷), 𝑤

+
) of D is a

weighted digraph defined in the following way: the vertex
set of 𝐿(𝐷) is 𝐸(𝐷); ((𝑢, V), (𝑥, 𝑦)) ∈ 𝐸(𝐿(𝐷)) if and only
if V = 𝑥, and in this case, 𝑤+(((𝑢, V), (𝑥, 𝑦))) = 𝑤(𝑥, 𝑦).
Similarly, if we let 𝑤−(((𝑢, V), (𝑥, 𝑦))) = 𝑤(𝑢, V) in the above
definition, then we get the in-weighted line digraph 𝐿−(D) =
(𝐿(𝐷), 𝑤

−
). Galeana-Sánchez and Gómez show that 𝐿+(D)

can be obtained by sequences of state in-splittings from D
(see Proposition 2.2 in [9], which has a small typo there
by stating 𝐿−(D) can be obtained by sequences of state in-
splittings). Now the following conclusion is an immediate
result of Corollary 8.

Corollary 9. 𝜏
𝑑
(D) is an invariant under out-weighted line

digraph operation.

3. The State Out-Splitting Case

Let 𝑃 be a row-stochastic matrix. Let D = (𝐷,𝑊) be the
weighted digraph with weight matrix 𝑊 = 𝑃. We first give
the definition of state out-splitting, which is a little more
complicated than the case of state in-splitting. Readers can
refer to [3] for more details.

Definition 10. For a vertex 𝑢 of 𝐷, let 𝐸∗𝑢 denote the set
of edges of 𝐷 with initial end 𝑢. The state out-splitting of
D at 𝑢 induces a new weighted digraph D̃∗ = (𝐷

∗
, 𝑤) in

the following way: let S∗ = {𝑆
∗

1
, 𝑆
∗

2
, . . . , 𝑆

∗

𝑟
} be a partition

of 𝐸∗𝑢. Let 𝑞
𝑖
denote the sum of the weights of edges in

𝑆
∗

𝑖
. The vertex set of the new digraph is 𝑉(𝐷∗) = (𝑉(𝐷) \

{𝑢})⋃{𝑢
1
, 𝑢
2
. . . , 𝑢
𝑟
}. The edge set and weight of D̃∗ are

defined as follows.
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(i) For 𝑥, 𝑦 ∈ 𝑉(𝐷) \ {𝑢}, (𝑥, 𝑦) ∈ 𝐸(𝐷∗) if and only if
(𝑥, 𝑦) ∈ 𝐸(𝐷) and in this case 𝑤(𝑥, 𝑦) = 𝑤(𝑥, 𝑦).

(ii) For 𝑦 ∈ 𝑉(𝐷) \ {𝑢}, (𝑢
𝑖
, 𝑦) ∈ 𝐸(𝐷

∗
) if and only if

(𝑢, 𝑦) ∈ 𝑆
∗

𝑖
and in this case 𝑤(𝑢

𝑖
, 𝑦) = 𝑤(𝑢, 𝑦)/𝑞

𝑖
.

(iii) For 𝑥 ∈ 𝑉(𝐷) \ {𝑢}, (𝑥, 𝑢
𝑖
) ∈ 𝐸(𝐷

∗
) if and only if

(𝑥, 𝑢) ∈ 𝐸(𝐷) and in this case 𝑤(𝑢
𝑖
, 𝑥) = 𝑞

𝑖
𝑤(𝑥, 𝑢).

(iv) If (𝑢, 𝑢) ∈ 𝑆∗
𝑖
, then (𝑢

𝑖
, 𝑢
𝑗
) ∈ 𝐸(𝐷

∗
), for 𝑗 = 1, 2, . . . , 𝑟,

and in this case 𝑤(𝑢
𝑖
, 𝑢
𝑗
) = 𝑤(𝑢, 𝑢)𝑞

𝑗
/𝑞
𝑖
.

In the definition of 𝑊
𝑘
(D) and 𝑊

𝐷
(𝑡), by replacing

outdegrees with indegrees, we get𝑊∗
𝑘
(D) and𝑊∗D(𝑡); that is,

𝑊
∗

𝑘
(D) = ∑

V

𝑑
∗
(V) ∑

𝐶∈𝐶
𝑘

V

𝑤 (𝐶) ,

𝑊
∗

D (𝑡) = ∑

𝑘≥1

𝑊
∗

𝑘
(D) 𝑡
𝑘
,

(18)

where 𝑑∗(V) is the indegree of V.

Theorem 11. Let 𝑃 be a row-stochastic matrix. Let D be the
weighted digraph with weight matrix 𝑃. Then 𝑊∗D(𝑡) is an
invariant under state out-splitting, and can be computed as

𝑊
∗

D (𝑡) =
tr (𝑂∗ ⋅ adj (𝐼 − 𝑡𝑃))

det (𝐼 − 𝑡𝑃)
− tr (𝑂∗) , (19)

where 𝑂∗ is the indegree matrix of𝐷.

Proof. We just need to prove the invariance of 𝑊∗
𝑘
(D) for

𝑘 ≥ 1. Without loss of generality, if there is a loop at vertex 𝑢,
we assume that it belongs to 𝑆∗

1
, where S∗ = {𝑆∗

1
, 𝑆
∗

2
, . . . , 𝑆

∗

𝑟
}

denotes the partition of 𝐸∗𝑢 as in the definition of state out-
splitting.

We define the mapping

𝜑 : ⋃

V∈𝑉(𝐷)

𝐶
𝑘

V (D) 󳨀→ ⋃

V∈𝑉(�̃�)

𝐶
𝑘

V (D̃
∗
) (20)

in the following way: for a closed walk 𝐶 of D with length
𝑘, if 𝐶 = (𝑢, 𝑢, . . . , 𝑢), then 𝜑(𝐶) = (𝑢

1
, 𝑢
1
, . . . , 𝑢

1
); other-

wise, we replace each maximum path of 𝐶 of the form (𝑢,

𝑢, . . . , 𝑢, 𝑢, V) (V ̸= 𝑢) with (𝑢
1
, 𝑢
1
, . . . , 𝑢

1
, 𝑢
𝑖
, V) if (𝑢, V) ∈ 𝑆∗

𝑖
.

By the definition of state out-splitting, it is not difficult to
prove that

𝜑 : 𝐶
𝑘

V (D) 󳨀→ 𝐶
𝑘

V (D̃
∗
) , (21)

where V ̸= 𝑢, and

𝜑 : 𝐶
𝑘

𝑢
(D) 󳨀→

𝑟

⋃

𝑖=1

𝐶
𝑘

𝑢𝑖
(D̃
∗
) (22)

are both bijections.
We now prove that they are also weight-preserving. In

fact, if 𝐶 = (𝑢, 𝑢, . . . , 𝑢), then 𝑤(𝐶) = 𝑤(𝜑(𝐶)), since 𝑤(𝑢
𝑖
,

𝑢
𝑖
) = 𝑤(𝑢, 𝑢). On the other hand, for any walk of 𝐶 of

the form 𝑆 = (𝑟, 𝑢, . . . , 𝑢, 𝑢, V) (V ̸= 𝑢), we have 𝑤(𝑆) = 𝑤(𝑟,

𝑢)𝑤(𝑢, 𝑢)
𝑘
𝑤(𝑢, V).

(1) If (𝑢, V) ∈ 𝑆∗
1
, we have

𝑤 (𝜑 (𝑆)) = 𝑤 (𝑟, 𝑢1) 𝑤(𝑢1, 𝑢1)
𝑘
𝑤 (𝑢
1
, V)

=
𝑞
1
𝑤 (𝑟, 𝑢) 𝑤(𝑢, 𝑢)

𝑘
𝑤 (𝑢, V)

𝑞
1

= 𝑤 (𝑆) .

(23)

(2) If (𝑢, V) ∈ 𝑆∗
𝑖
(𝑖 ̸= 1) and 𝑘 ≥ 1, we have

𝑤 (𝜑 (𝑆)) = 𝑤 (𝑟, 𝑢1) 𝑤(𝑢1, 𝑢1)
𝑘−1
𝑤 (𝑢
1
, 𝑢
𝑖
) 𝑤 (𝑢

𝑖
, V)

=
𝑞
1
𝑤 (𝑟, 𝑢) 𝑤(𝑢, 𝑢)

𝑘−1
(𝑤 (𝑢, 𝑢) 𝑞𝑖/𝑞1) 𝑤 (𝑢, V)

𝑞
𝑖

= 𝑤 (𝑆) .

(24)

(3) If (𝑢, V) ∈ 𝑆∗
𝑖
(𝑖 ̸= 1) and 𝑘 = 0, we have

𝑤 (𝜑 (𝑆)) = 𝑤 (𝑟, 𝑢𝑖) 𝑤 (𝑢𝑖, V)

=
𝑞
𝑖
𝑤 (𝑟, 𝑢) 𝑤 (𝑢, V)

𝑞
𝑖

= 𝑤 (𝑆) .

(25)

Thus the maps above are weight preserving. Since
𝑑
∗
(V) (V ̸= 𝑢) is the same forD and D̃∗, and 𝑑∗(𝑢) = 𝑑∗(𝑢

1
) =

𝑑
∗
(𝑢
2
) = ⋅ ⋅ ⋅ = 𝑑

∗
(𝑢
𝑟
), we know that𝑊∗

𝑘
(D) = 𝑊∗

𝑘
(D̃∗), for

𝑘 ≥ 1, and the invariance of𝑊∗D(𝑡) follows.
The proof of the equality is similar to that of Theorem 4.

Similarly, we can define 𝜏∗
𝑑
(D) and prove that it is also an

invariant under state out-splitting on the basis of the above
result.

Now, we consider some weighted digraphs from [10] in
the following two examples.

Example 12. The weight matrices of two weighted digraphs
are as follows:

𝐴 =

[
[
[
[
[
[
[
[

[

3

8

1

2

1

8

0
4

5

1

5

2

7

4

7

1

7

]
]
]
]
]
]
]
]

]

, 𝐵 =

[
[
[
[
[
[
[
[

[

1

7
0

6

7

5

56

3

8

15

28

2

15

1

15

4

5

]
]
]
]
]
]
]
]

]

. (26)

By some computation, we get that 𝑊A(1/2) = 1316/471,
𝑊B(1/2) = 1615/471, and𝑊

∗

A(1/2) = 𝑊
∗

B(1/2) = 1559/471.
Thus 𝐵 cannot be archived by a sequence of in-splittings or
reverse operations, but may be archived by a sequence of out-
splittings or reverse operations.
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Example 13. The weight matrices of three weighted digraphs
are as follows:

𝐴 =

[
[
[

[

1

3

2

3

1

3

2

3

]
]
]

]

, 𝐵 =

[
[
[

[

1

3

2

3

2

3

1

3

]
]
]

]

, 𝐶 =

[
[
[

[

2

3

1

3

1

3

2

3

]
]
]

]

. (27)

By some computation, we get that 𝜏∗
𝑑
(𝐴) = 2 = 𝜏

𝑑
(𝐴),

𝜏
∗

𝑑
(𝐵) = 8/3 = 𝜏

𝑑
(𝐵), 𝜏∗
𝑑
(𝐶) = 4/3 = 𝜏

𝑑
(𝐶). Thus for any pair

of them, we cannot get one from the other and by a sequence
of in-splittings or reverse operations either nor by a sequence
of out-splittings or reverse operations.

4. Invariants for Weighted Digraphs with
Double-Stochastic Matrices

Let D = (𝐷, 𝑃) be a weighted digraph. If the weight
matrix 𝑃 is column stochastic, the weight distribution after
state out-splitting can be defined in an easier way, that is,
without multiplying by the coefficients about 𝑞

𝑖
in Definition

10. Under this definition, we can get that 𝜏∗
𝑑
(D) is still an

invariant under state out-splitting, the proof of which is
similar to that of Corollary 8. We also know from [9] that the
in-weighted line digraph can be obtained by a sequence of
such state out-splittings, so the following result is immediate.

Corollary 14. Let D = (𝐷, 𝑃) be a weighted digraph. If
the weight matrix 𝑃 is column stochastic, then 𝜏∗

𝑑
(D) is an

invariant under in-weighted line digraph operation.

Especially, if the weight matrix is doubly stochastic, we
have the following result.

Corollary 15. Let D = (𝐷, 𝑃) be a weighted digraph. If
the weight matrix 𝑃 is doubly stochastic, then 𝜏

𝑑
(𝐿
+
(D)) =

𝜏
∗

𝑑
(𝐿
−
(D)).

Proof. Since 𝑃 is doubly stochastic, we have by Corollary 8
that

𝜏
𝑑
(𝐿
+
(D)) = 𝜏𝑑 (D) = tr (𝑂 ⋅ adj [𝐼 − 𝑃]) (28)

and by Corollary 14 that

𝜏
∗

𝑑
(𝐿
−
(D)) = 𝜏

∗

𝑑
(D) = tr (𝑂∗ ⋅ adj [𝐼 − 𝑃]) . (29)

By Matrix-Tree theorem (Theorem 2 in [8]), we know that
both adj[𝐼 − 𝑃] and adj[𝐼 − 𝑃󸀠] = (adj[𝐼 − 𝑃])󸀠 are row-
constantmatrices, where𝑃󸀠 is𝑃 transposed.Thus adj[𝐼−𝑃] is
a constant matrix. Since the sum of indegrees is equal to that
of outdegrees, the result follows.
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[5] R. Gómez, “On mean recurrence times of Markov chains and
spanning tree invariants,” Linear Algebra and Its Applications,
vol. 433, no. 11-12, pp. 1714–1718, 2010.
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