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Given n objects and an 𝑛 × 𝑛 symmetric dissimilarity matrix D with zero main diagonal and nonnegative off-diagonal entries,
the least-squares unidimensional scaling problem asks to find an arrangement of objects along a straight line such that the
pairwise distances between them reflect dissimilarities represented by the matrixD. In this paper, we propose an improved branch-
and-bound algorithm for solving this problem. The main ingredients of the algorithm include an innovative upper bounding
technique relying on the linear assignment model and a dominance test which allows considerably reducing the redundancy in
the enumeration process. An initial lower bound for the algorithm is provided by an iterated tabu search heuristic. To enhance the
performance of this heuristic we develop an efficient method for exploring the pairwise interchange neighborhood of a solution
in the search space. The basic principle and formulas of the method are also used in the implementation of the dominance test.
We report computational results for both randomly generated and real-life based problem instances. In particular, we were able to
solve to guaranteed optimality the problem defined by a 36 × 36Morse code dissimilarity matrix.

1. Introduction

Least-squares (or 𝐿
2
) unidimensional scaling is an important

optimization problem in the field of combinatorial data
analysis. It can be stated as follows. Suppose that there are
𝑛 objects and, in addition, there are pairwise dissimilarity
data available for them. These data form an 𝑛 × 𝑛 symmetric
dissimilarity matrix, 𝐷 = (𝑑

𝑖𝑗
), with zero main diagonal

and nonnegative off-diagonal entries. The problem is to
arrange the objects along a straight line such that the pairwise
distances between them reflect dissimilarities given by the
matrix𝐷. Mathematically, the problem can be expressed as

minΦ (𝑥) =
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, (1)

where 𝑥 denotes the vector (𝑥
1
, . . . , 𝑥

𝑛
) and 𝑥

𝑖
, 𝑖 ∈ {1, . . . , 𝑛},

is the coordinate for the object 𝑖 on the line. We note that two
(or even more) objects may have the same coordinate. In the
literature, the double sumgiven by (1) is called a stress function
[1].

Unidimensional scaling and its generalization, multi-
dimensional scaling [1, 2], are dimensionality reduction
techniques for exploratory data analysis and data mining [3].
The applicability of these techniques has been reported in
a diversity of fields. In recent years, unidimensional scaling
has found new applications in several domains including
genetics, psychology, and medicine. Caraux and Pinloche
[4] developed an environment to graphically explore gene
expression data. This environment offers unidimensional
scaling methods, along with some other popular techniques.
Ng et al. [5] considered the problem of constructing linkage
disequilibrium maps for human genome. They proposed a
method for this problem which is centered on the use of a
specific type of the unidimensional scalingmodel. Armstrong
et al. [6] presented a study in which they evaluated interest
profile differences across gender, racial-ethnic group, and
employment status.The authors used twomeasures of profile
similarity, the so-called 𝑄 correlation and Euclidean dis-
tances. In the former case, unidimensional scaling appeared
to be a good model for interpreting the obtained results.
Hubert and Steinley [7] applied unidimensional scaling to
analyze proximity data on the United States Supreme Court
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Justices. They have found that agreement among the justices
was better represented by this approach than using a hierar-
chical classification method. Dahabiah et al. [8, 9] proposed
a data mining technique based on a unidimensional scaling
algorithm. They applied this technique on a digestive endo-
scope database consisting of a large number of pathologies.
Ge et al. [10] developed a method for unsupervised classifica-
tion of remote sensing images. Unidimensional scaling plays
a pivotal role in this classifier. Bihn et al. [11] examined the
diversity of ant assemblages in the Atlantic Forest of Southern
Brazil. To visualize nestedness of ant genera distribution, a
unidimensional scaling approach was adopted.

From (1), we see that in order to solve the unidimensional
scaling problem (UDSP for short) we need to find not only a
permutation of objects, but also their coordinates preserving
the order of the objects as given by the permutation. Thus,
at first glance, it might seem that the UDSP is a much more
difficult problem than other linear arrangement problems.
Fortunately, this is not the case. As shown by Defays [12],
the UDSP can be reduced to the following combinatorial
optimization problem:

max
𝑝∈Π

𝐹 (𝑝) =

𝑛
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where Π is the set of all permutations of𝑊 = {1, . . . , 𝑛}, that
is, the set of all vectors (𝑝(1), 𝑝(2), . . . , 𝑝(𝑛)) such that 𝑝(𝑘) ∈
𝑊, 𝑘 = 1, . . . , 𝑛, and 𝑝(𝑘) ̸= 𝑝(𝑙), 𝑘 = 1, . . . , 𝑛 − 1, 𝑙 = 𝑘 +

1, . . . , 𝑛. Letting 𝑆
𝑖
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Thus, theUDSP is essentially a problem over all permutations
of 𝑛 objects. With an optimal solution 𝑝

∗ to (2) at hand,
we can compute the optimal coordinates for the objects by
setting 𝑥

𝑝
∗
(1)

= 0 and using the following relationship [13]
for 𝑘 + 1 = 2, . . . , 𝑛:
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(4)

There is an important body of the literature on algorithms
for solving the UDSP. Since the feasible solutions to the prob-
lem are linear arrangements of objects, a natural approach
to the UDSP is to apply a general dynamic programming
paradigm. An algorithm based on this paradigm was pro-
posed by Hubert and Arabie [14]. However, as pointed out

in the papers by Hubert et al. [15] and Brusco and Stahl
[13], the dynamic programming algorithm requires very large
memory for storing the partial solutions and, in fact, runs
out of memory long before running out of time. As reported
in these papers, the largest UDSP instances solved using
dynamic programmingwere of sizes 25 and 26. An alternative
approach for solving the UDSP is to use the branch-and-
bound method. The first algorithm following this approach
is that of Defays [12]. In his algorithm, during branching, the
objects are assigned in an alternating fashion to either the
leftmost free position or the rightmost free position in the
𝑛-permutation under construction. For example, at level 4
of the search tree, the four selected objects are 𝑝(1), 𝑝(𝑛),
𝑝(2), and 𝑝(𝑛 − 1), and there are no object assigned to
positions 3, . . . , 𝑛 − 2 in the permutation 𝑝. To fathom partial
solutions, the algorithm uses a symmetry test, an adjacency
test, and a bound test. Some more comments on the Defays
approach were provided in the paper by Brusco and Stahl
[13]. The authors of that paper also proposed two improved
branch-and-bound algorithms for unidimensional scaling.
The first of them adopts the above-mentioned branching
strategy borrowed from the Defays method. Meanwhile, in
the second algorithm of Brusco and Stahl, an object chosen
for branching is always assigned to the leftmost free position.
Brusco and Stahl [13, 16] presented improved bounding
procedures and an interchange test expanding the adjacency
test used by Defays [12]. These components of their branch-
and-bound algorithms are briefly sketched in Section 2 and
Section 4, respectively. Brusco and Stahl [13] have reported
computational experience for both randomly generated and
empirical dissimilarity matrices. The results suggest that
their branch-and-bound implementations are superior to the
Defays algorithm. Moreover, the results demonstrate that
these implementations are able to solve UDSP instances that
are beyond the capabilities of the dynamic programming
method.

There are also a number of heuristic algorithms for
unidimensional scaling. These include the smoothing tech-
nique [17], the iterative quadratic assignment heuristic [15],
and simulated annealing adaptations [18, 19]. A heuristic
implementation of dynamic programming for escaping local
optima has been presented by Brusco et al. [20]. Computa-
tional results for problem instances with up to 200 objects
were reported in [18–20].

The focus of this paper is on developing a branch-and-
bound algorithm for the UDSP. The primary intention is
to solve exactly some larger problems than those solved by
previous methods. The significant features of our algorithm
are the use of an innovative upper bounding procedure
relying on the linear assignmentmodel and the enhancement
of the interchange test from [13]. In the current paper, this
enhancement is called a dominance test. A good initial
solution and thus lower bound are obtained by running an
iterated tabu search algorithm at the root node of the search
tree. To make this algorithm more efficient, we provide a
novel mechanism and underlying formulas for searching the
pairwise interchange neighborhood of a solution in 𝑂(𝑛

2
)
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time, which is an improvement over a standard 𝑂(𝑛
3
)-time

approach from the literature.The same formulas are also used
in the dominance test. We present the results of empirical
evaluation of our branch-and-bound algorithm and compare
it against the better of the two branch-and-bound algorithms
of Brusco and Stahl [13]. The largest UDSP instance that we
were able to solvewith our algorithmwas the problemdefined
by a 36 × 36Morse code dissimilarity matrix.

The remainder of this paper is organized as follows. In
Section 2, we present an upper bound on solutions of the
UDSP. In Section 3, we outline an effective tabu search pro-
cedure for unidimensional scaling and propose a method for
exploring the pairwise interchange neighborhood. Section 4
gives a description of the dominance test for pruning nodes
in the search.This test is used in our branch-and-bound algo-
rithm presented in Section 5. The results of computational
experiments are reported in Section 6. Finally, Section 7
concludes the paper.

2. Upper Bounds

In this section, we first briefly recall the bounds used by
Brusco and Stahl [13] in their second branch-and-bound
algorithm. Then we present a new upper bounding mecha-
nism for the UDSP. We discuss the technical details of the
procedure for computing our bound. We choose a variation
of this procedure which yields slightly weakened bounds but
is quite fast.

Like in the second algorithm of Brusco and Stahl, in our
implementation of the branch-and-bound method partial
solutions are constructed by placing each new object in the
leftmost free position. For a partial solution 𝑝 = (𝑝(1), . . . ,

𝑝(𝑟)), 𝑟 ∈ {1, . . . , 𝑛 − 1}, we denote by 𝑊(𝑝) the set of the
objects in 𝑝. Thus 𝑊(𝑝) = {𝑝(1), . . . , 𝑝(𝑟)}, and 𝑊(𝑝) =

𝑊 \ 𝑊(𝑝) is the set of unselected objects. At the root node
of the search tree, 𝑝 is empty, and 𝑊(𝑝) is equal to 𝑊. The
first upper bound used by Brusco and Stahl, when adopted to
𝑝, takes the following form:

𝑈BS := 𝐹
𝑟
(𝑝) + ∑

𝑖∈𝑊(𝑝)

𝑆
2

𝑖
, (5)

where 𝐹
𝑟
(𝑝) denotes the sum of the terms in (3) corre-
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To describe the second bound, we define 𝐷 = (
̂
𝑑
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) to

be an 𝑛 × (𝑛 − 1) matrix obtained from 𝐷 by sorting the
nondiagonal entries of each row of𝐷 in nondecreasing order.
Let 𝜂
𝑖𝑘

= (𝑆
𝑖
− 2∑
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̂
𝑑
𝑖𝑗
)
2 and 𝜇

𝑘
= max

1⩽𝑖⩽𝑛
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𝑘
is obtained from the

equality 𝜇
𝑘
= 𝜇
𝑛−𝑘+1

, 𝑘 ∈ {1, . . . , 𝑛}. The second upper bound
proposed in [13] is given by the following expression:

𝐹
𝑟
(𝑝) +

𝑛

∑

𝑘=𝑟+1

𝜇
𝑘
. (6)

The previous outlined bounds are computationally attrac-
tive but not strong enough when used to prune the search

space. In order to get a tighter upper bound, we resort to the
linear assignment model

max
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where 𝑒
𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑛 − 𝑟 are entries of an (𝑛 − 𝑟) × (𝑛 −

𝑟) profit matrix 𝐸 with rows and columns indexed by the
objects in the set 𝑊(𝑝). Next, we will construct the matrix
𝐸. For a permutation 𝑝 ∈ Π, we denote by 𝑓

𝑝(𝑘)
(resp.,

𝑓
󸀠

𝑝(𝑘)
) the sum of dissimilarities between object 𝑝(𝑘) and all

objects preceding (resp., following) 𝑝(𝑘) in 𝑝. Thus, 𝑓
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and 2max(𝑓
𝑝(𝑘)

, 𝑓
󸀠
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) ⩾ 𝑆
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𝑝(𝑘)
for each 𝑘 =

1, . . . , 𝑛. Suppose now that 𝑝 = (𝑝(1), . . . , 𝑝(𝑟)) is a partial
solution andΠ(𝑝) is the set of all 𝑛-permutations that can be
obtained by extending 𝑝. Assume, for the sake of simplicity,
that 𝑊(𝑝) = {1, . . . , 𝑛 − 𝑟}. In order to construct a suitable
matrix 𝐸, we have to bound 𝑓

𝑝(𝑘)
and 𝑓

󸀠

𝑝(𝑘)
in (8) from above.
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order. To get the required bounds, we make use of the sums
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be the matrix with entries 𝑒
𝑖𝑗
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, 𝛾
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𝑖
)
2,

𝑖, 𝑗 = 1, . . . , 𝑛−𝑟. Let𝑈∗ denote the optimal value of the linear
assignment problem (LAP) (7) with the profitmatrix𝐸. From
the definition of𝐸, we immediately obtain an upper bound on
the optimal value of the objective function 𝐹.

Proposition 1. For a partial solution 𝑝 = (𝑝(1), . . . , 𝑝(𝑟)),
𝑈 := 𝐹

𝑟
(𝑝) + 𝑈

∗
⩾ max

𝑝∈Π(𝑝)
𝐹(𝑝).

From the definition of 𝜌 and 𝛾 values, it can be observed
that, with the increase of 𝑘, 𝜌

𝑖𝑘
increases, while 𝛾

𝑖,𝑛−𝑘

decreases. Therefore, when constructing the 𝑖th row of the
matrix 𝐸, it is expedient to first find the largest 𝑘 ∈ {𝑟 +

1, . . . , 𝑛} for which 𝜌
𝑖𝑘

⩽ 𝛾
𝑖,𝑛−𝑘

. We denote such 𝑘 by ̃
𝑘 and
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assume that ̃𝑘 = 𝑟 if𝜌
𝑖,𝑟+1

> 𝛾
𝑖,𝑛−𝑟−1

.Then 𝑒
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−𝑆
𝑖
)
2

for 𝑘 = 𝑟+1, . . . ,
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𝑘, and 𝑒
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𝑖
)
2 for 𝑘 =

̃
𝑘+1, . . . , 𝑛.

The most time-consuming step in the computation of the
upper bound 𝑈 is solving the linear assignment problem. In
order to provide a computationally less expensive bounding
method we replace 𝑈

∗ with the value of a feasible solution
to the dual of the LAP (7). To get the bound, we take
𝛼
𝑖
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1
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of the LAP instance of interest. Let 𝑈̃ = ∑
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𝑖
+ ∑
𝑛−𝑟

𝑗=1
𝛽
𝑗
.

Then, from the duality theory of linear programming, we can
establish the following upper bound for 𝐹(𝑝).

Proposition 2. For a partial solution 𝑝 = (𝑝(1), . . . , 𝑝(𝑟)),
𝑈
󸀠
:= 𝐹
𝑟
(𝑝) + 𝑈̃ ⩾ max

𝑝∈Π(𝑝)
𝐹(𝑝).

Proof. The inequality follows from Proposition 1 and the fact
that 𝑈̃ ⩾ 𝑈

∗.

One point that needs to be emphasized is that 𝑈
󸀠

strengthens the first bound proposed by Brusco and Stahl.

Proposition 3. 𝑈󸀠 ⩽ 𝑈
𝐵𝑆
.
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from the choice of 𝛼

𝑖
and our assumption on𝑊(𝑝), whereas

the inequality is due to the fact that 𝛽
𝑗

⩽ 0 for each 𝑗 =

1, . . . , 𝑛 − 𝑟.

As an example, we consider the following 4 × 4 dissimi-
larity matrix borrowed from Defays [12]:

[

[

[

[

− 4 2 3

4 − 7 2

2 7 − 4

3 2 4 −

]

]

]

]

. (9)

The same matrix was also used by Brusco and Stahl [13] to
illustrate their bounding procedures. From Table 2 in their
paper, we find that the solution 𝑝 = (2, 4, 1, 3) is optimal for
this instance of the UDSP. The optimal value is equal to 388.
We compute the proposed upper bound for the whole Defays
problem. In this case, 𝑊(𝑝) = {1, . . . , 4} and 𝐹

𝑟
(𝑝) = 0.

The matrix 𝐸 is constructed by noting that ̃𝑘 = 2 for each
𝑖 = 1, . . . , 4. It takes the following form:

[

[

[

[

81 25 25 81

169 81 81 169

169 81 81 169

81 25 25 81

]

]

]

]

. (10)

Using the expressions for𝛼
𝑖
and𝛽
𝑗
, we find that𝛼

1
= 𝛼
4
= 81,

𝛼
2
= 𝛼
3
= 169, 𝛽

1
= 𝛽
4
= 0, and 𝛽

2
= 𝛽
3
= −56. Thus, 𝑈̃ =

∑
4

𝑖=1
𝛼
𝑖
+ ∑
4

𝑗=1
𝛽
𝑗
= 500 − 112 = 388 = max

𝑝∈Π
𝐹(𝑝). Hence,

our bound for the Defays instance is tight. For comparison,
the bound (5) is equal to ∑

4

𝑖=1
𝛼
𝑖
= 500. To obtain the second

bound of Brusco and Stahl, we first compute the 𝜇 values.
Since 𝜇

1
= 𝜇
4
= 169 and 𝜇

2
= 𝜇
3
= 81, the bound (6) (taking

the form ∑
4

𝑖=1
𝜇
𝑖
) is also equal to 500.

3. Tabu Search

As it is well known that the effectiveness of the bound test
in branch-and-bound algorithms depends on the value of the
best solution found throughout the search process. A good
strategy is to create a high-quality solution before the search
is started. For this task, various heuristics can be applied. Our
choice was to use the tabu search (TS) technique. It should be
noted that it is not the purpose of this paper to investigate
heuristic algorithms for solving the UDSP. Therefore, we
restrict ourselves merely to presenting an outline of our
implementation of tabu search.

For 𝑝 ∈ Π, let 𝑝
𝑘𝑚

denote the permutation obtained
from 𝑝 by interchanging the objects in positions 𝑘 and 𝑚.
The set 𝑁

2
(𝑝) = {𝑝

𝑘𝑚
| 𝑘, 𝑚 = 1, . . . , 𝑛, 𝑘 < 𝑚} is

the 2-interchange neighborhood of 𝑝. At each iteration,
the tabu search algorithm performs an exploration of the
neighborhood 𝑁

2
(𝑝). A subset of solutions in 𝑁

2
(𝑝) are

evaluated by computing Δ(𝑝, 𝑘,𝑚) = 𝐹(𝑝
𝑘𝑚

)−𝐹(𝑝). In order
to get better quality solutions we apply TS iteratively. This
technique, called iterated tabu search (ITS), consists of the
following steps:

(1) initialize the search with some permutation of the
objects;

(2) apply a tabu search procedure. Check if the termina-
tion condition is satisfied. If so, then stop. Otherwise
proceed to (3);

(3) apply a solution perturbation procedure. Return to
(2).

In our implementation, the search is started from a ran-
domly generated permutation. Also, some data are prepared
to be used in the computation of the differences Δ(𝑝, 𝑘,𝑚).
We will defer this issue until later in this section. In step (2) of
ITS, at each iteration of the TS procedure, the neighborhood
𝑁
2
(𝑝) of the current solution 𝑝 is explored. The procedure

selects a permutation 𝑝
𝑘𝑚

∈ 𝑁
2
(𝑝), which either improves

the best available objective function value so far or, if this
does not happen, has the largest value of Δ(𝑝, 𝑖, 𝑗) among
all permutations 𝑝

𝑖𝑗
∈ 𝑁
2
(𝑝) for which the objects in

positions 𝑖 and 𝑗 are not in the tabu list. The permutation
𝑝
𝑘𝑚

is then accepted as a new current solution. The number
of iterations in the tabu search phase is bounded above
by a parameter of the algorithm. The goal of the solution
perturbation phase is to generate a permutation which is
employed as the starting point for the next invocation of
the tabu search procedure. This is achieved by taking the
current permutation and performing a sequence of pairwise
interchanges of objects. Throughout this process, each object
is allowed to change its position in the permutation at most
once. At each step, first a set of feasible pairs of permutation
positions with the largest Δ values is formed. Then a pair,
say (𝑘,𝑚), is chosen randomly from this set, and objects in
positions 𝑘 and𝑚 are switched.We omit some of the details of
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the algorithm. Similar implementations of the ITS technique
for other optimization problems are thoroughly described,
for example, in [21, 22]. We should note that also other
enhancements of the generic tabu search strategy could be
used for our purposes. These include, for example, multipath
adaptive tabu search [23] and bacterial foraging tabu search
[24] algorithms.

In the rest of this section, we concentrate on how
to efficiently compute the differences Δ(𝑝, 𝑘,𝑚). Certainly,
this issue is central to the performance of the tabu search
procedure. But more importantly, evaluation of pairwise
interchanges of objects stands at the heart of the dominance
test, which is one of the crucial components of our algorithm.
As we will see in the next section, the computation of the Δ
values is an operation the dominance test is based on.

Brusco [19] derived the following formula to calculate the
difference between 𝐹(𝑝

𝑘𝑚
) and 𝐹(𝑝):

Δ (𝑝, 𝑘,𝑚)

= (4

𝑚

∑

𝑙=𝑘+1

𝑑
𝑝(𝑘)𝑝(𝑙)

)((

𝑚

∑

𝑙=𝑘+1

𝑑
𝑝(𝑘)𝑝(𝑙)

) + 2𝑓
𝑝(𝑘)

− 𝑆
𝑝(𝑘)

)

+ (4

𝑚−1

∑

𝑙=𝑘

𝑑
𝑝(𝑙)𝑝(𝑚)

)((

𝑚−1

∑

𝑙=𝑘

𝑑
𝑝(𝑙)𝑝(𝑚)

) − 2𝑓
𝑝(𝑚)

+ 𝑆
𝑝(𝑚)

)

+

𝑚−1

∑

𝑙=𝑘+1

4 (𝑑
𝑝(𝑙)𝑝(𝑚)

− 𝑑
𝑝(𝑘)𝑝(𝑙)

) ((𝑑
𝑝(𝑙)𝑝(𝑚)

− 𝑑
𝑝(𝑘)𝑝(𝑙)

)

+ 2𝑓
𝑝(𝑙)

− 𝑆
𝑝(𝑙)

) .

(11)

Using (11), Δ(𝑝, 𝑘,𝑚) for all permutations in 𝑁
2
(𝑝) can be

computed in 𝑂(𝑛
3
) time. However, this approach is actually

too slow to be efficient. In order to describe a more elaborate
approach we introduce three auxiliary 𝑛 × 𝑛 matrices 𝐴 =

(𝑎
𝑖𝑞
),𝐵 = (𝑏

𝑖𝑞
), and𝐶 = (𝑐

𝑖𝑗
) defined for a permutation𝑝 ∈ Π.

Let us consider an object 𝑖 = 𝑝(𝑠). The entries of the 𝑖th row
of the matrices 𝐴 and 𝐵 are defined as follows: if 𝑞 < 𝑠, then
𝑎
𝑖𝑞
= ∑
𝑠−1

𝑙=𝑞
𝑑
𝑖𝑝(𝑙)

, 𝑏
𝑖𝑞
= ∑
𝑠−1

𝑙=𝑞
𝑑
𝑖𝑝(𝑙)

(𝑑
𝑖𝑝(𝑙)

+ 2𝑓
𝑝(𝑙)

− 𝑆
𝑝(𝑙)

); if 𝑞 > 𝑠,
then 𝑎

𝑖𝑞
= ∑
𝑞

𝑙=𝑠+1
𝑑
𝑖𝑝(𝑙)

, 𝑏
𝑖𝑞
= ∑
𝑞

𝑙=𝑠+1
𝑑
𝑖𝑝(𝑙)

(−𝑑
𝑖𝑝(𝑙)

+2𝑓
𝑝(𝑙)

−𝑆
𝑝(𝑙)

);
if 𝑞 = 𝑠, then 𝑎

𝑖𝑞
= 𝑏
𝑖𝑞
= 0. Turning now to the matrix 𝐶, we

suppose that 𝑗 = 𝑝(𝑡). Then the entries of 𝐶 are given by the
following formula:

𝑐
𝑖𝑗
=

{
{
{

{
{
{

{

max(𝑠,𝑡)−1
∑

𝑙=min(𝑠,𝑡)+1
𝑑
𝑖𝑝(𝑙)

𝑑
𝑗𝑝(𝑙)

if |𝑠 − 𝑡| > 1

0 if |𝑠 − 𝑡| = 1.

(12)

Unlike 𝐴 and 𝐵, the matrix 𝐶 is symmetric. We use the
matrices 𝐴, 𝐵, and 𝐶 to cast (11) in a form more suitable for
both the TS heuristic and the dominance test.

Proposition 4. For 𝑝 ∈ Π, 𝑘 ∈ {1, . . . , 𝑛 − 1}, and 𝑚 ∈ {𝑘 +

1, . . . , 𝑛},

Δ (𝑝, 𝑘,𝑚) = 4𝑎
𝑝(𝑘)𝑚

(𝑎
𝑝(𝑘)𝑚

+ 2𝑎
𝑝(𝑘),1

− 𝑆
𝑝(𝑘)

)

+ 4𝑎
𝑝(𝑚)𝑘

(𝑎
𝑝(𝑚)𝑘

− 2𝑎
𝑝(𝑚),1

+ 𝑆
𝑝(𝑚)

)

+ 4 (𝑏
𝑝(𝑚),𝑘+1

− 𝑏
𝑝(𝑘),𝑚−1

− 2𝑐
𝑝(𝑘)𝑝(𝑚)

) .

(13)

Proof. First, notice that the sums ∑
𝑚

𝑙=𝑘+1
𝑑
𝑝(𝑘)𝑝(𝑙)

and ∑
𝑚−1

𝑙=𝑘

𝑑
𝑝(𝑙)𝑝(𝑚)

in (11) are equal, respectively, to 𝑎
𝑝(𝑘)𝑚

and 𝑎
𝑝(𝑚)𝑘

.
Next, it can be seen that 𝑓

𝑝(𝑘)
= 𝑎
𝑝(𝑘),1

and 𝑓
𝑝(𝑚)

= 𝑎
𝑝(𝑚),1

.
Finally, the third term in (11), ignoring the factor of 4, can be
rewritten as
𝑚−1

∑

𝑙=𝑘+1

𝑑
𝑝(𝑙)𝑝(𝑚)

(𝑑
𝑝(𝑙)𝑝(𝑚)

+ 2𝑓
𝑝(𝑙)

− 𝑆
𝑝(𝑙)

)

−

𝑚−1

∑

𝑙=𝑘+1

𝑑
𝑝(𝑙)𝑝(𝑚)

𝑑
𝑝(𝑘)𝑝(𝑙)

−

𝑚−1

∑

𝑙=𝑘+1

𝑑
𝑝(𝑘)𝑝(𝑙)

𝑑
𝑝(𝑙)𝑝(𝑚)

−

𝑚−1

∑

𝑙=𝑘+1

𝑑
𝑝(𝑘)𝑝(𝑙)

(−𝑑
𝑝(𝑘)𝑝(𝑙)

+ 2𝑓
𝑝(𝑙)

− 𝑆
𝑝(𝑙)

) .

(14)

It is easy to see that the first sum in (14) is equal to 𝑏
𝑝(𝑚),𝑘+1

,
each of the next two sums is equal to 𝑐

𝑝(𝑘)𝑝(𝑚)
, and the last sum

is equal to 𝑏
𝑝(𝑘),𝑚−1

. After simple manipulations, we arrive at
(13).

Having the matrices 𝐴, 𝐵, and 𝐶 and using (13), the 2-
interchange neighborhood of 𝑝 can be explored in 𝑂(𝑛

2
)

time. The question that remains to be addressed is how
efficiently the entries of these matrices can be updated after
the replacement of 𝑝 by a permutation 𝑝

󸀠 chosen from the
neighborhood 𝑁

2
(𝑝). Suppose that 𝑝󸀠 is obtained from 𝑝 by

interchanging the objects in positions 𝑘 and𝑚. Then, we can
write the following formulas that are involved in updating the
matrices 𝐴 and 𝐵:

𝑎
𝑖𝑞
:= 𝑎
𝑖,𝑞−1

+ 𝑑
𝑖𝑝
󸀠
(𝑞)
, (15)

𝑎
𝑖𝑞
:= 𝑎
𝑖,𝑞+1

+ 𝑑
𝑖𝑝
󸀠
(𝑞)
, (16)

𝑏
𝑖𝑞
:= 𝑏
𝑖,𝑞−1

+ 𝑑
𝑖𝑝
󸀠
(𝑞)

(2𝑎
𝑝
󸀠
(𝑞),1

− 𝑆
𝑝
󸀠
(𝑞)

− 𝑑
𝑖𝑝
󸀠
(𝑞)
) , (17)

𝑏
𝑖𝑞
:= 𝑏
𝑖,𝑞+1

+ 𝑑
𝑖𝑝
󸀠
(𝑞)

(2𝑎
𝑝
󸀠
(𝑞),1

− 𝑆
𝑝
󸀠
(𝑞)

+ 𝑑
𝑖𝑝
󸀠
(𝑞)
) . (18)

From now on, we will assume that the positions 𝑠 and 𝑡 of the
objects 𝑖 and 𝑗 are defined with respect to the permutation 𝑝

󸀠.
More formally, we have 𝑖 = 𝑝

󸀠
(𝑠), 𝑗 = 𝑝

󸀠
(𝑡).The procedure for

updating 𝐴, 𝐵, and 𝐶 is summarized in the following:

(1) for each object 𝑖 ∈ {1, . . . , 𝑛} do the following:

(1.1) if 𝑠 < 𝑘, then compute 𝑎
𝑖𝑞
, 𝑞 = 𝑘, . . . , 𝑚 − 1, by

(15) and 𝑏
𝑖𝑞
, 𝑞 = 𝑘, . . . , 𝑛, by (17);

(1.2) if 𝑠 > 𝑚, then compute 𝑎
𝑖𝑞
, 𝑞 = 𝑚, 𝑚−1, . . . , 𝑘+

1, by (16) and 𝑏
𝑖𝑞
, 𝑞 = 𝑚,𝑚 − 1, . . . , 1, by (18);

(1.3) if 𝑘 < 𝑠 < 𝑚, then compute 𝑎
𝑖𝑞
by (15) for 𝑞 =

𝑚, . . . , 𝑛 and by (16) for 𝑞 = 𝑘, 𝑘 − 1, . . . , 1;



6 Journal of Applied Mathematics

(1.4) if 𝑠 = 𝑘 or 𝑠 = 𝑚, then first set 𝑎
𝑖𝑠

:= 0

and afterwards compute 𝑎
𝑖𝑞
by (15) for 𝑞 = 𝑠 +

1, . . . , 𝑛 and by (16) for 𝑞 = 𝑠 − 1, 𝑠 − 2, . . . , 1;
(1.5) if 𝑘 ⩽ 𝑠 ⩽ 𝑚, then first set 𝑏

𝑖𝑠
:= 0 and afterwards

compute 𝑏
𝑖𝑞
by (17) for 𝑞 = 𝑠+1, . . . , 𝑛 and by (18)

for 𝑞 = 𝑠 − 1, 𝑠 − 2, . . . , 1;

(2) for each pair of objects 𝑖, 𝑗 ∈ {1, . . . , 𝑛} such that 𝑠 < 𝑡

do the following:

(2.1) if 𝑠 < 𝑘 < 𝑡 < 𝑚, then set 𝑐
𝑖𝑗
:= 𝑐
𝑖𝑗
+𝑑
𝑖𝑝
󸀠
(𝑘)
𝑑
𝑗𝑝
󸀠
(𝑘)

−

𝑑
𝑖𝑝
󸀠
(𝑚)

𝑑
𝑗𝑝
󸀠
(𝑚)

;
(2.2) if 𝑘 < 𝑠 < 𝑚 < 𝑡, then set 𝑐

𝑖𝑗
:= 𝑐
𝑖𝑗
+

𝑑
𝑖𝑝
󸀠
(𝑚)

𝑑
𝑗𝑝
󸀠
(𝑚)

− 𝑑
𝑖𝑝
󸀠
(𝑘)
𝑑
𝑗𝑝
󸀠
(𝑘)
;

(2.3) if |{𝑠, 𝑡} ∩ {𝑘,𝑚}| = 1, then compute 𝑐
𝑖𝑗
anew

using (12);
(2.4) if 𝑐

𝑖𝑗
has been updated in (2.1)–(2.3), then set

𝑐
𝑗𝑖
:= 𝑐
𝑖𝑗
.

It can be noted that for some pairs of objects 𝑖 and 𝑗

the entry 𝑐
𝑖𝑗
remains unchanged. There are five such cases:

(1) 𝑠, 𝑡 < 𝑘; (2) 𝑘 < 𝑠, 𝑡 < 𝑚; (3) 𝑠, 𝑡 > 𝑚; (4) 𝑠 < 𝑘 < 𝑚 < 𝑡;
(5) {𝑠, 𝑡} = {𝑘,𝑚}.

We now evaluate the time complexity of the described
procedure. Each of Steps (1.1) to (1.5) requires 𝑂(𝑛) time.
Thus, the complexity of Step (1) is 𝑂(𝑛

2
). The number of

operations in Steps (2.1), (2.2), and (2.4) is 𝑂(1), and that in
Step (2.3) is 𝑂(𝑛). However, the latter is executed only 𝑂(𝑛)

times.Therefore, the overall complexity of Step (2), and hence
of the entire procedure, is 𝑂(𝑛

2
).

Formula (13) and the previous described procedure for
updating matrices 𝐴, 𝐵, and 𝐶 lie at the core of our
implementation of the TS method. The matrices 𝐴, 𝐵, and 𝐶

can be initialized by applying the formulas (15)–(18) and (12)
with respect to the starting permutation.The time complexity
of initialization is 𝑂(𝑛

2
) for 𝐴 and 𝐵, and 𝑂(𝑛

3
) for 𝐶. The

auxiliary matrices 𝐴, 𝐵, and 𝐶 and the expression (13) for
Δ(𝑝, 𝑘,𝑚) are also used in the dominance test presented in
the next section. This test plays a major role in pruning the
search tree during the branching and bounding process.

4. Dominance Test

As is well known, the use of dominance tests in enumerative
methods allows reducing the search space of the optimization
problem of interest. A comprehensive review of dominance
tests (or rules) in combinatorial optimization can be found in
the paper by Jouglet and Carlier [25]. For the problem we are
dealing with in this study, Brusco and Stahl [13] proposed a
dominance test for discarding partial solutions, which relies
on performing pairwise interchanges of objects. To formulate
it, let us assume that 𝑝 = (𝑝(1), . . . , 𝑝(𝑟)), 𝑟 < 𝑛, is a partial
solution to the UDSP. The test checks whether Δ(𝑝, 𝑘, 𝑟) > 0

for at least one of the positions 𝑘 ∈ {1, . . . , 𝑟 − 1}. If this
condition is satisfied, then we say that the test fails. In this
case, 𝑝 is thrown away. Otherwise, 𝑝 needs to be extended
by placing an unassigned object in position 𝑟 + 1. The first
condition in our dominance test is the same as in the test

suggested by Brusco and Stahl. To compute Δ(𝑝, 𝑘, 𝑟), we
use subsets of entries of the auxiliary matrices 𝐴, 𝐵, and
𝐶 defined in the previous section. Since only the sign of
Δ(𝑝, 𝑘, 𝑟) matters, the factor of 4 can be ignored in (13), and
thus Δ

󸀠
(𝑝, 𝑘, 𝑟) = Δ(𝑝, 𝑘, 𝑟)/4 instead of Δ(𝑝, 𝑘, 𝑟) can be

considered. From (13) we obtain

Δ
󸀠
(𝑝, 𝑘, 𝑟) = 𝑎

𝑝(𝑘)𝑟
(𝑎
𝑝(𝑘)𝑟

+ 2𝑎
𝑝(𝑘),1

− 𝑆
𝑝(𝑘)

)

+ 𝑎
𝑝(𝑟)𝑘

(𝑎
𝑝(𝑟)𝑘

− 2𝑎
𝑝(𝑟),1

+ 𝑆
𝑝(𝑟)

)

+ 𝑏
𝑝(𝑟),𝑘+1

− 𝑏
𝑝(𝑘),𝑟−1

− 2𝑐
𝑝(𝑘)𝑝(𝑟)

.

(19)

We also take advantage of the case where Δ
󸀠
(𝑝, 𝑘, 𝑟) =

0. We use the lexicographic rule for breaking ties. The test
outputs a “Fail” verdict if the equality Δ󸀠(𝑝, 𝑘, 𝑟) = 0 is found
to hold true for some 𝑘 ∈ {1, . . . , 𝑟 − 1} such that 𝑝(𝑘) > 𝑝(𝑟).
Indeed, 𝑝 = (𝑝(1), . . . , 𝑝(𝑘 − 1), 𝑝(𝑘), 𝑝(𝑘 + 1), . . . , 𝑝(𝑟))

can be discarded because both 𝑝 and partial solution 𝑝
󸀠
=

(𝑝(1), . . . , 𝑝(𝑘 − 1), 𝑝(𝑟), 𝑝(𝑘 + 1), . . . , 𝑝(𝑘)) are equally good,
but 𝑝 is lexicographically larger than 𝑝

󸀠.
We note that the entries of the matrices 𝐴, 𝐵, and 𝐶 used

in (19) can be easily obtained from a subset of entries of𝐴, 𝐵,
and 𝐶 computed earlier in the search process. Consider, for
example, 𝑐

𝑝(𝑘)𝑝(𝑟)
in (19). It can be assumed that 𝑘 ∈ {1, . . . , 𝑟−

2} because if 𝑘 = 𝑟 − 1, then 𝑐
𝑝(𝑘)𝑝(𝑟)

= 0. For simplicity, let
𝑝(𝑟) = 𝑖 and 𝑝(𝑟 − 1) = 𝑗. To avoid ambiguity, let us denote
by 𝐶
󸀠 the matrix 𝐶 that is obtained during processing of the

partial solution (𝑝(1), . . . , 𝑝(𝑟 − 2)). The entry 𝑐
󸀠

𝑝(𝑘)𝑖
of 𝐶󸀠 is

calculated by (temporarily) placing the object 𝑖 in position
𝑟 − 1. Now, referring to the definition of 𝐶, it is easy to see
that 𝑐

𝑝(𝑘)𝑖
= 𝑐
󸀠

𝑝(𝑘)𝑖
+ 𝑑
𝑝(𝑘)𝑗

𝑑
𝑖𝑗
. Similarly, using formulas of

types (15) and (17), we can obtain the required entries of the
matrices 𝐴 and 𝐵. Thus (19) can be computed in constant
time. The complexity of computing Δ

󸀠
(𝑝, 𝑘, 𝑟) for all 𝑘 is

𝑂(𝑛). The dominance test used in [13] relies on (11) and has
complexity 𝑂(𝑛

2
). So our implementation of the dominance

test is significantly more time-efficient than that proposed by
Brusco and Stahl.

In order to make the test even more efficient we, in
addition, decided to evaluate those partial solutions that
can be obtained from 𝑝 by relocating the object 𝑝(𝑟) from
position 𝑟 to position 𝑘 ∈ {1, . . . , 𝑟 − 2} (here position
𝑘 = 𝑟 − 1 is excluded since in this case relocating would
become a pairwise interchange of objects). Thus, the test
compares 𝑝 against partial solutions 𝑝

𝑘
= (𝑝(1), . . . , 𝑝(𝑘 −

1), 𝑝(𝑟), 𝑝(𝑘), . . . , 𝑝(𝑟 − 1)), 𝑘 = 1, . . . , 𝑟 − 2. Now suppose
that 𝑝 and 𝑝

𝑘
are extended to 𝑛-permutations 𝑝 ∈ Π and,

respectively, 𝑝
𝑘
∈ Π such that, for each 𝑙 ∈ {𝑟 + 1, . . . , 𝑛}, the

object in position 𝑙 of 𝑝 coincides with that in position 𝑙 of 𝑝
𝑘
.

Let us define 𝛿
𝑟𝑘
to be the difference between 𝐹(𝑝

𝑘
) and 𝐹(𝑝).

This difference can be computed as follows:

𝛿
𝑟𝑘

= (4

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

)((

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

) − 2𝑓
𝑝(𝑟)

+ 𝑆
𝑝(𝑟)

)

+ 4

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

(𝑑
𝑝(𝑟)𝑝(𝑙)

+ 2𝑓
𝑝(𝑙)

− 𝑆
𝑝(𝑙)

) .

(20)
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The previous expression is similar to the formula (6) in [19].
For completeness, we give its derivation in the Appendix. We
can rewrite (20) using the matrices 𝐴 and 𝐵.

Proposition 5. For 𝑝 ∈ Π, 𝑘 ∈ {1, . . . , 𝑛 − 1}, and 𝑟 ∈ {𝑘 +

1, . . . , 𝑛},

𝛿
𝑟𝑘

= 4𝑎
𝑝(𝑟)𝑘

(𝑎
𝑝(𝑟)𝑘

− 2𝑎
𝑝(𝑟),1

+ 𝑆
𝑝(𝑟)

) + 4𝑏
𝑝(𝑟)𝑘

. (21)

The partial solution 𝑝 is dominated by 𝑝
𝑘
if 𝛿
𝑟𝑘

> 0.
Upon establishing this fact for some 𝑘 ∈ {1, . . . , 𝑟 − 2}, the
test immediately stops with the rejection of 𝑝. Of course, like
in the case of (13), a factor of 4 in (21) can be dropped. The
computational overhead of including the condition 𝛿

𝑟𝑘
> 0

in the test is minimal because all the quantities appearing on
the right-hand side of (21), except 𝑏

𝑝(𝑟),1
, are also used in the

calculation ofΔ󸀠(𝑝, 𝑘, 𝑟) (see (19)). Since the loop over 𝑘needs
to be executed the time complexity of this part of the test is
𝑂(𝑛). Certainly, evaluation of relocating the last added object
in 𝑝 gives more power to the test. Thus our dominance test
is an improvement over the test described in the Brusco and
Stahl [13] paper.

5. A Branch-and-Bound Algorithm

Our approach to the UDSP is to start with a good initial solu-
tion provided by the iterated tabu search heuristic invoked
in the initialization phase of the algorithm and then proceed
with the main phase where, using the branch-and-bound
technique, a search tree is built. For the purpose of pruning
branches of the search tree, the algorithm involves three tests:
(1) the upper bound test (based on 𝑈

󸀠); (2) the dominance
test; (3) the symmetry test.The first two of them have already
been described in the prior sections. The last one is the most
simple and cheap to apply. It hinges on the fact that the values
of the objective function 𝐹 at a permutation 𝑝 ∈ Π and its
reverse 𝑝 defined by 𝑝(𝑖) = 𝑝(𝑛 − 𝑖 + 1), 𝑖 = 1, . . . , 𝑛, are
the same. Therefore, it is very natural to demand that some
fixed object in 𝑊, say 𝑤, being among those objects that are
assigned to the first half of the positions in 𝑝. More formally,
the condition is 𝑖 ⩽ ⌈𝑛/2⌉ where 𝑖 is such that 𝑝(𝑖) = 𝑤.
If this condition is violated for 𝑝 = (𝑝(1), . . . , 𝑝(⌈𝑛/2⌉)) ,
then the symmetry test fails, and 𝑝 is discarded. Because of
the requirement to fulfill the previous condition, some care
should be taken in applying the dominance test. In the case of
Δ
󸀠
(𝑝, 𝑘, 𝑟) = 0 and 𝑝(𝑘) > 𝑝(𝑟) (see the paragraph following

(19)), this test in our implementation of the algorithm gives a
“Fail” verdict only if either 𝑟 ⩽ ⌈𝑛/2⌉ or 𝑝(𝑘) ̸= 𝑤.

Through the preliminary computational experiments,
we were convinced that the upper bound test was quite
weak when applied to smaller partial solutions. In other
words, the time overhead for computing linear assignment-
based bounds did not pay off for partial permutations 𝑝 =

(𝑝(1), . . . , 𝑝(𝑟)) of length 𝑟 that is small or modest compared
to 𝑛. Therefore, it is reasonable to compute the upper bound
𝑈
󸀠 (described in Section 2) only when 𝑟 ⩾ 𝜆(𝐷), where

𝜆(𝐷) is a threshold value depending on the UDSP instance
matrix 𝐷 and thus also on 𝑛. The problem we face is how
to determine an appropriate value for 𝜆(𝐷). We combat this

problem with a simple procedure consisting of two steps. In
the first step, it randomly generates a relatively small number
of partial permutations 𝑝

1
, . . . , 𝑝

𝜏
, each of length ⌊𝑛/2⌋. For

each permutation in this sample, the procedure computes the
upper bound 𝑈

󸀠. Let 𝑈󸀠
1
, . . . , 𝑈

󸀠

𝜏
be the values obtained. We

are interested in the normalized differences between these
values and 𝐹(𝑝heur), where 𝑝heur is the solution delivered by
the ITS algorithm. So the procedure calculates the sum 𝑍 =

∑
𝜏

𝑖=1
100(𝑈

󸀠

𝑖
− 𝐹(𝑝heur))/𝐹(𝑝heur) and the average 𝑅 = 𝑍/𝜏 of

such differences. In the second step, using𝑅, it determines the
threshold value. This is done in the following way: if 𝑅 < 𝑅

1
,

then 𝜆(𝐷) = ⌊𝑛/3⌋; if 𝑅
1
⩽ 𝑅 < 𝑅

2
, then 𝜆(𝐷) = ⌊𝑛/2⌋; if 𝑅 >

𝑅
2
, then 𝜆(𝐷) = ⌊3𝑛/4⌋. The described procedure is executed

at the initialization step of the algorithm. Its parameters are
𝑅
1
, 𝑅
2
, and the sample size 𝜏.

Armed with tools for pruning the search space, we can
construct a branch-and-bound algorithm for solving the
UDSP. In order to make the description of the algorithm
more readable we divide it into two parts, namely, the
main procedure B&B (branch-and-bound) and an auxiliary
procedure SelectObject. The former builds a search tree with
nodes representing partial solutions.The task of SelectObject
is either to choose an object, which can be used to extend
the current permutation, or, if the current node becomes
fathomed, to perform a backtracking step. In the description
of the algorithm given in the following, the set of objects that
can be used to create new branches is denoted by𝑉.Themain
procedure goes as follows.

B&B

(1) Apply the ITS algorithm to get an initial solution 𝑝
∗

to a given instance of the UDSP.

Set 𝐹∗ := 𝐹(𝑝
∗
).

(2) Calculate 𝜆(𝐷).
(3) Initialize the search tree by creating the root node

with the empty set 𝑉 attached to it.

Set 𝐿 := 0 (𝐿 denotes the tree level the currently
considered node belongs to).

(4) Set 𝑟 := 𝐿.

(5) Call SelectObject(𝑟). It returns 𝐿 and, if 𝐿 = 𝑟,
additionally some unassigned object (let it be denoted
by V). If 𝐿 < 0, then go to (7). Otherwise, check
whether 𝐿 < 𝑟. If so, then return to (4) (perform a
backtracking step). If not (in which case 𝐿 = 𝑟), then
proceed to (6).

(6) Create a new node with empty 𝑉. Set 𝑝(𝑟 + 1) := V.
Increment 𝐿 by 1, and go to (4).

(7) Calculate the coordinates for the objects by applying
formula (4) with respect to the permutation 𝑝

∗ and
stop.

Steps (1) and (2) of B&B comprise the initialization
phase of the algorithm. The initial solution to the problem
is produced using ITS. This solution is saved as the best
solution found so far, denoted by 𝑝∗. If later a better solution
is found, 𝑝∗ is updated. This is done within the SelectObject
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procedure. In the final step, B&B uses 𝑝
∗ to calculate the

optimal coordinates for the objects. The branch-and-bound
phase starts at Step (3) of B&B. Each node of the search tree
is assigned a set 𝑉. The partial solution corresponding to the
current node is denoted by 𝑝. The objects of 𝑉 are used to
extend 𝑝. Upon creation of a node (Step (3) for root and
Step (6) for other nodes), the set 𝑉 is empty. In SelectObject,
𝑉 is filled with objects that are promising candidates to
perform the branching operation on the corresponding node.
SelectObject also decides which action has to be taken next.
If 𝐿 = 𝑟, then the action is “branch,” whereas if 𝐿 < 𝑟, the
action is “backtrack.” Step (4) helps to discriminate between
these two cases. If 𝐿 = 𝑟, then a new node in the next
level of the search tree is generated. At that point, the partial
permutation 𝑝 is extended by assigning the selected object V
to the position 𝑟 + 1 in𝑝 (see Step (6)). If, however,𝐿 < 𝑟 and 𝑟
is positive, then backtracking is performed by repeating Steps
(4) and (5). We thus see that the search process is controlled
by the procedure SelectObject. This procedure can be stated
as follows.

SelectObject(𝑟)

(1) Check whether the set𝑉 attached to the current node
is empty. If so, then go to (2). If not, then consider its
subset 𝑉󸀠 = {𝑖 ∈ 𝑉 | 𝑖 is unmarked and 𝑢

𝑖
(𝑝) >

𝐹
∗
}. If 𝑉󸀠 is nonempty, then mark an arbitrary object

V ∈ 𝑉
󸀠, and return with it as well as with 𝐿 = 𝑟.

Otherwise go to (6).
(2) If 𝑟 > 0, then go to (3). Otherwise, set 𝑉 := {1, . . . , 𝑛},

𝑢
𝑖
(𝑝) := ∞, 𝑖 = 1, . . . , 𝑛, and go to (4).

(3) If 𝑟 = 𝑛 − 1, then go to (5). Otherwise, for each 𝑖 ∈

𝑊(𝑝), perform the following operations. Temporarily
set 𝑝(𝑟 + 1) := 𝑖. Apply the symmetry test, the
dominance test, and, if 𝑟 ⩾ 𝜆(𝐷), also the bound test
to the resulting partial solution 𝑝

󸀠
= (𝑝(1), . . . , 𝑝(𝑟 +

1)). If it passes all the tests, then do the following.
Include 𝑖 into 𝑉. If 𝑟 ⩾ 𝜆(𝐷), assign to 𝑢

𝑖
(𝑝) the value

of the upper bound 𝑈
󸀠 computed for the subproblem

defined by the partial solution 𝑝
󸀠. If, however, 𝑟 <

𝜆(𝐷), then set 𝑢
𝑖
(𝑝) := ∞. If after processing all

objects in 𝑊(𝑝), the set 𝑉 remains empty, then go to
(6). Otherwise proceed to (4).

(4) Mark an arbitrary object V ∈ 𝑉, and return with it as
well as with 𝐿 = 𝑟.

(5) Let 𝑊(𝑝) = {𝑗}. Calculate the value of the solution
𝑝 = (𝑝(1), . . . , 𝑝(𝑛 − 1), 𝑝(𝑛) = 𝑗). If 𝐹(𝑝) > 𝐹

∗, then
set 𝑝∗ := 𝑝 and 𝐹

∗
:= 𝐹(𝑝).

(6) If 𝑟 > 0, then drop the 𝑟th element of 𝑝. Return with
𝐿 := 𝑟 − 1.

In the previous description, 𝑊(𝑝) denotes the set of
unassigned objects, as before. The objects included in 𝑉 ⊆

𝑊(𝑝) are considered as candidates to be assigned to the
leftmost available position in 𝑝. At the root node, 𝑉 = 𝑊(𝑝).
In all other cases, except when |𝑊(𝑝)| = 1, an object becomes
a member of the set 𝑉 only if it passes two or, for longer 𝑝,
three tests. The third of them, the upper bound test, amounts

to check if 𝑈󸀠 > 𝐹
∗. This condition is checked again on

the second and subsequent calls to SelectObject for the same
node of the search tree. This is done in Step (1) for each
unmarked object 𝑖 ∈ 𝑉. Such a strategy is reasonable because
during the branch-and-bound process the value of 𝐹∗ may
increase, and the previously satisfied constraint𝑈󸀠 > 𝐹

∗ may
become violated for some 𝑖 ∈ 𝑉. To be able to identify such
objects, the algorithm stores the computed upper bound 𝑈

󸀠

as 𝑢
𝑖
(𝑝) at Step (3) of SelectObject.
A closer look at the procedure SelectObject shows that

two scenarios are possible: (1)when this procedure is invoked
following the creation of a newnode of the tree (which is done
either in Step (3) or in Step (6) of B&B); (2)when a call to the
procedure ismade after a backtracking step.The set𝑉 initially
is empty, and therefore Steps (2) to (5) of SelectObject become
active only in the first of these two scenarios. Depending
on the current level of the tree, 𝑟, one of the three cases is
considered. If the current node is the root, that is, 𝑟 = 0, then
Step (2) is executed. Since in this case the dominance test is
not applicable, the algorithm uses the set𝑉 comprising all the
objects under consideration. An arbitrary object selected in
Step (4) is then used to create the first branch emanating from
the root of the tree. If 𝑟 ∈ [1, . . . , 𝑛 − 2], then the algorithm
proceeds to Step (3). The task of this step is to evaluate all
partial solutions that can be obtained from the current partial
permutation𝑝by assigning an object from𝑊(𝑝) to the (𝑟 + 1)

th position in 𝑝. In order not to lose at least one optimal
solution it is sufficient to keep only those extensions of 𝑝 for
which all the tests were successful. Such partial solutions are
memorized by the set 𝑉. One of them is chosen in Step (4)

to be used (in Step (6) of B&B) to generate the first son of
the current node. If, however, no promising partial solution
has been found and thus the set 𝑉 is empty, then the current
node can be discarded, and the search continued from its
parent node. Finally, if 𝑟 = 𝑛 − 1, then Step (5) is executed
in which the permutation 𝑝 is completed by placing the
remaining unassigned object in the last position of𝑝. Its value
is compared with that of the best solution found so far. The
node corresponding to 𝑝 is a leaf and, therefore, is fathomed.
In the second of the above-mentioned two scenarios (Step
(1) of the procedure), the already existing nonempty set 𝑉
is scanned. The previously selected objects in 𝑉 have been
marked. They are ignored. For each remaining object 𝑖, it is
checked whether 𝑢

𝑖
(𝑝) > 𝐹

∗. If so, then 𝑖 is included in
the set 𝑉󸀠. If the resulting set 𝑉󸀠 is empty, then the current
node of the tree becomes fathomed, and the procedure goes
to Step (6). Otherwise, the procedure chooses a branching
object and passes it to its caller B&B. Our implementation
of the algorithm adopts a very simple enumeration strategy:
branch upon an arbitrary object in 𝑉

󸀠 (or 𝑉 when Step (4) is
performed).

It is useful to note that the tests in Step (3) are applied in
increasing order of time complexity.The symmetry test is the
cheapest of them, whereas the upper bound test is the most
expensive to perform but still effective.

6. Computational Results

The main goal of our numerical experiments was to pro-
vide some measure of the performance of the developed
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B&B algorithm as well as to demonstrate the benefits of
using the new upper bound and efficient dominance test
throughout the solution process. For comparison purposes,
we also implemented the better of the two branch-and-
bound algorithms of Brusco and Stahl [13]. In their study,
this algorithm is denoted as BB3. When referring to it in
this paper, we will use the same name. In order to make the
comparison more fair, we decided to start BB3 by invoking
the ITS heuristic. Thus, the initial solution from which the
branch-and-bound phase of each of the algorithms starts is
expected to be of the same quality.

6.1. Experimental Setup. Both our algorithm and BB3 have
been coded in the C programming language, and all the tests
have been carried out on a PC with an Intel Core 2 Duo
CPU running at 3.0GHz. As a testbed for the algorithms,
three empirical dissimilarity matrices from the literature in
addition to a number of randomly generated ones were
considered. The random matrices vary in size from 20 to
30 objects. All off-diagonal entries are drawn uniformly at
random from the interval [1, 100]. The matrices, of course,
are symmetric.

We also used three dissimilarity matrices constructed
from empirical data found in the literature. The first matrix
is based onMorse code confusion data collected by Rothkopf
[26]. In his experiment, the subjects were presented pairs
of Morse code signals and asked to respond whether they
thought the signals were the same or different.These answers
were translated to the entries of the similarity matrix with
rows and columns corresponding to the 36 alphanumeric
characters (26 letters in the Latin alphabet and 10 digits in the
decimal number system). We should mention that we found
small discrepancies between Morse code similarity matrices
given in various publications and electronic media. We have
decided to take the matrix from [27], where it is presented
with a reference to Shepard [28]. Let thismatrix be denoted by
𝑀 = (𝑚

𝑖𝑗
). Its entries are integers from the interval [0, 100].

Like in the study of Brusco and Stahl [13], the corresponding
symmetric dissimilarity matrix 𝐷 = (𝑑

𝑖𝑗
) was obtained by

using the formula 𝑑
𝑖𝑗
= 200 − 𝑚

𝑖𝑗
− 𝑚
𝑗𝑖
for all off-diagonal

entries and setting the diagonal of 𝐷 to zero. We considered
twoUDSP instances constructed usingMorse code confusion
data—one defined by the 26 × 26 submatrix of𝐷 with rows
and columns labeled by the letters and another defined by the
full matrix𝐷.

The second empirical matrix was taken from Groenen
and Heiser [29]. We denote it by 𝐺 = (𝑔

𝑖𝑗
). Its entry 𝑔

𝑖𝑗

gives the number of citations in journal 𝑖 to journal 𝑗. Thus
the rows of 𝐺 correspond to citing journals, and the columns
correspond to cited journals. The dissimilarity matrix 𝐷 was
derived from 𝐺 in two steps, like in [13]. First, a symmetric
similarity matrix, 𝐻 = (ℎ

𝑖𝑗
), was calculated by using the

formulas ℎ
𝑖𝑗

= ℎ
𝑗𝑖

= (𝑔
𝑖𝑗
/∑
𝑛

𝑙=1,l ̸= 𝑖 𝑔𝑖𝑙) + (𝑔
𝑗𝑖
/∑
𝑛

𝑙=1,𝑙 ̸= 𝑗
𝑔
𝑗𝑙
),

𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 < 𝑗, and ℎ
𝑖𝑖

= 0, 𝑖 = 1, . . . , 𝑛. Then 𝐷

was constructed with entries 𝑑
𝑖𝑗

= ⌊100(max
𝑙,𝑘
ℎ
𝑙𝑘

− ℎ
𝑖𝑗
)⌋,

𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗, and 𝑑
𝑖𝑖
= 0, 𝑖 = 1, . . . , 𝑛.

The third empirical matrix used in our experiments
was taken from Hubert et al. [30]. Its entries represent the

dissimilarities between pairs of food items. As mentioned by
Hubert et al. [30], this 45 × 45 food-item matrix, 𝐷food,
was constructed based on data provided by Ross andMurphy
[31]. For our computational tests, we considered submatrices
of 𝐷food defined by the first 𝑛 ∈ {20, 21, . . . , 35} food items.
All the dissimilarity matrices we just described as well as
the source code of our algorithm are publicly available at
http://www.proin.ktu.lt/∼gintaras/uds.html.

Based on the results of preliminary experiments with the
B&B algorithm, we have fixed the values of its parameters:
𝜏 = 10, 𝑅

1
= 0, and 𝑅

2
= 5. In the symmetry test,𝑤 was fixed

at 1. The cutoff time for ITS was 1 second.

6.2. Results. The first experiment was conducted on a series
of randomly generated full density dissimilarity matrices.
The results of B&B and BB3 for them are summarized in
Table 1. The dimension of the matrix 𝐷 is encoded in the
instance name displayed in the first column. The second
column of the table shows, for each instance, the optimal
value of the objective function 𝐹

∗ and, in parentheses, two
related metrics. The first of them is the raw value of the
stress function Φ(𝑥). The second number in parentheses is
the normalized value of the stress function that is calculated
asΦ(𝑥)/∑

𝑖<𝑗
𝑑
𝑖𝑗
. The next two columns list the results of our

algorithm: the number of nodes in the search tree and the
CPU time reported in the form hours :minutes : seconds or
minutes : seconds or seconds. The last two columns give these
measures for BB3.

As it can be seen from the table, B&B is superior to BB3.
We observe, for example, that the decrease in CPU time over
BB3 is around 40% for the largest three instances. Also, our
algorithm builds smaller search trees than BB3.

In our second experiment, we opt for three empirical
dissimilarity matrices mentioned in Section 6.1. Table 2 sum-
marizes the results of B&B and BB3 on the UDSP instances
defined by these matrices. Its structure is the same as that of
Table 1. In the instance names, the letter “M” stands for the
Morse codematrix, “J” stands for the journal citationsmatrix,
and “F” stands for the food item data. As before, the number
following the letter indicates the dimension of the problem
matrix. Comparing results in Tables 1 and 2, we find that
for empirical data the superiority of our algorithm over BB3
is more pronounced. Basically, B&B performs significantly
better than BB3 for each of the three data sets. For example,
for the food-item dissimilarity matrix of size 30 × 30, B&B
builds almost 10 times smaller search tree and is about 5 times
faster than BB3.

Table 3 presents the results of the performance of B&B
on the full Morse code dissimilarity matrix as well as on
larger submatrices of the food-item dissimilarity matrix.
Running BB3 on these UDSP instances is too expensive, so
this algorithm is not included in the table. By analyzing the
results in Tables 2 and 3, we find that, for 𝑖 ∈ {22, . . . , 35}, the
CPU time taken by B&B to solve the problem with the 𝑖 × 𝑖

food-item submatrix is between 196 (for 𝑖 = 30) and 282 (for
𝑖 = 27) percent of that needed to solve the problem with the
(𝑖 −1)× (𝑖−1) food-item submatrix. For the submatrix of size
35 × 35, the CPU time taken by the algorithm was more than
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Table 1: Performance on random problem instances.

Inst. Objective function value B&B BB3
Number of nodes Time Number of nodes Time

p20 9053452 (179755.4; 0.284) 1264871 4.4 1526725 5.6
p21 9887394 (187927.7; 0.285) 3304678 10.6 4169099 14.5
p22 12548324 (224540.6; 0.282) 6210311 20.5 8017112 29.0
p23 14632006 (239619.8; 0.274) 12979353 45.0 16624663 1:06.7
p24 16211210 (281585.9; 0.294) 31820463 1:53.3 42435561 2:55.5
p25 15877026 (312670.0; 0.330) 103208158 6:44.6 137525505 9:52.4
p26 20837730 (347147.8; 0.302) 200528002 13:35.4 267603807 20:43.6
p27 21464870 (358595.8; 0.311) 287794935 20:37.7 392405143 32:36.5
p28 23938264 (396136.0; 0.317) 581602877 44:09.3 812649051 1:13:05.4
p29 28613820 (453778.6; 0.315) 2047228373 2:50:57.2 3044704554 4:38:57.0
p30 30359134 (464556.9; 0.315) 3555327537 5:09:09.9 5216804247 8:55:04.6

Table 2: Performance on empirical dissimilarity matrices.

Inst. Objective function value B&B BB3
Number of nodes Time Number of nodes Time

M26 180577772 (1944889.1; 0.219) 108400003 7:43.2 201264785 16:14.3
J28 60653172 (716703.3; 0.249) 2019598593 3:48:00.6 6780517853 10:39:06.6
F20 19344116 (105143.2; 0.098) 236990 2.7 1971840 7.0
F21 22694178 (122997.9; 0.102) 568998 5.2 4716777 16.2
F22 26496098 (149594.9; 0.110) 1178415 10.6 9993241 35.7
F23 30853716 (175768.1; 0.116) 2524703 25.2 24357098 1:37.8
F24 35075372 (217471.2; 0.130) 6727692 1:00.1 51593000 3:30.4
F25 40091544 (249100.2; 0.134) 14560522 2:28.3 139580891 10:01.4
F26 45507780 (288604.8; 0.142) 40465339 6:55.3 298597411 23:18.8
F27 51859210 (333682.5; 0.148) 116161004 19:29.8 670492972 55:57.8
F28 58712130 (378864.2; 0.153) 253278124 44:35.8 1366152797 2:03:26.5
F29 66198704 (420398.1; 0.156) 530219761 1:42:26.5 3616257778 5:32:08.4
F30 74310052 (462935.3; 0.157) 972413816 3:20:56.6 9360343618 15:56:41.2

14 days. In fact, a solution of value 120526370was found by the
ITS heuristic in less than 1 s.The rest of the time was spent on
proving its optimality.We also see fromTable 3 that theUDSP
with the full Morse code dissimilarity matrix required nearly
21 days to solve to proven optimality using our approach.

In Table 4, we display optimal solutions for the two
largest UDSP instances we have tried. The second and fourth
columns of the table contain the optimal permutations for
these instances. The coordinates for objects, calculated using
(4), are given in the third and fifth columns. The number in
parenthesis in the fourth column shows the order in which
the food items appear within Table 5.1 in the book by Hubert
et al. [30]. From Table 4, we observe that only a half of the
signals representing digits in theMorse code are placed at the
end of the scale. Other such signals are positioned between
signals encoding letters. We also see that shorter signals tend
to occupy positions at the beginning of the permutation 𝑝.

In Table 5, we evaluate the effectiveness of tests used to
fathom partial solutions. Computational results are reported
for a selection of UDSP instances. The second, third, and
fourth columns of the table present 100𝑁sym/𝑁, 100𝑁dom/𝑁,
and 100𝑁UB/𝑁, where𝑁sym (respectively,𝑁dom and𝑁UB) is
the number of partial permutations that are fathomed due

to symmetry test (respectively, due to dominance test and
due to upper bound test) in Step (3) of SelectObject, and
𝑁 = 𝑁sym+𝑁dom+𝑁UB.The last three columns give the same
set of statistics for the BB3 algorithm. Inspection of Table 5
reveals that𝑁dom is much larger than both𝑁sym and𝑁UB. It
can also be seen that𝑁dom values are consistently higher with
BB3 thanwhen using our approach. Comparing the other two
tests, we observe that 𝑁sym is larger than 𝑁UB in all cases
except when applying B&B to the food-item dissimilarity
submatrices of size 20 × 20 and 25 × 25. Generally, we notice
that the upper bound test is most successful for the UDSP
instances defined by the food-item matrix.

We end this section with a discussion of two issues
regarding the use of heuristic algorithms for the UDSP. From
a practical point of view, heuristics, of course, are preferable
to exact methods as they are fast and can be applied to large
problem instances. If carefully designed, they are able to
produce solutions of very high quality. The development of
exact methods, on the other hand, is a theoretical avenue for
coping with different problems. In the field of optimization,
exact algorithms, for a problem of interest, provide not only a
solution but also a certificate of its optimality. Therefore, one
of possible applications of exact methods is to use them in
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Table 3: Performance of B&B on larger empirical dissimilarity matrices.

Instance Objective function value Number of nodes Time
F31 82221440 (519445.5; 0.164) 2469803824 8:57:03.8
F32 91389180 (570324.1; 0.166) 5040451368 19:44:12.7
F33 100367800 (641239.5; 0.174) 14318454604 55:24:20.0
F34 110065196 (710405.4; 0.180) 33035826208 129:36:50.0
F35 120526370 (784156.4; 0.185) 82986984742 342:56:45.6
M36 489111494 (4068295.6; 0.230) 243227368848 494:51:17.5

Table 4: Optimal solutions for the full Morse code dissimilarity matrix and the 35 × 35 food-item dissimilarity matrix.

𝑖

Morse code full Food item data
𝑝(𝑖) 𝑥

𝑝(𝑖)
𝑝(𝑖) 𝑥

𝑝(𝑖)

1 (E) ∙ 0.00000 orange (3) 0.00000
2 (T) − 5.83333 watermelon (2) 0.28571
3 (I) ∙∙ 24.77778 apple (1) 0.28571
4 (A) ∙− 34.08333 banana (4) 1.28571
5 (N) −∙ 44.11111 pineapple (5) 1.62857
6 (M) −− 52.33333 lettuce (6) 21.25714
7 (S) ∙ ∙ ∙ 70.30556 broccoli (7) 22.31429
8 (U) ∙ ∙ − 83.13889 carrots (8) 22.54286
9 (R) ∙ − ∙ 93.47222 corn (9) 22.88571
10 (W) ∙ − − 102.97222 onions (10) 25.11429
11 (H) ∙ ∙ ∙∙ 114.44444 potato (11) 29.97143
12 (D) − ∙ ∙ 124.30556 rice (12) 51.62857
13 (K) − ∙ − 131.52778 spaghetti (19) 58.97143
14 (V) ∙ ∙ ∙− 145.00000 bread (13) 64.48571
15 (5) ∙ ∙ ∙ ∙ ∙ 152.44444 bagel (14) 69.85714
16 (4) ∙ ∙ ∙ ∙ − 159.91667 cereal (16) 72.11429
17 (F) ∙ ∙ −∙ 170.75000 oatmeal (15) 72.51429
18 (L) ∙ − ∙∙ 182.25000 pancake (18) 76.37143
19 (B) − ∙ ∙∙ 189.52778 muffin (17) 77.80000
20 (X) − ∙ ∙− 199.55556 crackers (20) 88.97143
21 (6) − ∙ ∙ ∙ ∙ 205.66667 granola bar (21) 93.00000
22 (3) ∙ ∙ ∙ − − 220.13889 pretzels (22) 100.74286
23 (C) − ∙ −∙ 229.47222 nuts (24) 104.37143
24 (Y) − ∙ −− 238.41667 popcorn (23) 107.62857
25 (7) − − ∙ ∙ ∙ 249.30556 potato chips (25) 112.48571
26 (Z) − − ∙∙ 254.88889 doughnuts (26) 120.08571
27 (Q) − − ∙− 264.38889 pizza (31) 126.51429
28 (P) ∙ − −∙ 270.83333 cookies (27) 136.88571
29 (J) ∙ − −− 282.94444 chocolate bar (29) 139.40000
30 (G) − − ∙ 292.47222 cake (28) 141.05714
31 (O) − − − 300.22222 pie (30) 143.54286
32 (2) ∙ ∙ − − − 310.50000 ice cream (32) 152.00000
33 (8) − − − ∙ ∙ 320.36111 yogurt (33) 157.11429
34 (1) ∙ − − − − 333.50000 butter (34) 161.80000
35 (9) − − − − ∙ 341.86111 cheese (35) 165.08571
36 (0) − − − − − 350.27778
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Table 5: Relative performance of the tests.

Instance B & B BB3
Sym. Dom. UB Sym. Dom. UB

p20 11.58a 88.24b 0.18c 11.11a 88.73b 0.16c

p25 8.86a 90.87b 0.27c 8.48a 91.43b 0.09c

p30 7.01a 92.84 b 0.15c 6.29a 93.64b 0.07c

M26 11.40a 88.47 b 0.13c 10.44a 89.52b 0.04c

J28 8.55a 89.23 b 2.22c 5.68 a 94.26b 0.06c

F20 8.01a 75.63 b 16.36c 13.25a 85.42b 1.33c

F25 7.04a 81.27 b 11.69c 10.31a 89.39b 0.30c

F30 8.95a 83.91b 7.14c 7.74a 92.16b 0.10c

F35 8.53a 87.23b 4.24c —a —b —c

M36 8.82a 91.14b 0.04c —a —b —c

a
Percentage of partial solutions fathomed due to symmetry test.

bPercentage of partial solutions fathomed due to dominance test.
cPercentage of partial solutions fathomed due to bound test.

the process of assessment of heuristic techniques. Specifically,
optimal values can serve as a reference point with which the
results of heuristics can be compared. However, obtaining an
optimality certificate in many cases, including the UDSP, is
very time consuming. In order to see the time differences
between finding an optimal solution for UDSP with the help
of heuristics and proving its optimality (as it is done by
the branch-and-bound method described in this paper), we
run the two heuristic algorithms, iterated tabu search and
simulated annealing (SA) of Brusco [19], on all the problem
instances used in the main experiment. For two random
instances, namely, p21 and p25, SA was trapped in a local
maximum.Therefore, we have enhanced our implementation
of SA by allowing it to run in a multi start mode. This
variation of SA located an optimal solution for the above-
mentioned instances in the third and, respectively, second
restarts. Both tested heuristics have proven to be very fast.
In particular, ITS took in total only 2.95 seconds to find
the global optima for all 30 instances we experimented with.
Performing the same task by SA required 5.44 seconds. Such
times are in huge contrast to what is seen in Tables 1–
3. Basically, the long computation times recorded in these
tables are the price we have to pay for obtaining not only a
solution but also a guarantee of its optimality. We did not
perform additional computational experiments with ITS and
SA because investigation of heuristics for theUDSP is outside
the scope of this paper.

Another issue concerns the use of heuristics for providing
initial solutions for the branch-and-bound technique. We
have employed the iterated tabu search procedure for this
purpose. Our choice was influenced by the fact that we
could adopt in ITS the same formulas as those used in
the dominance test, which is a key component of our
approach. Obviously, there are other heuristics one can
apply in place of ITS. As it follows from the discussion
in the preceding paragraph, a good candidate for this is
the simulated annealing algorithm of Brusco [19]. Suppose
that B&B is run twice on the same instance from different
initial solutions, both of which are optimal. Then it should
be clear that in both cases the same number of tree nodes

is explored. This essentially means that any fast heuristic
capable of providing optimal solutions is perfect to be used
in the initialization step of B&B. An alternative strategy
is to use in this step randomly generated permutations.
The effects of this simple strategy are mixed. For example,
for problem instances F25 and F27, the computation time
increased from 148.3 and, respectively, 1169.8 seconds (see
Table 2) to 413.3 and, respectively, 2062.5 seconds. However,
for example, for p25 and M26, a somewhat different picture
was observed. In the case of random initial solution, B&B
took 407.5 and 468.7 seconds for these instances, respectively.
The computation times in Table 1 for p25 and Table 2 forM26
are only marginally shorter. One possible explanation of this
lies in the fact that, as Table 5 indicates, the percentage of
partial solutions fathomed due to bound test for both p25 and
M26 is quite low. However, in general, it is advantageous to
use a heuristic for obtaining an initial solution for the branch-
and-bound algorithm, especially because this solution can be
produced at a negligible cost with respect to the rest of the
computation.

7. Conclusions

In this paper we have presented a branch-and-bound algo-
rithm for the least-squares unidimensional scaling problem.
The algorithm incorporates a LAP-based upper bound test
as well as a dominance test which allows reducing the
redundancy in the search process drastically. The results of
computational experiments indicate that the algorithm can
be used to obtain provably optimal solutions for randomly
generated dissimilarity matrices of size up to 30 × 30 and
for empirical dissimilarity matrices of size up to 35 × 35.
In particular, for the first time, the UDSP instance with the
36 × 36 Morse code dissimilarity matrix has been solved to
guaranteed optimality. Another important instance is defined
by the 45 × 45 food-item dissimilarity matrix 𝐷food. It is a
great challenge to the optimization community to develop an
exact algorithm that will solve this instance. Our branch-and-
bound algorithm is limited to submatrices of 𝐷food of size
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around 35 × 35. We also remark that optimal solutions for
all UDSP instances used in our experiments can be found by
applying heuristic algorithms such as iterated tabu search and
simulated annealing procedures.The total time taken by each
of these procedures to reach the global optima is only a few
seconds. An advantage of the branch-and-bound algorithm
is its ability to certify the optimality of the solution obtained
in a rigorous manner.

Before closing, there are two more points worth of men-
tion. First, we proposed a simple, yet effective, mechanism
for making a decision about when it is useful to apply a
bound test to the current partial solution and when such
a test most probably will fail to discard this solution. For
that purpose, a sample of partial solutions is evaluated in the
preparation step of B&B.We believe that similar mechanisms
may be operative in branch-and-bound algorithms for other
difficult combinatorial optimization problems. Second, we
developed an efficient procedure for exploring the pairwise
interchange neighborhood of a solution in the search space.
This procedure can be useful on its own in the design of
heuristic algorithms for unidimensional scaling, especially
those based on the local search principle.

Appendix

Derivation of (20)
We will deduce an expression for 𝛿

𝑟𝑘
, 1 ⩽ 𝑘 < 𝑟 ⩽ 𝑛,

assuming that 𝑝 is a solution to the whole problem, that
is, 𝑝 ∈ Π. Relocating the object 𝑝(𝑟) from position 𝑟 to
position 𝑘 gives the permutation 𝑝

󸀠
= (𝑝(1), . . . , 𝑝(𝑘 −

1), 𝑝(𝑟), 𝑝(𝑘), . . . , 𝑝(𝑛)). By using the definition of 𝐹 we can
write
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Let us denote the first two terms in (A.1) by 𝛿
󸀠 and the

remaining two terms by 𝛿󸀠󸀠 = ∑
𝑟−1

𝑙=𝑘
𝛿
󸀠󸀠

𝑙
. It is easy to see that 𝛿󸀠

stems frommoving the object 𝑝(𝑟) to position 𝑘 and 𝛿󸀠󸀠 stems
from shifting objects 𝑝(𝑙), 𝑙 = 𝑘, . . . , 𝑟 − 1, by one position to

the right. To get a simpler expression for 𝛿󸀠, we perform the
following manipulations:
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Continuing, we get

𝛿
󸀠
= (

𝑘−1

∑

𝑙=1

𝑑
𝑝(𝑟)𝑝(𝑙)

)

2

− 2

𝑘−1

∑

𝑙=1

𝑑
𝑝(𝑟)𝑝(𝑙)

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

− 2

𝑘−1

∑

𝑙=1

𝑑
𝑝(𝑟)𝑝(𝑙)

𝑛

∑

𝑙=𝑟+1

𝑑
𝑝(𝑟)𝑝(𝑙)

+ (

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

)

2

+ 2

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

𝑛

∑

𝑙=𝑟+1

𝑑
𝑝(𝑟)𝑝(𝑙)

+ (

𝑛

∑

𝑙=𝑟+1

𝑑
𝑝(𝑟)𝑝(𝑙)

)

2

− (

𝑘−1

∑

𝑙=1

𝑑
𝑝(𝑟)𝑝(𝑙)

)

2

− 2

𝑘−1

∑

𝑙=1

𝑑
𝑝(𝑟)𝑝(𝑙)

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

− (

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

)

2

+ 2

𝑘−1

∑

𝑙=1

𝑑
𝑝(𝑟)𝑝(𝑙)

𝑛

∑

𝑙=𝑟+1

𝑑
𝑝(𝑟)𝑝(𝑙)

+ 2

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

𝑛

∑

𝑙=𝑟+1

𝑑
𝑝(𝑟)𝑝(𝑙)

− (

𝑛

∑

𝑙=𝑟+1

𝑑
𝑝(𝑟)𝑝(𝑙)

)

2

.

(A.3)

Finally,

𝛿
󸀠
= − 4

𝑘−1

∑

𝑙=1

𝑑
𝑝(𝑟)𝑝(𝑙)

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

+ 4

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

𝑛

∑

𝑙=𝑟+1

𝑑
𝑝(𝑟)𝑝(𝑙)

= − 4(𝑓
𝑝(𝑟)

−

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

)

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

+ 4

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

(𝑆
𝑝(𝑟)

− 𝑓
𝑝(𝑟)

)

= 4

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

((

𝑟−1

∑

𝑙=𝑘

𝑑
𝑝(𝑟)𝑝(𝑙)

) − 2𝑓
𝑝(𝑟)

+ 𝑆
𝑝(𝑟)

) .

(A.4)
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Similarly, for 𝛿󸀠󸀠
𝑙
we have

𝛿
󸀠󸀠

𝑙
= (

𝑙−1

∑

𝑗=1

𝑑
𝑝(𝑙)𝑝(𝑗)

−

𝑛

∑

𝑗=𝑙+1

𝑑
𝑝(𝑙)𝑝(𝑗)

)

2

+ 4𝑑
𝑝(𝑟)𝑝(𝑙)

(

𝑙−1

∑

𝑗=1

𝑑
𝑝(𝑙)𝑝(𝑗)

−

𝑛

∑

𝑗=𝑙+1

𝑑
𝑝(𝑙)𝑝(𝑗)

)

+ 4𝑑
2

𝑝(𝑟)𝑝(𝑙)
− (

𝑙−1

∑

𝑗=1

𝑑
𝑝(𝑙)𝑝(𝑗)

−

𝑛

∑

𝑗=𝑙+1

𝑑
𝑝(𝑙)𝑝(𝑗)

)

2

= 4𝑑
𝑝(𝑟)𝑝(𝑙)

(𝑓
𝑝(𝑙)

− 𝑆
𝑝(𝑙)

+ 𝑓
𝑝(𝑙)

) + 4𝑑
2

𝑝(𝑟)𝑝(𝑙)

= 4𝑑
𝑝(𝑟)𝑝(𝑙)

(𝑑
𝑝(𝑟)𝑝(𝑙)

+ 2𝑓
𝑝(𝑙)

− 𝑆
𝑝(𝑙)

) .

(A.5)

By summing up (A.4) and (A.5) for 𝑙 = 𝑘, . . . , 𝑟 − 1 we obtain
(20).
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