
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 823863, 11 pages
http://dx.doi.org/10.1155/2013/823863

Research Article
The Complex Network Synchronization via
Chaos Control Nodes

Yin Li1,2 and Chun-long Zheng1

1 School of Mathematics and Information Science and School of Physics and Electromechanical Engineering,
Shaoguan University, Shaoguan, Guangdong 512005, China

2Department of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, 510275, China

Correspondence should be addressed to Chun-long Zheng; clzheng@yahoo.cn

Received 21 July 2012; Accepted 4 February 2013

Academic Editor: Xiaojun Wang

Copyright © 2013 Y. Li and C.-l. Zheng.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate chaos control nodes of the complex network synchronization. The structure of the coupling functions between the
connected nodes is obtained based on the chaos control method and Lyapunov stability theory. Moreover a complex network with
nodes of the new unified Loren-Chen-Lü system, Coullet system, Chee-Lee system, and the New system is taken as an example;
numerical simulations are used to verify the effectiveness of the method.

1. Introduction

Since themost famous random graphmodel was proposed by
Erdös and Rényi [1], the complex network has attractedmuch
attention in many fields of research, such as biology, physics,
computer networks, the World Wide Web (WWW) [2], and
so on. Network synchronization has obvious advantages, it
has great application value in practice. Therefore, Atay et
al. [3] studied synchronization of complex network when
delays exist among the nodes; Motter et al. [4] studied the
influence of coupling strength on the synchronizing ability
of a complex network; Timme et al. [5] studied the web
synchronization law of pulse-coupled dynamical systems;
Checco et al. [6] studied the synchronization of random
web. Lü et al. [7] constructed general complex dynamical
networks and studied the synchronization; Lu and Chen [8]
studied synchronization analysis of linearly coupled networks
of discrete time systems; Han and Lu [9] studied the changes
of synchronization ability of coupled networks from ring net-
works to chain networks; He and Yang [10] studied adaptive
synchronization in nonlinearly coupled dynamical networks;
Hung et al. [11] studied globally generalized synchronization
in scale-free networks.

Recently, network synchronization has been an important
part of the dynamic study of complex network. It has aroused
great interest of scholars both domestically and abroad to

build weighted network models and study the characteristics
of them. Lü et al. [7] studied chaos synchronization of general
complex dynamic networks. Gao et al. [12] realized the
adaptive synchronization of complex network. Pei et al.
[13] made statistical analysis of a class of real networks;
Barrat et al. [14] presented a weighted network model, and
studied its dynamic character; Atay et al. [15] studied the
synchronization of a complex network with time delay. Hung
et al. [11] realized the generalized synchronization of a scale-
free network.Qin andYu [16] achieved the synchronization of
the star-network of hyperchaotic Rossler systems. In addition
to the above researches, much other work [17, 18] in the
field have been done, and complex network synchronization
become a focus of attention, such as a random network syn-
chronization, small-world network synchronization, scale-
free network synchronization, and so on. However, universal
synchronization methods of weighted network still need
further exploration and study.

The motivation in this paper lies in the complex network
synchronization and chaos control importance.Network syn-
chronization is one of the most practical and valuable issues.
A synchronization of network means the situation in which
the output of all nodes in the study of the complex network is
consistentwith any given external input signal under a certain
condition.Theworkingmechanism of a single chaotic system
to track any given external input signal is relatively interesting



2 Journal of Applied Mathematics

0 0 10 20

10

20

30

40

50

𝑦1
𝑥1

𝑧1

−10

−20

−20−30

(a)

0
20 0 10 20 30

10

20

30

40

50

𝑦1
𝑥1

𝑧1

−10

−20

−20−30

(b)

0 10 20 30

0 10 20 300

10

20

30

40

50

60

𝑦1
𝑥1

𝑧1

−10
−10

−20

−20

(c)

Figure 1: Generlized chaotic attractors: (a) Lorenz, (b) Lü, (c) Chen.
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Figure 2: The chaos attractor of new chaotic system (a) and the Coullet system (b).

and significance. Numerical simulations are used to verify the
effectiveness of the proposed techniques.

It is organized as follows. Firstly, the theory and the
method are presented in Section 2. Then, different order
chaotic systems are adopted as the nodes of this complex
network; the structure of the coupling functions among the
connected nodes is obtained based on Lyapunov stability
theory. With the help of symbolic computation, the tem-
poral evolution of variables and node interaction of the
dynamic equation are discussed and simulated by com-
puter in Section 3. The theoretical analysis and the numer-
ical simulations show that this is a universal method and

the number of the nodes does not affect the stability of
the whole network. Finally, the conclusions are given in
Section 4.

2. Theory and Method

We summarized the main steps for the complex network
synchronization based on Lü et al. [19–23] and Chen et al.
[24–27], as follows.

Step 1. Assume the state of node 𝑖 is 𝑥
𝑖
, where 𝑥

𝑖
=

(𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
)
𝑇 and 𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
𝜖𝑅
𝑛, then the dynamic
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Figure 3: The chaos attractor of (14) system (a) and Chee-Lee system (b).
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Figure 4: Network synchronization errors between node 1 and node 2.

function for node 𝑖 without coupling can be described
as

�̇�
𝑖
= 𝑓
𝑖
(𝑥
𝑖
) = 𝐿
𝑖
(𝑥
𝑖
) + 𝑆
𝑖
(𝑥
𝑖
) , (1)

where 𝐿
𝑖
(𝑥
𝑖
) = (𝐴

𝑖
−𝐵
𝑖
)𝑥
𝑖
, 𝐴
𝑖
is the linear coefficient matrix

of the system, and 𝐵
𝑖
is the coefficient matrix of control gain.

Step 2. Considering the coupling of network, the dynamic
function for node 𝑖 can be described as

�̇�
𝑖
= 𝑓
𝑖
(𝑥
𝑖
) + 𝑔
𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

= (𝐴
𝑖
− 𝐵
𝑖
) 𝑥
𝑖
+ 𝑆
𝑖
(𝑥
𝑖
) + 𝑔
𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) ,

(2)
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Figure 5:Network synchronization errors between node 2 and node
3.

where 𝑔
𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) denotes the coupling function. The

proportional scale for node 𝑖 is 𝛼
𝑖
, then we will have 𝛼

𝑖
=

diag(𝛼
𝑖1
, 𝛼
𝑖2
, . . . , 𝛼

𝑖𝑛
).

Step 3. The errors between the state variables of the network
are defined as

𝑒
𝑖
= 𝛼
𝑖
𝑥
𝑖
+ 𝛼
𝑖+1
𝑥
𝑖+1
. (3)

We obtain from (2) and (3)
̇𝑒
𝑖
= 𝛼
𝑖
�̇�
𝑖
+ 𝛼
𝑖+1
�̇�
𝑖+1

= 𝛼
𝑖
[(𝐴
𝑖
− 𝐵
𝑖
) 𝑥
𝑖
+ 𝑆
𝑖
(𝑥
𝑖
) + 𝑔
𝑖
]

+ 𝛼
𝑖+1

[(𝐴
𝑖+1

− 𝐵
𝑖+1
) 𝑥
𝑖+1

+ 𝑆
𝑖+1

(𝑥
𝑖+1
) + 𝑔
𝑖+1
]

= (𝐴
𝑖
− 𝐵
𝑖
) 𝑒
𝑖
+ 𝑆
𝑖
𝛼
𝑖
+ 𝛼
𝑖
𝑔
𝑖
+ 𝛼
𝑖+1

(𝐴
𝑖+1

− 𝐵
𝑖+1
) 𝑥
𝑖+1

+ 𝛼
𝑖+1
𝑆
𝑖+1

+ 𝛼
𝑖+1
𝑔
𝑖+1

− (𝐴
𝑖
− 𝐵
𝑖
) 𝛼
𝑖+1
𝑥
𝑖+1

= (𝐴
𝑖
− 𝐵
𝑖
) 𝑒
𝑖
+ [(𝐴

𝑖+1
− 𝐵
𝑖+1
) − (𝐴

𝑖
− 𝐵
𝑖
)] 𝛼
𝑖+1
𝑥
𝑖+1

+ Δ𝑆
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) + Δ𝑔

𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
)

= (𝐴
𝑖
− 𝐵
𝑖
− 𝐾
𝑖
) 𝑒
𝑖
+ [(𝐴

𝑖+1
− 𝐵
𝑖+1
) − (𝐴

𝑖
− 𝐵
𝑖
)] 𝛼
𝑖+1
𝑥
𝑖+1
,

(4)

where Δ𝑆
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) = 𝛼

𝑖
𝑆
𝑖
+ 𝛼
𝑖+1
𝑆
𝑖+1

, Δ𝑔
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) = 𝛼

𝑖
𝑔
𝑖
+

𝛼
𝑖+1
𝑔
𝑖+1

+ 𝐾
𝑖
𝑒
𝑖
.

Step 4. Choose Δ𝑔
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) = −Δ𝑆

𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) + 𝐾
𝑖
𝑒
𝑖
, then we

will have
𝛼
𝑗
𝑔
𝑗
= −𝛼
1
𝑔
1
− 𝛼
1
𝑆
1
(𝑥
1
) − 𝛼
𝑗
𝑆
𝑗
(𝑥
𝑗
) + 𝑘 (𝛼

1
𝑥
1
+ 𝛼
𝑗
𝑥
𝑗
) ,

(𝑗 = 2, 3, . . . , 𝑚) .

(5)

If we choose node 1 as target node, then the coupling function
of node 𝑗 (𝑗 = 2, 3, 𝑚) can be described as

𝑔
𝑗
= −

𝛼
1

𝛼
𝑗

𝑔
1
−
𝛼
1

𝛼
𝑗

𝑆
1
(𝑥
1
) − 𝑆
𝑗
(𝑥
𝑗
) + 𝑘(

𝛼
1

𝛼
𝑗

𝑥
1
+ 𝑥
𝑗
) . (6)

In order to realize the synchronization of the complex
network, if we choose other node as target node, the coupling
functions of all nodes can also be obtained.

Step 5. Constructing the Lyapunov function according to the
weighted complex network with different nodes,

𝑉 =
1

2

𝑚−1

∑

𝑖=1

𝑒
2

𝑖
, (7)

and considering (3) and (4), we can obtain the derivative form
of 𝑉 as

�̇� =

𝑚−1

∑

𝑖=1

𝑒
𝑖
̇𝑒
𝑖

= ∑{(𝐴
𝑖
− 𝐵
𝑖
− 𝐾
𝑖
) 𝑒
𝑖

+ [(𝐴
𝑖+1

− 𝐵
𝑖+1
) − (𝐴

𝑖
− 𝐵
𝑖
)] 𝛼
𝑖+1
𝑥
𝑖+1
} 𝑒
𝑖
.

(8)

From (8), we can easily see that if
𝐴
𝑖
≤ 𝐵
𝑖
+ 𝐾
𝑖
, 𝐴

𝑖+1
= 𝐵
𝑖+1

+ 𝐴
𝑖
− 𝐵
𝑖
. (9)

Then

�̇� ≤ 0. (10)
According to Lyapunov stability theory [20] and the weighted
complex network [19, 20, 28], the synchronization of the
complex network can be realized.
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Figure 6: Network synchronization errors between node 3 and node 4.

3. Application of Chaos Control Method to
the Network Synchronization

The unified chaotic system, the New system, Coullet system,
and Chee-Lee system are taken as nodes of the network
to show the synchronization mechanism mentioned above.
Simulation is made as the number of the nodes is𝑚 = 5.

The dynamic equation of the unified chaotic system [21,
29] is presented as follows:

�̇�
1
= (25𝛼 + 10) (𝑦1 − 𝑥1) ,

�̇�
1
= (28 − 35𝛼) 𝑥1 − 𝑥1𝑧1 + (29𝛼 − 1) 𝑦1,

�̇�
1
= 𝑥
1
𝑦
1
−
8 + 𝛼

3
𝑧
1
,

(11)

where 𝛼 ∈ [−0.0016, 1.15]. When −0.0016 < 𝛼 < 0.8, LCL
system (11) belongs to the generalized Lorenz system [30];
when 𝛼 = 0.8, LCL system (11) belongs to the generalized
Lü system [23]; when 0.8 < 𝛼 < 1.15 LCL system
(11) belongs to the generalized Chen system [31]. Figures
1(a)–1(c) display these chaotic attractors of the generalized
Lorenz system (𝛼 = 0.2), the generalized Lü system

(𝛼 = 0.8), and the generalized Chen system (𝛼 = 1.12),
respectively.

The new chaotic system of three-dimensional quadratic
autonomous ordinary differential equations [22], which can
display the chaotic attractors:

�̇�
2
= −

𝑎
2
𝑏
2

𝑎
2
+ 𝑏
2

𝑥
2
− 𝑦
2
𝑧
2
+ 𝑐
2
,

�̇�
2
= 𝑎
2
𝑦
2
+ 𝑥
2
𝑧
2
,

�̇�
2
= 𝑏
2
𝑧
2
+ 𝑥
2
𝑦
2
,

(12)

where 𝑎
2
, 𝑏
2
, and 𝑐

2
are real constants; and 𝑥, 𝑦, and 𝑧 are

status variables. This system is found to be chaotic in a
wide parameter range and has many interesting complex
dynamical characteristics. The system is chaotic for the
parameters 𝑎

2
= −10, 𝑏

2
= −4, and ‖𝑐‖ = 19.2;

it displays the chaotic attractor as shown in Figure 2(a).
Detailed dynamic properties of this system can be found in
[22].
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Figure 7:Network synchronization errors between node 4 andnode
5.

The dynamic equation of Coullet system [19] is described
as follows:

�̇�
3
= 𝑦
3
,

�̇�
3
= 𝑧
3
,

�̇�
3
= 𝑎
3
𝑧
3
+ 𝑏
3
𝑦
3
+ 𝑐
3
𝑥
3
+ 𝑥
3

3
,

(13)
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Figure 8: The chaos attractors between node 1 and node 2 (a) and
between node 2 and node 3 (b).

where 𝑎
3
, 𝑏
3
, and 𝑐

3
are parameters of the system. When the

parameters are given as 𝑎
3
= 0.45, 𝑏

3
= 1.1, and 𝑐

3
= 0.8, the

chaos attractor of (13) is shown in Figure 2(b).
The dynamic equation of new system [23] is described as

follows:

�̇�
4
= 𝑑 (𝑦

4
− 𝑥
4
) ,

�̇�
4
= −𝑦
4
+ 𝑥
4
𝑧
4
,

�̇�
4
= 𝑒 − 𝑦

4
𝑥
4
− 𝑓𝑧
4
,

(14)

where 𝑑, 𝑒, and 𝑓 are parameters of the system. When the
parameters are given as 𝑑 = 5, 𝑒 = 16, and 𝑓 = 1, the chaos
attractor of (14) is shown in Figure 3(a).

The dynamic equation of the Chen-Lee system [32] is
described as follows:

�̇�
5
= −𝑦
5
𝑧
5
+ 𝑎
5
𝑥
5
,

�̇�
5
= 𝑥
5
𝑧
5
+ 𝑏
5
𝑦
5
,

�̇�
5
=
1

3
𝑥
5
𝑦
5
+ 𝑐
5
𝑧
5
,

(15)

where 𝑎 = 5, 𝑏 = −10, and 𝑐 = −0.38, (15) is a
chaotic system. Figure 3(b) displays the chaotic attractors in
(𝑥
1
, 𝑦
1
, 𝑧
1
)-space. It is easy to see that it admits a symmetry

(𝑥
5
, 𝑦
5
, 𝑧
5
). That is, the system (15) is symmetrical about the

three coordinate axes 𝑥
5
, 𝑦
5
, and 𝑧

5
, respectively.



Journal of Applied Mathematics 7

0
10

20
0 10 20

0

10

20

30

40

50

𝑧
3
𝑧
4

𝑦3𝑦4
𝑥3𝑥4

−10

−10 −10

−20

−20
−20

(a)

0
10

20

0
10

20

0
10
20
30
40
50

−10
−20

−10

−10

−20

−20

𝑧
4
𝑧
5

𝑦4𝑦5
𝑥4𝑥5

(b)

Figure 9: The chaos attractors between node 3 and node 4 (a) and between node 4 and node 5 (b).
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Choose the unified chaotic system (16) (node 1) as a target
system, that is, coupling function 𝑔

1𝑖
= 0, then the dynamic

functions of node 2, node 3, node 4, and node 5 with coupling
can be described, respectively, as

�̇�
1
= (25𝛼 + 10) (𝑦1 − 𝑥1) ,

�̇�
1
= (28 − 35𝛼) 𝑥1 − 𝑥1𝑧1 + (29𝛼 − 1) 𝑦1,

�̇�
1
= 𝑥
1
𝑦
1
−
8 + 𝛼

3
𝑧
1
,

(16)

�̇�
2
= −

𝑎
2
𝑏
2

𝑎
2
+ 𝑏
2

𝑥
2
− 𝑦
2
𝑧
2
+ 𝑐
2
+ 𝑔
21
,

�̇�
2
= 𝑎
2
𝑦
2
+ 𝑥
2
𝑧
2
+ 𝑔
22
,

�̇�
2
= 𝑏
2
𝑧
2
+ 𝑥
2
𝑦
2
+ 𝑔
23
,

(17)

�̇�
3
= 𝑦
3
+ 𝑔
31
,

�̇�
3
= 𝑧
3
+ 𝑔
32
,

�̇�
3
= 𝑎
3
𝑧
3
+ 𝑏
3
𝑦
3
+ 𝑐
3
𝑥
3
+ 𝑥
3

3
+ 𝑔
33
,

(18)
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Figure 11: The temporal evolution of variables between node 2 (“⋅ ⋅ ⋅”) and node 3 (“—”).
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,

(19)
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(20)

where 𝑔
𝑗
(𝑗 = 2, 3, 4, 5) fulfills (6):
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The relative weight of the coupling strength between the
nodes of the network is arbitrarily taken as 𝐾 =

[−1, −2, −3, 4, 3, 2, −2, −1, −2, −3, −2, −1], 𝛼
𝑖
= [1, 1, 1, −2,

−2, −2, 0.5, 0.5, 0.5, 2, 2, 2], then the network synchronization
error between system (16) and system (17) will be 𝑒

21
= 𝑥
1
+

𝑥
2
, 𝑒
22

= 𝑦
1
+ 𝑦
2
, and 𝑒

23
= 𝑧
1
+ 𝑧
2
and the network

synchronization error between system (17) and system (18)
will be 𝑒

31
= 𝑥
2
− 2𝑥
3
, 𝑒
32
= 𝑦
2
− 2𝑦
3
, and 𝑒

33
= 𝑧
2
− 2𝑧
3
,

and the network synchronization error between system (18)
and system (19) will be 𝑒

41
= 𝑥
3
− 0.5𝑥

4
, 𝑒
42

= 𝑦
3
− 0.5𝑦

3
,

and 𝑒
43
= 𝑧
3
− 0.5𝑧

4
, and the network synchronization error

between system (19) and system (20) will be 𝑒
51
= 𝑥
4
+ 2𝑥
5
,

𝑒
52
= 𝑦
4
+ 2𝑦
5
, and 𝑒

53
= 𝑧
4
+ 2𝑧
5
. The simulations are shown

in Figures 4, 5, 6, and 7.
For further details, the dynamic attractors for each node

with coupling network synchronization are shown in Figures
8 and 9. The network synchronization temporal evolution

of variables is shown in Figures 10, 11, 12, and 13. From
Figures 8 and 9, we can see that the network synchro-
nization has been realized on the required proportional
scale.

4. Summary and Discussion

In this paper, the complex network synchronization is
investigated. With the help of symbolic computation, dif-
ferent order chaotic systems are adopted as the nodes of
this complex network; the structure of the coupling func-
tions among the connected nodes is obtained based on
Lyapunov stability theory. Being of network and physical
interests, the temporal evolution of variables and node
interaction of the dynamic equation are discussed and sim-
ulated by computer. This method has universal significance
for network synchronization, and the weight value of the
coupling strength between the nodes and the number of
the nodes does not affect synchronization of the whole
network.
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