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It remained prevalent in the past years to obtain the precommitment strategies for Markowitz’s mean-variance portfolio
optimization problems, but not much is known about their time-consistent strategies. This paper takes a step to investigate the
time-consistent Nash equilibrium strategies for a multiperiod mean-variance portfolio selection problem. Under the assumption
that the risk aversion is, respectively, a constant and a function of current wealth level, we obtain the explicit expressions for the
time-consistent Nash equilibrium strategy and the equilibrium value function. Many interesting properties of the time-consistent
results are identified through numerical sensitivity analysis and by comparing them with the classical pre-commitment solutions.

1. Introduction

Since the pioneering work of [1] in a single period, mean-
variance formulation has been one of focused topics of
portfolio selection optimization and has stimulated hundreds
of extensions and applications. The interested readers can
refer to [2, 3] for detailed information.The objective of quite a
number of existingmean-variance portfolio selectionmodels
is seeking an optimal strategy 𝜋(⋅) which maximizes the
mean-variance utility 𝐸[𝑋

𝜋

𝑇
] − 𝜔Var[𝑋𝜋

𝑇
], where 𝑋

𝜋

𝑇
is the

terminal wealth. But it is well known that this mean-variance
criterion lacks of iterated-expectation property, which gives
rise to time-inconsistent investment strategy in the sense
that Bellman optimality principle is not available any more.
The so-called time-inconsistent strategy means that optimal
strategy obtained at time 𝑛 does not agree with optimal
strategy derived at time 𝑚 where 𝑚 > 𝑛. Therefore, the
optimal strategy in the classical time-inconsistent models
is just optimal from the viewpoint of the initial time, and
decision makers at any time 𝑘 after the initial time must
commit themselves to the initial optimal strategy even if it
is not optimal at time 𝑘. So, the time-inconsistent optimal
strategy in the classical mean-variance model is called the
precommitment strategy. But this precommitment has been

criticized for lacking rationality. For one simple example,
investment psychology and tastes will often change over
time, and the decision maker at later time may not commit
themselves to following a strategy which is not optimal at
their current time. The work in [4] analyzed the incentives
which induce the investor to revise her optimal strategy at
subsequent dates under mean-variance criterion.

For this reason, we want to find an optimal strategy
with time consistency which is necessary for a rational
individual. The analysis of inconsistency can be traced back
to [5] which pointed out that “optimal plan of the present
moment is generally one which will not be obeyed” and
the time-inconsistent problem can be solved by precom-
mitment strategy or alternatively time-consistent strategy.
The authors of [5, 6] devoted themselves to identifying an
intertemporal consumption programme that would be “the
best plan that an agent would actually follow.” The work
in [7] questioned the generality of the existence of Strotz-
Pollak equilibrium and gave an alternative criterion of Nash
equilibrium. More recently, it is of interest to study time-
inconsistent problems. The work of [8, 9] investigated a
time-consistent strategy for a consumption and investment
problem with nonexponential discounting. The work in
[10] gave general approaches to handle time-inconsistent
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problems by viewing themas a game theoretic framework and
looking for Nash subgame perfect equilibrium points. They
formally defined the continuous time equilibrium concept
and derived the extension ofHJB equation and its verification
theorem for a very general objective functions. The work
in [11] studied a continuous-time mean-variance portfolio
optimization model on the assumption that the risk aversion
factor depended dynamically on the current wealth. In
view of the extension of HJB equation developed in [10],
they obtained the time-consistent equilibrium control and
equilibriumvalue function.Thework in [12] provided explicit
solutions to a series of cases, including mean-standard
deviation in continuous-time setting. The work in [13] inves-
tigated optimal mean-variance time-consistent investment
and reinsurance policies for an insurer under continuous-
time setting. The work in [14] developed a fully numerical
scheme to determine time-consistent mean-variance strategy
based on piecewise constant policy technique. As for the
discrete-time mean-variance models, the work in [15] gave
a complicated backwards recursive relationship about time-
consistent investment strategy but had not found analytical
expression for the strategy.

To the best of our knowledge, no existing literature
has given time-consistent equilibrium strategy and equilib-
rium value function in closed form for discrete-time mean-
variance asset allocation. Our research will fill the gap. We
view this decision-making process as a noncooperative game
and suppose that there is one decision maker, referred to as
“decision maker 𝑛”, for each point of time 𝑛. This assumption
is reasonable. On one hand, in the real world, there are often
quite different persons who will join in the decision-making
process especially when the investment horizon is long; on
the other hand, we can image decision-maker 𝑛 as the future
incarnation of themselves at time 𝑛 considering that the tastes
of the decision maker will change over time. So our work
in this paper is listed as follows: (a) derive the analytical
expressions for the time-consistent equilibrium strategy and
equilibrium value function when the risk aversion is assumed
to be a constant and a function of currentwealth, respectively;
(b) when risk aversion factor is a constant, compare our
time-consistent results with the precommitment ones in [2]
and present the particular properties of the time-consistent
results; (c) study the problem in discrete-time setting with
nonconstant risk aversion which is a function of current
wealth and identify the properties of the investment propor-
tion by numerical analysis.

The rest of the paper is organized as follows. In Section 2,
the problem formulation is presented, and the recursive
formula of the equilibrium value function is derived. In
Section 3, equilibrium strategy and equilibrium value func-
tion for mean-variance model with constant risk aversion
are obtained. Comparison of our time-consistent results with
the precommitment ones in [2] is also given in this section.
In Section 4, the equilibrium results are investigated on the
assumption that the risk aversion depends dynamically on the
currentwealth andnumerical analysis is given to demonstrate
the properties of investment proportion. Section 5 presents
our conclusions.

2. Problem Formulation

In this paper, we assume that investors join themarket at time
0with an initial wealth 𝑥

0
and plan to process the investment

in 𝑇 consecutive time periods. There are one risk-free asset
and 𝑚

1
risky assets in the market. The 𝑚

1
risky assets have

random returns 𝑅
𝑛
= (𝑅
𝑛,1

, 𝑅
𝑛,2

, . . . , 𝑅
𝑛,𝑚
1

)
 at period 𝑛 (time

interval [𝑛, 𝑛 + 1)) where 𝑅
𝑛,𝑘

denotes the random return
of the 𝑘th asset at period 𝑛 and superscript “” stands for
the transpose of a matrix or vector. Denote by 𝑟

𝑓

𝑛
the return

of the risk-free asset at period 𝑛, and denote by 𝑋
𝑛
and

𝜋
𝑛
= (𝜋
𝑛,1

, . . . , 𝜋
𝑛,𝑚
1

)
 the wealth available for investment and

the amounts invested in𝑚
1
risky asset at time 𝑛, respectively.

Then the wealth dynamics is

𝑋
𝑛+1

= (𝑋
𝑛
−

𝑚
1

∑

𝑘=1

𝜋
𝑛,𝑘

)𝑟
𝑓

𝑛
+

𝑚
1

∑

𝑘=1

𝜋
𝑛,𝑘

𝑅
𝑛,𝑘

= 𝑋
𝑛
𝑟
𝑓

𝑛
+ 𝜋


𝑛
𝑅
𝑒

𝑛
,

(1)

where 𝑅
𝑒

𝑛,𝑘
= 𝑅
𝑛,𝑘

− 𝑟
𝑓

𝑛
, 𝑅
𝑒

𝑛
= (𝑅
𝑒

𝑛,1
, 𝑅
𝑒

𝑛,2
, . . . , 𝑅

𝑒

𝑛,𝑚
1

)
 for 𝑛 =

0, 1, . . . , 𝑇 − 1.
As we know, the classic mean-variance optimization

problem is as follows:

max
{𝜋0,𝜋1,...,𝜋𝑇−1}

𝐸 (𝑋
𝜋

𝑇
) − 𝜔Var (𝑋𝜋

𝑇
) , (2)

which results in a time-inconsistent strategy, that is, precom-
mitment strategy. Therefore, as mentioned in Section 1, this
paper aims to solve this problem from another perspective
and to look for the time-consistent Nash equilibrium invest-
ment strategy. To this end, we first give the definition of Nash
equilibrium strategy according to [10] and the references
therein.

Let 𝜋(𝑛) = {𝜋
𝑛
, 𝜋
𝑛+1

, . . . , 𝜋
𝑇−1

} be the policy made at time
𝑛 and

𝐽
𝑛
(F
𝑛
, 𝜋 (𝑛)) = 𝐸 (𝑋

𝜋(𝑛)

𝑇
| F
𝑛
) − 𝜔 (F

𝑛
)Var (𝑋𝜋(𝑛)

𝑇
| F
𝑛
) ,

(3)

where 𝑋
𝜋(𝑛)

𝑇
is the terminal wealth corresponding to the

investment strategy 𝜋, and F
𝑛
is the information at time 𝑛,

such aswealth level. A natural assumption is that risk aversion
𝜔 is a function of F

𝑛
.

Definition 1. Let �̂� be a fixed control law. For an arbitrary
point 𝑛 (𝑛 = 0, 1, . . . , 𝑇 − 1), one selects an arbitrary control
value 𝜋

𝑛
and define the strategy 𝜋(𝑛) = (𝜋

𝑛
, �̂�
𝑛+1

, . . . , �̂�
𝑇−1

).
Then �̂� is said to be a subgame perfect Nash equilibrium

strategy (or simply equilibrium strategy) if for all 𝑛 < 𝑇, it
satisfies

max
𝜋
𝑛

𝐽
𝑛
(F
𝑛
; 𝜋 (𝑛)) = 𝐽

𝑛
(F
𝑛
; �̂� (𝑛)) . (4)



Journal of Applied Mathematics 3

In addition, if equilibrium strategy �̂� exists, the equilibrium
value function is defined as

𝑉
𝑛
(F
𝑛
) = 𝐽
𝑛
(F
𝑛
; �̂� (𝑛)) . (5)

Let �̂�(𝑛) be the Nash equilibrium strategy at time 𝑛, then
Definition 1 makes it possible to solve the problem by the
following procedure:

(a) �̂�(𝑇 − 1) = �̂�
𝑇−1

= arg max
𝜋
𝑇−1

[𝐸(𝑋
𝜋
𝑇−1

𝑇
| F
𝑇−1

) −

𝜔(F
𝑇−1

)Var(𝑋𝜋𝑇−1
𝑇

| F
𝑇−1

)];

(b) given that the decision maker 𝑇 − 1 will use �̂�
𝑇−1

,
�̂�
𝑇−2

is the optimal control that optimizes objective
function 𝐽

𝑇−2
(F
𝑇−2

; (𝜋
𝑇−2

, �̂�
𝑇−1

));

(c) generally, �̂�
𝑛
is obtained by letting decision maker 𝑛

choose 𝜋
𝑛
to maximize 𝐽

𝑛
given that the forthcoming

decisionmakers 𝑛+1, . . . , 𝑇−1will choose the strategy
�̂�(𝑛 + 1) = (�̂�

𝑛+1
, . . . , �̂�

𝑇−1
); that is,

�̂�
𝑛
= argmax

𝜋
𝑛

𝐽
𝑛
(F
𝑛
; (𝜋
𝑛
, �̂�
𝑛+1

, . . . , �̂�
𝑇−1

)) . (6)

Now we try to derive the time-consistent Nash equilib-
rium strategy and value function, but first we need to give the
following notations and assumptions throughout this paper:

(N1) 𝑟
𝑒

𝑛
= 𝐸(𝑅

𝑒

𝑛
), 𝑛 = 0, 1, . . . , 𝑇 − 1;

(N2) 𝜎
𝑛
= 𝐸(𝑅

𝑒

𝑛
𝑅
𝑒

𝑛



) − 𝑟
𝑒

𝑛
𝑟
𝑒

𝑛



, 𝑛 = 0, 1, . . . , 𝑇 − 1;

(N3) 𝜅
𝑛
= 𝑟
𝑒

𝑛



(𝜎
𝑛
)
−1

𝑟
𝑒

𝑛
, 𝑛 = 0, 1, . . . , 𝑇 − 1;

(N4) 𝑔
𝜋(𝑛)

𝑛
(F
𝑛
) = 𝐸[𝑋

𝜋(𝑛)

𝑇
| F
𝑛
], 𝑔
𝑛
(F
𝑛
) = 𝐸[𝑋

�̂�(𝑛)

𝑇
|

F
𝑛
], 𝑛 = 0, 1, . . . , 𝑇 − 1;

(N5) ℎ
𝜋(𝑛)

𝑛
(F
𝑛
) = 𝐸[(𝑋

𝜋(𝑛)

𝑇
)

2

| F
𝑛
], ℎ
𝑛
(F
𝑛
) = 𝐸[(𝑋

�̂�(𝑛)

𝑇
)

2

|

F
𝑛
], 𝑛 = 0, 1, . . . , 𝑇 − 1.

(A1) The distribution function of the random returns 𝑅
𝑛

is 𝐹
𝑛
, and {𝑅

𝑛
, 𝑛 = 0, 1, . . . , 𝑇 − 1} is assumed to be

statistically independent.

(A2) 𝜎
𝑛
is assumed to be positive definite.

(A3) Short selling is allowed for all risky assets in all peri-
ods. Unlimited borrowing and lending are permitted.
Transaction costs are not taken into account.

(A4) Capital additions or withdrawals are forbidden for all
assets in all periods.

With the notations above, we can obtain the recursions of
𝐽
𝑛
and 𝑉

𝑛
. For the sake of convenience, we define 𝐸

𝑛,F
𝑛

(⋅) =

𝐸[⋅ | F
𝑛
] and Var

𝑛,F
𝑛

(⋅) = Var(⋅ | F
𝑛
), then

𝐽
𝑛
(F
𝑛
; 𝜋 (𝑛))

= 𝐸
𝑛,F
𝑛

[𝐽
𝑛+1

(F
𝑛+1

; 𝜋 (𝑛 + 1))]

− {𝐸
𝑛,F
𝑛

[𝐸
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)

−𝜔 (F
𝑛+1

)Var
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)]

−𝐸
𝑛,F
𝑛

(𝑋
𝜋(𝑛)

𝑇
) + 𝜔 (F

𝑛
)Var
𝑛,F
𝑛

(𝑋
𝜋(𝑛)

𝑇
)}

= 𝐸
𝑛,F
𝑛

[𝐽
𝑛+1

(F
𝑛+1

; 𝜋 (𝑛 + 1))]

− {𝐸
𝑛,F
𝑛

[𝐸
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)] − 𝐸

𝑛,F
𝑛

(𝑋
𝜋(𝑛)

𝑇
)}

+ 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

)Var
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)]

− 𝜔 (F
𝑛
)Var
𝑛,F
𝑛

(𝑋
𝜋(𝑛)

𝑇
)

= 𝐸
𝑛,F
𝑛

[𝐽
𝑛+1

(F
𝑛+1

; 𝜋 (𝑛 + 1))]

+ 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

)Var
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)]

− 𝜔 (F
𝑛
)Var
𝑛,F
𝑛

(𝑋
𝜋(𝑛)

𝑇
)

= 𝐸
𝑛,F
𝑛

[𝐽
𝑛+1

(F
𝑛+1

; 𝜋 (𝑛 + 1))]

+ 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

) 𝐸
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)

2

−𝜔 (F
𝑛+1

) [𝐸
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)]

2

]

− 𝜔 (F
𝑛
) [𝐸
𝑛,F
𝑛

(𝑋
𝜋(𝑛)

𝑇
)

2

− [𝐸
𝑛,F
𝑛

(𝑋
𝜋(𝑛)

𝑇
)]

2

]

= 𝐸
𝑛,F
𝑛

[𝐽
𝑛+1

(F
𝑛+1

; 𝜋 (𝑛 + 1))]

+ 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

) 𝐸
𝑛+1,F

𝑛+1

((𝑋
𝜋(𝑛+1)

𝑇
)

2

)]

− 𝜔 (F
𝑛
) 𝐸
𝑛,F
𝑛

((𝑋
𝜋(𝑛)

𝑇
)

2

)

− 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

) [𝐸
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)]

2

]

+ 𝜔 (F
𝑛
) {𝐸
𝑛,F
𝑛

[𝐸
𝑛+1,F

𝑛+1

(𝑋
𝜋(𝑛+1)

𝑇
)]}

2

= 𝐸
𝑛,F
𝑛

[𝐽
𝑛+1

(F
𝑛+1

; 𝜋 (𝑛 + 1))]

+ 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

) ℎ
𝜋(𝑛+1)

𝑛+1
(F
𝑛+1

)]

− 𝜔 (F
𝑛
) 𝐸
𝑛,F
𝑛

(ℎ
𝜋(𝑛+1)

𝑛+1
(F
𝑛+1

))

− 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

) [𝑔
𝜋(𝑛+1)

𝑛+1
(F
𝑛+1

)]

2

]

+ 𝜔 (F
𝑛
) [𝐸
𝑛,F
𝑛

(𝑔
𝜋(𝑛+1)

𝑛+1
(F
𝑛+1

))]

2

.

(7)
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By Definition 1, we have 𝑉
𝑛+1

(F
𝑛+1

) = 𝐽
𝑛+1

(F
𝑛+1

; �̂�
𝑛+1

), and
hence (7) implies the following recursion for equilibrium
value function 𝑉

𝑛
(F
𝑛
):

𝑉
𝑛
(F
𝑛
) = max
𝜋
𝑛

{𝐸
𝑛,F
𝑛

[𝑉
𝑛+1

(F
𝑛+1

)]

+ 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

) ℎ
𝑛+1

(F
𝑛+1

)]

− 𝜔 (F
𝑛
) 𝐸
𝑛,F
𝑛

(ℎ
𝑛+1

(F
𝑛+1

))

− 𝐸
𝑛,F
𝑛

[𝜔 (F
𝑛+1

) [𝑔
𝑛+1

(F
𝑛+1

)]
2

]

+𝜔 (F
𝑛
) [𝐸
𝑛,F
𝑛

(𝑔
𝑛+1

(F
𝑛+1

))]

2

} ,

𝑛 = 0, 1, . . . , 𝑇 − 1,

(8)

𝑉
𝑇
(F
𝑛
) = 𝑥, (9)

where the recursions of 𝑔
𝑛
(F
𝑛
) and ℎ

𝑛
(F
𝑛
) are as follows:

ℎ
𝑛
(F
𝑛
) = 𝐸
𝑛,F
𝑛

[(𝑋
�̂�(𝑛)

𝑇
)

2

]

= 𝐸
𝑛,F
𝑛

[𝐸
𝑛+1,F

𝑛+1

((𝑋
�̂�(𝑛)

𝑇
)

2

)]

= 𝐸
𝑛,F
𝑛

(ℎ
𝑛+1

(F
𝑛+1

)) , 𝑛 = 0, 1, . . . , 𝑇 − 1,

ℎ
𝑇
(F
𝑇
) = 𝑥
2

,

𝑔
𝑛
(F
𝑛
) = 𝐸
𝑛,F
𝑛

(𝑋
�̂�(𝑛)

𝑇
)

= 𝐸
𝑛,F
𝑛

[𝐸
𝑛+1,F

𝑛+1

(𝑋
�̂�(𝑛)

𝑇
)] = 𝐸

𝑛,F
𝑛

(𝑔
𝑛+1

(F
𝑛+1

)) ,

𝑛 = 0, 1, . . . , 𝑇 − 1,

𝑔
𝑇
(F
𝑇
) = 𝑥.

(10)

3. Nash Equilibrium Strategy with
Constant Risk Aversion

3.1. Equilibrium Strategy and Equilibrium Value Function.
When the risk aversion is a constant, 𝐽

𝑛
is of the form

𝐽
𝑛
(𝑥; 𝜋 (𝑛)) = 𝐸 (𝑋

𝜋(𝑛)

𝑇
| 𝑋
𝑛
= 𝑥) − 𝜔Var (𝑋𝜋(𝑛)

𝑇
| 𝑋
𝑛
= 𝑥)

𝑉
𝑛
(F
𝑛
) = 𝑉
𝑛
(𝑋
𝑛
= 𝑥) = 𝐽

𝑛
(𝑥; �̂� (𝑛)) .

(11)

According to (8), the recursion of equilibrium value function
𝑉
𝑛
(𝑥) is simplified as

𝑉
𝑛
(𝑥) = max

𝜋
𝑛

{𝐸
𝑛,𝑥

[𝑉
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)]

−𝜔Var
𝑛,𝑥

[𝑔
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)]} ,

𝑛 = 0, 1, . . . , 𝑇 − 1,

(12)

𝑉
𝑇
(𝑥) = 𝑥. (13)

Recursion (12) indicates that 𝑉
𝑛
(𝑥) does not depend on ℎ

𝑛
,

and then we only need to find the explicit expression of 𝑔
𝑛
by

the following recursion:

𝑔
𝑛
(𝑥) = 𝐸

𝑛,𝑥
(𝑋
�̂�(𝑛)

𝑇
)

= 𝐸
𝑛,𝑥

[𝑔
𝑛+1

(𝑋
�̂�
𝑛

𝑛+1
)] , 𝑛 = 0, 1, . . . , 𝑇 − 1,

(14)

𝑔
𝑇
(𝑥) = 𝑥. (15)

The following theorem gives the explicit expressions of �̂�
and 𝑉

𝑛
(𝑥)

Theorem 2. When the risk aversion is a constant, the Nash
equilibrium strategy is given by

�̂�
𝑛
=

1

2𝜔

1

∏
𝑇−1

𝑘=𝑛+1
𝑟
𝑓

𝑘

(𝜎
𝑛
)
−1

𝑟
𝑒

𝑛
, 𝑛 = 0, 1, . . . , 𝑇 − 1. (16)

The corresponding equilibrium value function is

𝑉
𝑛
(𝑥) = 𝑥

𝑇−1

∏

𝑘=𝑛

𝑟
𝑓

𝑘
+

1

4𝜔

𝑇−1

∑

𝑘=𝑛

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
, 𝑛 = 0, 1, . . . , 𝑇, (17)

𝑔
𝑛
(𝑥) = 𝑥

𝑇−1

∏

𝑘=𝑛

𝑟
𝑓

𝑘
+

1

2𝜔

𝑇−1

∑

𝑘=𝑛

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
, 𝑛 = 0, 1, . . . , 𝑇. (18)

Proof. Obviously (17) and (18) hold true for 𝑛 = 𝑇. Then for
𝑛 = 𝑇 − 1,

𝑉
𝑇−1

(𝑥) = max
𝜋
𝑇−1

{𝐸
𝑇−1,𝑥

[𝑉
𝑇
(𝑋
𝜋
𝑇−1

𝑇
)]

−𝜔Var
𝑇−1,𝑥

[𝑔
𝑇
(𝑋
𝜋
𝑇−1

𝑇
)]}

= max
𝜋
𝑇−1

[𝐸
𝑇−1,𝑥

(𝑋
𝜋
𝑇−1

𝑇
) − 𝜔Var

𝑇−1,𝑥
(𝑋
𝜋
𝑇−1

𝑇
)]

= 𝑥𝑟
𝑓

𝑇−1
+ sup
𝜋
𝑇−1

[𝜋


𝑇−1
𝑟
𝑒

𝑇−1
− 𝜔𝜋


𝑇−1
𝜎
𝑇−1

𝜋
𝑇−1

] .

(19)

Since 𝜎
𝑇−1

is positive definite, the optimal solution exists and
is given by

�̂�
𝑇−1

=

1

2𝜔

(𝜎
𝑇−1

)
−1

𝑟
𝑒

𝑇−1
. (20)

Substituting (20) into (19) yields

𝑉
𝑇−1

(𝑥) = 𝑥𝑟
𝑓

𝑇−1
+

1

4𝜔

𝑟
𝑒

𝑇−1



𝜎
−1

𝑇−1
𝑟
𝑒

𝑇−1
,

𝑔
𝑇−1

(𝑥) = 𝐸
𝑇−1,𝑥

[𝑋
�̂�
𝑇−1

𝑇
] = 𝑥𝑟

𝑓

𝑇−1
+

1

2𝜔

𝑟
𝑒

𝑇−1



𝜎
−1

𝑇−1
𝑟
𝑒

𝑇−1
.

(21)
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Hence (16), (17), and (18) hold true for 𝑛 = 𝑇− 1. Now we
assume that (17) and (18) are true for 𝑛 + 1, then for 𝑛,

𝑉
𝑛
(𝑥) = max

𝜋
𝑛

{𝐸
𝑛,𝑥

[𝑉
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)]

−𝜔Var
𝑛,𝑥

[𝑔
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)]}

= max
𝜋
𝑛

{𝐸
𝑛,𝑥

[(𝑥𝑟
𝑓

𝑛
+ 𝑅
𝑒

𝑛



𝜋
𝑛
)

𝑇−1

∏

𝑘=𝑛+1

𝑟
𝑓

𝑘

+

1

4𝜔

𝑇−1

∑

𝑘=𝑛+1

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
]

− 𝜔Var
𝑛,𝑥

[(𝑥𝑟
𝑓

𝑛
+ 𝑅
𝑒

𝑛



𝜋
𝑛
)

𝑇−1

∏

𝑘=𝑛+1

𝑟
𝑓

𝑘

+

1

2𝜔

𝑇−1

∑

𝑘=𝑛+1

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
]}

= max
𝜋
𝑛

{𝑥

𝑇−1

∏

𝑘=𝑛

𝑟
𝑓

𝑘
+ 𝑟
𝑒

𝑛



𝜋
𝑛

𝑇−1

∏

𝑘=𝑛+1

𝑟
𝑓

𝑘

+

1

4𝜔

𝑇−1

∑

𝑘=𝑛+1

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

−𝜔

𝑇−1

∏

𝑘=𝑛+1

(𝑟
𝑓

𝑘
)

2

𝜋


𝑛
𝜎
𝑛
𝜋
𝑛
} .

(22)

It is obvious that the optimal solution of (22) exits and is
given by

�̂�
𝑛
=

1

2𝜔

1

∏
𝑇−1

𝑘=𝑛+1
𝑟
𝑓

𝑘

(𝜎
𝑛
)
−1

𝑟
𝑒

𝑛
. (23)

Substituting (23) into (22), we obtain

𝑉
𝑛
(𝑥) = 𝑥

𝑇−1

∏

𝑘=𝑛

𝑟
𝑓

𝑘
+

1

4𝜔

𝑇−1

∑

𝑘=𝑛

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
, (24)

and according to (14),

𝑔
𝑛
(𝑥) = 𝐸

𝑛,𝑥
[𝑔
𝑛+1

(𝑋
�̂�
𝑛

𝑛+1
)]

= 𝐸
𝑛,𝑥

[𝑋
�̂�
𝑛

𝑛+1

𝑇−1

∏

𝑘=𝑛+1

𝑟
𝑓

𝑘

+

1

2𝜔

𝑇−1

∑

𝑘=𝑛+1

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
]

= (𝑥𝑟
𝑓

𝑛
+ �̂�
𝑛
𝑟
𝑒

𝑛
)

𝑇−1

∏

𝑘=𝑛+1

𝑟
𝑓

𝑘

+

1

2𝜔

𝑇−1

∑

𝑘=𝑛+1

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

= 𝑥

𝑇−1

∏

𝑘=𝑛

𝑟
𝑓

𝑘
+

1

2𝜔

𝑟
𝑒

𝑛



(𝜎
𝑛
)
−1

𝑟
𝑒

𝑛

+

1

2𝜔

𝑇−1

∑

𝑘=𝑛+1

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

= 𝑥

𝑇−1

∏

𝑘=𝑛

𝑟
𝑓

𝑘
+

1

2𝜔

𝑇−1

∑

𝑘=𝑛

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
.

(25)

Equations (23), (24), and (25) mean that (16), (17), and (18)
hold true for 𝑛. By induction, the proof of Theorem 2 is
complete.

3.2. Comparison to the Precommitment Results

3.2.1. About the Value Function. In view of (17), we know that
the equilibrium value function at initial time 0 is

𝑉
0
(𝑥
0
) = 𝑥
0

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘
+

1

4𝜔

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
, (26)

and the precommitment value function of [2] is

𝐸
0,𝑥
0

(𝑋
𝑇
) − 𝜔Var

0,𝑥
0

(𝑋
𝑇
)

= 𝑥
0

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘

+

1

4𝜔

1 − ∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

.

(27)

The relationship between (26) and (27) is summarized in the
following lemma.

Lemma 3. Consider the following:

𝐸
0,𝑥
0

(𝑋
𝑇
) − 𝜔Var

0,𝑥
0

(𝑋
𝑇
) ≥ 𝑉
0
(𝑥
0
) . (28)

Proof. First of all, we have

𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) = (𝜎
𝑘
)
−1

−

(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

1 + 𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

, (29)
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then,

𝑟
𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘

= 𝑟
𝑒

𝑘



[(𝜎
𝑘
)
−1

−

(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

1 + 𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

] 𝑟
𝑒

𝑘

= 𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
[1 −

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

1 + 𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

]

=

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

1 + 𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

.

(30)

Now,

𝐸
0,𝑥
0

(𝑋
𝑇
) − 𝜔Var

0,𝑥
0

(𝑋
𝑇
) − 𝑉
0
(𝑥
0
)

=

1

4𝜔

[

1 − ∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

−

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
]

=

1

4𝜔

1 − ∏
𝑇−1

𝑘=0
(1/ (1 + 𝑟

𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
))

∏
𝑇−1

𝑘=0
(1/ (1 + 𝑟

𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
))

−

1

4𝜔

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

=

1

4𝜔

𝑇−1

∏

𝑘=0

(1 + 𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
)

−

1

4𝜔

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
−

1

4𝜔

=

1

4𝜔

[ (1 + 𝑟
𝑒

0



(𝜎
0
)
−1

𝑟
𝑒

0
) ⋅ ⋅ ⋅ (1 + 𝑟

𝑒

𝑇−1



(𝜎
𝑇−1

)
−1

𝑟
𝑒

𝑇−1
)

−

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
− 1] ≥ 0.

(31)

This proof gives an important inequality needed in the
later analysis as

1 − ∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

−

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

= (1 + 𝑟
𝑒

0



(𝜎
0
)
−1

𝑟
𝑒

0
) ⋅ ⋅ ⋅ (1 + 𝑟

𝑒

𝑇−1



(𝜎
𝑇−1

)
−1

𝑟
𝑒

𝑇−1
)

−

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
− 1 ≥ 0.

(32)

Lemma 3 shows that the precommitment value function
is greater than the equilibrium value function. This is a
fair game of God. The Nash equilibrium strategy gains the
time consistency but at the same time destroys the welfare
of the whole decision procedure because of the inability
to precommit. Referring to the proof of Lemma 3, we also
realize that the distance between these two value functions
is amplified at longer time horizon. Specially, when 𝑇 = 1,
these two value functions coincide with each other. When
𝑇 = 1, the time-consistent results should be and are actually
the same as the precommitment ones.

3.2.2. About the Investment Strategy. The time-consistent
strategy at each period is

�̂�
𝑛
=

1

2𝜔

1

∏
𝑇−1

𝑘=𝑛+1
𝑟
𝑓

𝑘

(𝜎
𝑛
)
−1

𝑟
𝑒

𝑛
, 𝑛 = 0, 1, . . . , 𝑇 − 1. (33)

Referring to [2], the precommitment strategy at each period
is

𝜋
∗

𝑛
= − 𝑟

𝑓

𝑛
𝐸
−1

(𝑅
𝑒

𝑛
𝑅
𝑒

𝑛



) 𝑟
𝑒

𝑛
𝑥
𝑛

+ [

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘
𝑥
0
+

1

2𝜔 (∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘
𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
))

]

×

𝑇−1

∏

𝑘=𝑛+1

(

1

𝑟
𝑓

𝑘

)𝐸
−1

(𝑅
𝑒

𝑛
𝑅
𝑒

𝑛



) 𝑟
𝑒

𝑛
,

𝑛 = 0, 1, . . . , 𝑇 − 1.

(34)

The significant differences between �̂� and 𝜋
∗ are as follows.

(a) Since the time-consistent strategy at time 𝑛 will not
be affected by the initial information, then it has
nothing to do with the initial wealth 𝑥

0
in contrast

with precommitment strategy.

(b) the time consistent is time deterministic but the
precommitment one is stochastically dependent on
the current wealth.

3.2.3. About the Efficient Frontier. In this Section, we want to
compare our efficient frontier with the one in [2]. But first of
all, we need the results in Lemma 4.
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Lemma 4. Under the time-consistent strategy (16),

𝐸 (𝑋
�̂�

𝑛
) = 𝑥
0

𝑛−1

∏

𝑘=0

𝑟
𝑓

𝑘
+

1

2𝜔

1

∏
𝑇−1

𝑘=𝑛
𝑟
𝑓

𝑘

𝑛−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
, (35)

𝐸 [(𝑋
�̂�

𝑛
)

2

]

= 𝑥
0

𝑛−1

∏

𝑘=0

(𝑟
𝑓

𝑘
)

2

+

1

𝜔

∑
𝑛−1

𝑘=0
𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

∏
𝑇−1

𝑘=𝑛
(𝑟
𝑓

𝑘
)

2
𝑥
0

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘

+

1

4𝜔
2

1

∏
𝑇−1

𝑘=𝑛
(𝑟
𝑓

𝑘
)

2

𝑛−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

× [1 +

𝑘−1

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
+

𝑘

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
] .

(36)

Proof. Substituting (16) into (1) yields

𝑋
�̂�

𝑛
= 𝑋
�̂�

𝑛−1
𝑟
𝑓

𝑛−1
+

1

2𝜔

1

∏
𝑇−1

𝑘=𝑛
𝑟
𝑓

𝑘

× 𝑅
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1
, 𝑛 = 1, 2, . . . , 𝑇,

(37)

and for 𝑛 = 1, 2, . . . , 𝑇,

(𝑋
�̂�

𝑛
)

2

= (𝑋
�̂�

𝑛−1
)

2

(𝑟
𝑓

𝑛−1
)

2

+

1

𝜔

𝑋
�̂�

𝑛−1
𝑟
𝑓

𝑛−1

1

∏
𝑇−1

𝑘=𝑛
𝑟
𝑓

𝑘

𝑅
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1

+

1

4𝜔
2

1

∏
𝑇−1

𝑘=𝑛
(𝑟
𝑓

𝑘
)

2
𝑟
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

× 𝑅
𝑒

𝑛−1
𝑅
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1
.

(38)

Hence,

𝐸 (𝑋
�̂�

𝑛
) = 𝐸 (𝑋

�̂�

𝑛−1
) 𝑟
𝑓

𝑛−1

+

1

2𝜔

1

∏
𝑇−1

𝑘=𝑛
𝑟
𝑓

𝑘

𝑟
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1
,

𝑛 = 1, 2, . . . , 𝑇,

(39)

and for 𝑛 = 1, 2, . . . , 𝑇,

𝐸 [(𝑋
�̂�

𝑛
)

2

]

= 𝐸(𝑋
�̂�

𝑛−1
)

2

(𝑟
𝑓

𝑛−1
)

2

+

1

𝜔

𝐸 (𝑋
�̂�

𝑛−1
) 𝑟
𝑓

𝑛−1

×

1

∏
𝑇−1

𝑘=𝑛
𝑟
𝑓

𝑘

𝑟
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1

+

1

4𝜔
2

1

∏
𝑇−1

𝑘=𝑛
(𝑟
𝑓

𝑘
)

2
𝑟
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1

× [1 + 𝑟
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1
] .

(40)

By repeatedly using recursive equation (39), we can obtain
(35). Substituting (35) into (40) yields

𝐸 [(𝑋
�̂�

𝑛
)

2

] = 𝐸 [(𝑋
�̂�

𝑛−1
)

2

] (𝑟
𝑓

𝑛−1
)

2

+

1

𝜔

𝑟
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1

∏
𝑇−1

𝑘=𝑛
(𝑟
𝑓

𝑘
)

2
𝑥
0

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘

+

1

4𝜔
2

𝑟
𝑒

𝑛−1



(𝜎
𝑛−1

)
−1

𝑟
𝑒

𝑛−1

∏
𝑇−1

𝑘=𝑛
(𝑟
𝑓

𝑘
)

2

× [1 +

𝑛−2

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
+

𝑛−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
] .

(41)

Repeatedly using the above recursive equation yields (36).

Then according to (35) and (36), we can obtain the
efficient frontier under the time-consistent strategy.

Theorem 5. The efficient frontier under the time-consistent
strategy (16) is

Var (𝑋�̂�
𝑇
) =

[𝐸 (𝑋
�̂�

𝑇
) − 𝑥
0
∏
𝑇−1

𝑘=0
𝑟
𝑓

𝑘
]

2

∑
𝑇−1

𝑘=0
𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

. (42)

Proof. When 𝑛 = 𝑇, (35) becomes

𝐸 (𝑋
�̂�

𝑇
) = 𝑥
0

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘
+

1

2𝜔

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
. (43)

Equation (43), as we expect, coincides with the expression of
𝑔
0
(𝑥) in (18).
When 𝑛 = 𝑇, (36) becomes

𝐸 [(𝑋
�̂�

𝑇
)

2

]

= (𝑥
0
)
2

𝑇−1

∏

𝑘=0

(𝑟
𝑓

𝑘
)

2

+

1

𝜔

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
𝑥
0

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘

+

1

4𝜔
2

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
[1 +

𝑘−1

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚

+

𝑘

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
]
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= (𝑥
0

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘
+

1

2𝜔

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
)

2

−

1

4𝜔
2
(

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
)

2

+

1

4𝜔
2

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
[1 +

𝑘−1

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚

+

𝑘

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
] .

(44)

Equation (44) together with (43) yields

Var (𝑋�̂�
𝑇
)

=

1

4𝜔
2

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

× [1 +

𝑘−1

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
+

𝑘

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚

−

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
]

=

1

4𝜔
2

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

× [1 +

𝑘

∑

𝑚=0

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
−

𝑇−1

∑

𝑚=𝑘

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
]

=

1

4𝜔
2

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

× [1 +

𝑇−1

∑

𝑚=𝑘

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
−

𝑇−1

∑

𝑚=𝑘

𝑟
𝑒

𝑚



(𝜎
𝑚
)
−1

𝑟
𝑒

𝑚
]

=

1

4𝜔
2

𝑇−1

∑

𝑘=0

𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘
.

(45)

Referring to (43) and (45), we get the efficient frontier as
follows:

Var (𝑋�̂�
𝑇
) =

[𝐸 (𝑋
�̂�

𝑇
) − 𝑥
0
∏
𝑇−1

𝑘=0
𝑟
𝑓

𝑘
]

2

∑
𝑇−1

𝑘=0
𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

. (46)

Now we want to compare efficient frontier (42) with the
one in [2].

Efficient frontier in [2] is

Var (𝑋𝜋
∗

𝑇
) =

∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

1 − ∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

× [𝐸 (𝑋
𝜋
∗

𝑇
) − 𝑥
0

𝑇−1

∏

𝑘=0

𝑟
𝑓

𝑘
]

2

.

(47)

In view of (32), we can find that

∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

1 − ∏
𝑇−1

𝑘=0
(1 − 𝑟

𝑒

𝑘



𝐸
−1

(𝑅
𝑒

𝑘
𝑅
𝑒

𝑘



) 𝑟
𝑒

𝑘
)

≤

1

∑
𝑇−1

𝑘=0
𝑟
𝑒

𝑘



(𝜎
𝑘
)
−1

𝑟
𝑒

𝑘

.

(48)

Therefore, we have given amathematical proof to the fact that
the efficient frontier for the time-consistent strategy is never
above the efficient frontier for the precommitment strategy.
Moreover, the shorter the investment horizon 𝑇 is, the closer
these two efficient frontiers are.

3.3. Numerical Analysis. In this part, we want to compare
expected terminal wealth and efficient frontier under time-
consistent framework with the corresponding ones, respec-
tively, in [2]. Let initial wealth 𝑥

0
= 1. For convenience, we

assume that there are only one risk-free asset and one risky
asset in the market. Furthermore, we suppose that the risk-
free return is a constant 𝑟𝑓 = 1.15 during all the investment
periods and risky returns {𝑅

𝑛
, 𝑛 = 0, 1, . . . , 𝑇 − 1} have

the same distribution function with the same expectation
𝐸(𝑅
𝑛
) = 1.35 and variance Var(𝑅

𝑛
) = 0.2.

(1) Let risk aversion 𝜔 = 1. Here we fix other parameters
and make 𝑇 increase from 1 to 8, to present the effect of
investment horizon on the distance between time-consistent
expected terminal wealth and precommitment one. Refering
to (43) and formula (56) in [2], we obtain Figure 1, which
shows that precommitment expected terminal wealth is
higher than the time-consistent one and the gap between
these two expectations is widened when 𝑇 increases. Actu-
ally, the gap sequences are 0,0.0506, 0.1747, 0.4051, 0.7899,
1.3985, 2.3316, and 3.7352 when 𝑇 is changed from 1 to 8.
This phenomenon shows that for short time horizons, time
inconsistency has a slight effect on the relative results. But for
long time horizon, noncooperation of each decision maker
destroys the welfare of the whole game, and the longer 𝑇 is,
the larger the loss is.

(2) Let𝑇 = 8. Here we fix other parameters andmake risk
aversion 𝜔 increase from 1 to 8. The effect of risk aversion
on the distance between time-consistent expected terminal
wealth and precommitment one is showed in Figure 2, which
indicates that the distance between these two kinds of
expected final wealth is minor when risk aversion is big
enough. This is because, by (43) and formula (56) in [2],
we can find that distance between these two expectations
are only affected by the risky investment income. When
𝜔 is big enough, either the time-consistent investor or the
precommitment one will prefer to invest less wealth in risky
asset, which leads to the conclusion in Figure 2.
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Figure 1: Effect of time horizons.

1 2 3 4 5 6 7 8
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Risk aversion

Ex
pe

ct
ed

 te
rm

in
al

 w
ea

lth

Precommitment

Time consistency

Figure 2: Effect of the risk aversion.

(3) We want to compare the precommitment efficient
frontier with the time-consistent one when 𝑇 = 4, 8 and 𝜔 =

2. Conclusions showed in Figure 3 coincide with our conclu-
sions derived by mathematical analysis in Section 3.2.3 and
the reason behind Figure 3 is similar to that demonstrated in
Figure 1.

4. Nash Equilibrium Strategy with
Wealth-Dependent Risk Aversion

In this section, we will consider an optimization problem

max
𝜋(𝑛)

{𝐸
𝑛,𝑥

(𝑋
𝜋(𝑛)

𝑇
) − 𝜔 (𝑥)Var

𝑛,𝑥
(𝑋
𝜋(𝑛)

𝑇
)} (49)

under the framework of Nash equilibrium, where the risk
aversion 𝜔(𝑥) is a function of current wealth 𝑥. We just
study a tractable situation that the risk aversion is inversely
proportional to wealth according to some psychological
results; that is, 𝜔(𝑥) = 𝜔/𝑥 where constant 𝜔 > 0 is called
the coefficient of risk aversion. It still remains open what the
time-consistent strategy is with other forms of 𝜔(𝑥).

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Variance

Ex
pe

ct
ed

 te
rm

in
al

 w
ea

lth

Time consistency
Precommitment

Time consistency
Precommitment

𝑇 = 4

𝑇 = 8

Figure 3: Efficient frontier.

4.1. Nash Equilibrium Strategy and Equilibrium Value Func-
tion. Similarly, referring to (8), the recursion of 𝑉

𝑛
(𝑥) is

𝑉
𝑛
(𝑥) = max

𝜋
𝑛

{𝐸
𝑛,𝑥

[𝑉
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)]

+ 𝐸
𝑛,𝑥

[𝜔 (𝑋
𝜋
𝑛

𝑛+1
) ℎ
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)

−𝜔 (𝑥) ℎ
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)]

− 𝐸
𝑛,𝑥

[𝜔 (𝑋
𝜋
𝑛

𝑛+1
) (𝑔
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
))
2

]

+𝜔 (𝑥) [𝐸
𝑛,𝑥

(𝑔
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
))]
2

} ,

𝑛 = 0, 1, . . . , 𝑇 − 1,

(50)

with terminal condition 𝑉
𝑇
(𝑥) = 𝑥.

The recursions of 𝑔
𝑛
(𝑥) and ℎ

𝑛
(𝑥) are, respectively,

𝑔
𝑛
(𝑥) = 𝐸 [𝑋

�̂�(𝑛)

𝑇
| 𝑋
𝑛
= 𝑥]

= 𝐸
𝑛,𝑥

(𝑔
𝑛+1

(𝑋
�̂�
𝑛

𝑛+1
)) , 𝑛 = 0, 1, . . . , 𝑇 − 1,

𝑔
𝑇
(𝑥) = 𝑥,

ℎ
𝑛
(𝑥) = 𝐸 [(𝑋

�̂�(𝑛)

𝑇
)

2

| 𝑋
𝑛
= 𝑥]

= 𝐸
𝑛,𝑥

(ℎ
𝑛+1

(𝑋
�̂�
𝑛

𝑛+1
)) , 𝑛 = 0, 1, . . . , 𝑇 − 1,

ℎ
𝑇
(𝑥) = 𝑥

2

.

(51)

Before giving the time-consistent results, we need to
introduce the following sequences {𝑎

𝑛
} and {𝑏

𝑛
} and their

properties:

𝑎
𝑇
= 1,

𝑏
𝑇
= 1,
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𝜉
𝑛+1

= 𝑏
𝑛+1

𝐸 (𝑅
𝑒

𝑛
𝑅
𝑒

𝑛



) − (𝑎
𝑛+1

)
2

𝑟
𝑒

𝑛
𝑟
𝑒

𝑛



,

𝑛 = 𝑇 − 1, 𝑇 − 2, . . . , 0,

𝑎
𝑛
= 𝑎
𝑛+1

(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑟
𝑒

𝑛
) , 𝑛 = 𝑇 − 1, 𝑇 − 2, . . . , 0,

𝑏
𝑛
= 𝑏
𝑛+1

𝐸

× (𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑅
𝑒

𝑛
) , 𝑛 = 𝑇 − 1, 𝑇 − 2, . . . , 0.

(52)

Lemma 6. For 𝑛 = 0, 1, . . . , 𝑇 − 1, 𝑏
𝑛

> (𝑎
𝑛
)
2 and 𝜉

𝑛
(𝑛 =

𝑇, 𝑇 − 1, . . . , 1) is positive definite.

Proof. 𝜉
𝑇

= 𝐸(𝑅
𝑒

𝑇−1
𝑅
𝑒

𝑇−1



) − 𝑟
𝑒

𝑇−1
𝑟
𝑒

𝑇−1



= 𝜎
𝑇−1

is obviously
positive definite. Then,

𝑏
𝑇−1

= 𝐸[(𝑟
𝑓

𝑇−1
+

1

2𝜔

𝑟
𝑒

𝑇−1



× (𝐸 (𝑅
𝑒

𝑇−1
𝑅
𝑒

𝑇−1



) − 𝑟
𝑒

𝑇−1
𝑟
𝑒

𝑇−1



)

−1

𝑅
𝑒

𝑇−1
)

2

] ,

𝑎
𝑇−1

= 𝑟
𝑓

𝑇−1
+

1

2𝜔

𝑟
𝑒

𝑇−1



× (𝐸 (𝑅
𝑒

𝑇−1
𝑅
𝑒

𝑇−1



− 𝑟
𝑒

𝑇−1
𝑟
𝑒

𝑇−1



))

−1

𝑟
𝑒

𝑇−1
,

(53)

and hence 𝑏
𝑇−1

> (𝑎
𝑇−1

)
2. Now for any column vector 𝑟 ̸= 0,

we have

𝑟


𝜉
𝑇−1

𝑟 = 𝑟


(𝑏
𝑇−1

𝐸 (𝑅
𝑒

𝑇−2
𝑅
𝑒

𝑇−2



) − (𝑎
𝑇−1

)
2

𝑟
𝑒

𝑇−2
𝑟
𝑒

𝑇−2



) 𝑟

> 𝑟


((𝑎
𝑇−1

)
2

𝐸 (𝑅
𝑒

𝑇−2
𝑅
𝑒

𝑇−2



) − (𝑎
𝑇−1

)
2

𝑟
𝑒

𝑇−2
𝑟
𝑒

𝑇−2



) 𝑟

= (𝑎
𝑇−1

)
2

𝑟


𝜎
𝑇−2

𝑟

> 0,

(54)

and then 𝜉
𝑇−1

is positive definite.

Now we assume that for 𝑛 + 1, 𝑏
𝑛+1

> (𝑎
𝑛+1

)
2 and 𝜉

𝑛+1
is

positive definite, and then for 𝑛,

𝑏
𝑛
− (𝑎
𝑛
)
2

= 𝑏
𝑛+1

𝐸[

[

(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑅
𝑒

𝑛
)

2

]

]

− (𝑎
𝑛+1

)
2

(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑟
𝑒

𝑛
)

2

> (𝑎
𝑛+1

)
2

𝐸[

[

(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑅
𝑒

𝑛
)

2

]

]

− (𝑎
𝑛+1

)
2

(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑟
𝑒

𝑛
)

2

> 0.

(55)

Similar to the proof of 𝜉
𝑇−1

which is positive definite, we can
immediately prove that 𝜉

𝑛
is positive definite given 𝑏

𝑛
> (𝑎
𝑛
)
2.

By induction, we complete the proof of Lemma 6.

The recursions (50)–(51) andLemma 6 yield the following
theorem.

Theorem 7. If 𝑥 > 0, the time-consistent strategy is

�̂�
𝑛
(𝑥) =

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

(𝜉
𝑛+1

)
−1

𝑟
𝑒

𝑛
𝑥,

𝑛 = 0, 1, . . . , 𝑇 − 1,

(56)

and the equilibrium strategy is

𝑉
𝑛
(𝑥) = 𝑎

𝑛
𝑥 + 𝜔(𝑎

𝑛
)
2

𝑥 − 𝜔𝑏
𝑛
𝑥, 𝑛 = 0, 1, . . . , 𝑇, (57)

𝑔
𝑛
(𝑥) = 𝑎

𝑛
𝑥, 𝑛 = 0, 1, . . . , 𝑇 − 1, (58)

ℎ
𝑛
(𝑥) = 𝑏

𝑛
𝑥
2

, 𝑛 = 0, 1, . . . , 𝑇 − 1. (59)

If 𝑥 ≤ 0, 𝑉
𝑛
(𝑥) = 𝑔

𝑛
(𝑥) = ℎ

𝑛
(𝑥) = +∞ and the model is

meaningless.



Journal of Applied Mathematics 11

Remark 8. If the initial wealth is big enough and risky assets
have steady returns, then at each period wealth level is often
greater than 0 in the real-world situation. Therefore, the
condition 𝑥 > 0 is not a severe requirement.

Proof. By (50), we obtain

𝑉
𝑇−1

(𝑥) = max
𝜋
𝑇−1

{𝐸
𝑇−1,𝑥

[𝑉
𝑇
(𝑋
𝜋
𝑇−1

𝑇
)]

+ 𝐸
𝑇−1,𝑥

[𝜔 (𝑋
𝜋
𝑇−1

𝑇
) ℎ
𝑇
(𝑋
𝜋
𝑇−1

𝑇
)

−𝜔 (𝑥) ℎ
𝑇
(𝑋
𝜋
𝑇−1

𝑇
)]

− 𝐸
𝑇−1,𝑥

[𝜔 (𝑋
𝜋
𝑇−1

𝑇
) (𝑔
𝑇
(𝑋
𝜋
𝑇−1

𝑇
))

2

]

+𝜔 (𝑥) [𝐸
𝑇−1,𝑥

(𝑔
𝑇
(𝑋
𝜋
𝑇−1

𝑇
))]

2

}

= max
𝜋
𝑇−1

{𝐸
𝑇−1,𝑥

(𝑋
𝜋
𝑇−1

𝑇
)

−𝜔 (𝑥)Var
𝑇−1,𝑥

(𝑋
𝜋
𝑇−1

𝑇
)}

= max
𝜋
𝑇−1

{𝑥𝑟
𝑓

𝑇−1
+ 𝜋


𝑇−1
𝑟
𝑒

𝑇−1

−𝜔 (𝑥) 𝜋


𝑇−1
𝜎
𝑇−1

𝜋
𝑇−1

} .

(60)

It is obvious that when 𝑥 > 0,

�̂�
𝑇−1

(𝑥) =

1

2𝜔 (𝑥)

(𝜎
𝑇−1

)
−1

𝑟
𝑒

𝑇−1
=

1

2𝜔

(𝜎
𝑇−1

)
−1

𝑟
𝑒

𝑇−1
𝑥. (61)

Then,

𝑔
𝑇−1

(𝑥) = 𝐸
𝑇−1,𝑥

(𝑋
�̂�
𝑇−1

𝑇
)

= 𝑥𝑟
𝑓

𝑇−1
+

1

2𝜔 (𝑥)

𝑟
𝑒

𝑇−1



(𝜎
𝑇−1

)
−1

𝑟
𝑒

𝑇−1

= (𝑟
𝑓

𝑇−1
+

𝜅
𝑇−1

2𝜔

)𝑥 = 𝑎
𝑇−1

𝑥,

(62)

ℎ
𝑇−1

(𝑥) = 𝐸
𝑇−1,𝑥

[(𝑋
�̂�
𝑇−1

𝑇
)

2

]

= 𝐸
𝑇−1,𝑥

[(𝑥𝑟
𝑓

𝑇−1
+ �̂�


𝑇−1
𝑅
𝑒

𝑇−1
)

2

]

= 𝑥
2

(𝑟
𝑓

𝑇−1
)

2

+

𝑟
𝑓

𝑇−1
𝜅
𝑇−1

𝜔 (𝑥)

𝑥 +

𝜅
𝑇−1

(1 + 𝜅
𝑇−1

)

4(𝜔 (𝑥))
2

= ((𝑟
𝑓

𝑇−1
)

2

+

𝑟
𝑓

𝑇−1
𝜅
𝑇−1

𝜔

+

𝜅
𝑇−1

(1 + 𝜅
𝑇−1

)

4𝜔
2

)𝑥
2

= 𝑏
𝑇−1

𝑥
2

.

(63)

Substituting (61) into 𝑉
𝑇−1

(𝑥) yields

𝑉
𝑇−1

(𝑥) = 𝑥𝑟
𝑓

𝑇−1
+

1

4𝜔 (𝑥)

𝑟
𝑒

𝑇−1



(𝜎
𝑇−1

)
−1

𝑟
𝑒

𝑇−1

= (𝑟
𝑓

𝑇−1
+

1

4𝜔

𝜅
𝑇−1

)𝑥

= (𝑎
𝑇−1

+ 𝜔(𝑎
𝑇−1

)
2

− 𝜔𝑏
𝑇−1

) 𝑥.

(64)

Equations (61)–(64) mean that (56)–(59) are true for 𝑛 = 𝑇 −

1.
We assume the results in Theorem 7 hold true for 𝑛 + 1,

and then according to (50) and (57),

𝑉
𝑛
(𝑥) = max

𝜋
𝑛

{𝐸
𝑛,𝑥

[(𝑎
𝑛+1

+ 𝜔(𝑎
𝑛+1

)
2

− 𝜔𝑏
𝑛+1

)𝑋
𝜋
𝑛

𝑛+1
]

+ 𝐸
𝑛,𝑥

[𝜔𝑏
𝑛+1

𝑋
𝜋
𝑛

𝑛+1
−

𝜔

𝑥

𝑏
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)
2

]

− 𝐸
𝑛,𝑥

[𝜔(𝑎
𝑛+1

)
2

𝑋
𝜋
𝑛

𝑛+1
]

+

𝜔

𝑥

[𝐸
𝑛,𝑥

(𝑎
𝑛+1

𝑋
𝜋
𝑛

𝑛+1
)]
2

}

= max
𝜋
𝑛

{𝐸
𝑛,𝑥

[𝑎
𝑛+1

𝑋
𝜋
𝑛

𝑛+1
−

𝜔

𝑥

𝑏
𝑛+1

(𝑋
𝜋
𝑛

𝑛+1
)
2

]

+

𝜔

𝑥

[𝐸
𝑛,𝑥

(𝑎
𝑛+1

𝑋
𝜋
𝑛

𝑛+1
)]
2

}

= max
𝜋
𝑛

{𝐸
𝑛,𝑥

[𝑎
𝑛+1

(𝑥𝑟
𝑓

𝑛
+ 𝜋


𝑛
𝑅
𝑒

𝑛
)

−

𝜔

𝑥

𝑏
𝑛+1

(𝑥𝑟
𝑓

𝑛
+ 𝜋
𝑛
𝑅
𝑒

𝑛
)

2

]

+

𝜔

𝑥

[𝑎
𝑛+1

(𝑥𝑟
𝑓

𝑛
+ 𝜋


𝑛
𝑟
𝑒

𝑛
)]

2

} .

(65)

= max
𝜋
𝑛

{𝑎
𝑛+1

(𝑥𝑟
𝑓

𝑛
+ 𝜋


𝑛
𝑟
𝑒

𝑛
)

−

𝜔

𝑥

𝑏
𝑛+1

(𝑥
2

(𝑟
𝑓

𝑛
)

2

+ 2𝑥𝑟
𝑓

𝑛
𝜋


𝑛
𝑟
𝑒

𝑛

+𝜋


𝑛
𝐸 (𝑅
𝑒

𝑛
𝑅
𝑒

𝑛



) 𝜋
𝑛
)

+

𝜔

𝑥

[𝑎
𝑛+1

(𝑥𝑟
𝑓

𝑛
+ 𝜋


𝑛
𝑟
𝑒

𝑛
)]

2

} .

(66)

By Lemma 6, we know that 𝜉
𝑛+1

= 𝑏
𝑛+1

𝐸(𝑅
𝑒

𝑛
𝑅
𝑒

𝑛



)−(𝑎
𝑛+1

)
2

𝑟
𝑒

𝑛
𝑟
𝑒

𝑛



is positive definite. Given that 𝑥 > 0, we can see that the
optimal solution of (66) exists and is

�̂�
𝑛
(𝑥) =

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× (𝑏
𝑛+1

𝐸 (𝑅
𝑒

𝑛
𝑅
𝑒

𝑛



) − (𝑎
𝑛+1

)
2

𝑟
𝑒

𝑛
𝑟
𝑒

𝑛



)

−1

𝑟
𝑒

𝑛
𝑥.

(67)
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Then,

𝑔
𝑛
(𝑥) = 𝐸

𝑛,𝑥
(𝑔
𝑛+1

(𝑋
�̂�
𝑛

𝑛+1
))

= 𝐸
𝑛,𝑥

(𝑎
𝑛+1

(𝑥𝑟
𝑓

𝑛
+ �̂�


𝑛
𝑅
𝑒

𝑛
))

= 𝑎
𝑛+1

(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑟
𝑒

𝑛
)𝑥 ≡ 𝑎

𝑛
𝑥,

ℎ
𝑛
(𝑥) = 𝐸

𝑛,𝑥
[𝑏
𝑛+1

(𝑋
�̂�
𝑛

𝑛+1
)

2

]

= 𝑏
𝑛+1

𝐸
𝑛,𝑥

[(𝑥𝑟
𝑓

𝑛
+ �̂�


𝑛
𝑅
𝑒

𝑛
)

2

]

= 𝑏
𝑛+1

𝐸 [

[

(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑅
𝑒

𝑛
)

2

]

]

𝑥
2

≡ 𝑏
𝑛
𝑥
2

.

(68)

According to (65), we have

𝑉
𝑛
(𝑥) = 𝑎

𝑛+1
(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑟
𝑒

𝑛
)𝑥

− 𝜔𝑏
𝑛+1

𝐸(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
𝑛+1

)
2

− 𝑏
𝑛+1

) 𝑟
𝑓

𝑛

2𝜔

× 𝑟
𝑒

𝑛



(𝜉
𝑛+1

)
−1

𝑅
𝑒

𝑛
)

2

𝑥

+ 𝜔(𝑎
𝑛+1

)
2

(𝑟
𝑓

𝑛
+

𝑎
𝑛+1

+ 2𝜔 ((𝑎
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(69)

Therefore, we complete the proof of Theorem 7.

4.2. Numerical Analysis. In this part, for convenience, we
assume that there are only one risk-free asset and one risky
asset in the market. Furthermore, we suppose that the risk-
free return is a constant 𝑟𝑓 = 1.15 during all the investment
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Figure 4: Effect of coefficient of risk aversion on the investment
proportion.

periods and risky returns {𝑅
𝑛
, 𝑛 = 0, 1, . . . , 𝑇 − 1} have

the same distribution function with the same expectation
𝐸(𝑅
𝑛
) = 1.35 and variance Var(𝑅

𝑛
) = 0.3.

Based on the assumption above, time-consistent strategy
(56) can be simplified as
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(70)

and we define
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as proportion invested in the risky asset at time 𝑛.
(1) First, we want to find the relationship between 𝜌

𝑛

and the coefficient of risk aversion 𝜔. Let 𝑇 = 8 and
coefficient of risk aversion 𝜔 = 1, 3, 5, respectively, and then
we get Figure 4. From Figure 4, we can find that the smaller
the 𝜔, the larger the investment proportion. This is because
coefficient 𝜔 now is an index directly proportional to risk
aversion, and the higher the 𝜔 is, the more risk aversion the
investor has.

(2) Let 𝜔 be a constant 3 and let 𝑇 take values 4, 6, 8, and
10, respectively, and then we obtain Figure 5, which indicates
some interesting phenomena as follows.

(a) In the last 4 periods, no matter whether 𝑇 is 4, 6, 8, or
10, the investment proportions at each corresponding period
take the same values. For an instance, proportions in the final
period are the same no matter which value 𝑇 takes. This is
one important character of the time-consistent strategy since
the decision at time 𝑛 under time-consistent framework just
depends on the decisions of the forthcoming decisionmakers.
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Figure 5: Investment proportions with different time horizons.

(b) In the first 4 periods, if investment time horizon 𝑇 is
shorter, 𝜌

𝑛
(𝑛 = 0, 1, 2, 3) is higher. For an instance, when

𝑇 = 4, 𝜌
0
is higher than the 𝜌

0
when 𝑇 = 6, 8, and 10. The

reason is that, with shorter investment horizon, the investor
will have more confidence to control the uncertainty in the
future, which results in a higher investment proportion of
the risky asset. In contrast, there is more uncertainty when
investment time horizon 𝑇 is longer, then the investor would
rather choose a relatively safer investment strategy, that is,
choose a strategy with lower proportion invested in the risky
asset.

5. Conclusions

It remains prevalent to obtain the pre-commitment strategy
for multiperiod mean-variance portfolio selection problems,
but not much is known about their time-consistent strategy.
This paper aims to investigate the time-consistent Nash equi-
librium strategy for a multiperiod mean-variance model. We
view this decision-making process as a noncooperative game
and suppose that there is one decisionmaker for each point of
time. Two cases are considered in our paper. In the first case,
we assume that the risk aversion is a constant and compare
our time-consistent results with the precommitment ones.
Some desired conclusions are obtained by rigorous proofs.
In the second case, the risk aversion depends dynamically
on the current wealth. The numerical analysis indicates that
time-consistent decision at current time just depends on the
decisions of the forthcoming decision makers, which is one
important character of time-consistent strategy.
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