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We introduce the weighted mixed almost unbiased ridge estimator (WMAURE) based on the weighted mixed estimator (WME)
(Trenkler and Toutenburg 1990) and the almost unbiased ridge estimator (AURE) (Akdeniz and Erol 2003) in linear regression
model. We discuss superiorities of the new estimator under the quadratic bias (QB) and the mean square error matrix (MSEM)
criteria. Additionally, we give a method about how to obtain the optimal values of parameters 𝑘 and 𝑤. Finally, theoretical results
are illustrated by a real data example and a Monte Carlo study.

1. Introduction

Consider the linear regression model

𝑦 = 𝑋𝛽 + 𝜀, (1)

where 𝑦 = (𝑦
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, . . . , 𝑦

𝑛
)
𝑇 is an 𝑛-dimensional response

vector,𝑋 = (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
)
𝑇 with𝑋

𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑝
)
𝑇 is

a known 𝑛 × 𝑝matrix of full column rank, 𝛽 is a 𝑝 × 1 vector
of unknown parameters, and 𝜀 is an 𝑛×1 vector of errors with
expectation𝐸(𝜀) = 0 and covariancematrix Cov(𝜀) = 𝜎2𝐼

𝑛
, 𝐼
𝑛

is an identity matrix of order 𝑛 × 𝑛.
It is well known that the ordinary least squares estimator

(LS) for 𝛽 is given by

�̂�LS = (𝑋
𝑇
𝑋)
−1

𝑋
𝑇
𝑦, (2)

which has been treated as the best estimator for a long time.
However, many results have proved that LS is no longer a
good estimatorwhen themulticollinearity is present inmodel
(1). To tackle this problem, some suitable biased estimators
have been developed, such as principal component regression
estimator (PCR) [1], ordinary ridge estimator (RE) [2], 𝑟 −
𝑘 class estimator [3], Liu estimator (LE) [4], and 𝑟 − 𝑑

class estimator [5]. Kadiyala [6] introduced a class of almost
unbiased shrinkage estimator which can be not only almost
unbiased but also more efficient than the LS. Singh et al. [7]

introduced the almost unbiased generalized ridge estimator
by the jackknife procedure, and Akdeniz and Kaçiranlar [8]
studied the almost unbiased generalized Liu estimator. By
studying bias corrected estimators of the RE and the LE,
Akdeniz and Erol [9] discussed the almost unbiased ridge
estimator (AURE) and the almost unbiased Liu estimator
(AULE).

An alternative technique to tackle the multicollinearity is
to consider the parameter estimator in addition to the sample
information, such as some exact or stochastic restrictions
on unknown parameters. When additional stochastic linear
restrictions on unknown parameters are assumed to be
held, Durbin [10], Theil and Goldberger [11], and Theil [12]
proposed the ordinary mixed estimator (OME). Hubert and
Wijekoon [13] proposed the stochastic restricted Liu estima-
tor, and Yang and Xu [14] obtained a new stochastic restricted
Liu estimator. By grafting the RE into the mixed estima-
tion procedure, Li and Yang [15] introduced the stochastic
restricted ridge estimator. When the prior information and
the sample information are not equally important, Schaffrin
and Toutenburg [16] studied the weighted mixed regression
and developed the weighted mixed estimator (WME). Li and
Yang [17] grafted the RE into the weighted mixed estimation
procedure and proposed the weighted mixed ridge estimator
(WMRE).

In this paper, by combining the WME and the AURE, we
propose a weighted mixed almost unbiased ridge estimator
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(WMAURE) for unknown parameters in a linear regression
model when additional stochastic linear restriction is sup-
posed to be held. Furthermore, we discuss the performance
of the new estimator over the LS, WME, AURE, and WMRE
with respect to the quadratic bias (QB) and the mean square
error matrix (MSEM) criteria.

The rest of the paper is organized as follows. In Section 2,
we describe the statistical model and propose the weighted
mixed almost unbiased ridge estimator. We compare the
new estimator with the weighted mixed ridge estimator and
the almost unbiased ridge estimator under the quadratic
bias criterion in Section 3. In Section 4, superiorities of the
proposed estimator over relative estimators are considered
under the mean square error matrix criterion. In Section 5,
the selection of parameters 𝑘 and 𝑤 is discussed. Finally, to
justify the superiority of the new estimator, we perform a
real data example and a Monte Carlo simulation study in
Section 6. We give some conclusions in Section 7.

2. The Proposed Estimator

Theordinary ridge estimator proposed byHoerl andKennard
[2] is defined as

�̂�RE (𝑘) = (𝑆 + 𝑘𝐼)
−1
𝑋
𝑇
𝑦 = 𝑆
−1

𝑘
𝑋
𝑇
𝑦, (3)

where 𝑆
𝑘
= 𝑆+𝑘𝐼, 𝑘 > 0. Let𝑇
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we may rewrite �̂�RE(𝑘) as
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−1
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The almost unbiased ridge estimator obtained byAkdeniz
and Erol [9] is denoted as

�̂�AURE (𝑘) = (𝐼 − 𝑘
2
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In addition to model (1), let us give some prior informa-
tion about 𝛽 in the form of a set of 𝐽 which is independent
stochastic linear restriction

𝑟 = 𝑅𝛽 + 𝑒, 𝑒 ∼ (0, 𝜎
2
𝑊) , (6)

where 𝑅 is a 𝐽 × 𝑝 known matrix of rank 𝐽, 𝑒 is a 𝐽 × 1 vector
of disturbances with expectation 0 and covariance matrix
𝜎
2
𝑊,𝑊 is supposed to be known and positive definite, and

the 𝐽 × 1 vector 𝑟 can be interpreted as a random variable
with expectation 𝐸(𝑟) = 𝑅𝛽. Then, we can derive that (6)
does not hold exactly but in the mean. We assume 𝑟 to be a
realized value of the random vector, so that all expectations
are conditional on 𝑟 [18]. We will not separately mention this
in the following discussions. Furthermore, it is also supposed
that 𝜀 is stochastically independent of 𝑒.

For the restrictedmodel specified by (1) and (6), theOME
introduced by Durbin [10], Theil and Goldberger [11], and
Theil [12] is defined as
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When the prior information and the sample information
are not equally important, Schaffrin and Toutenburg [16]
considered the WME which is denoted as
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where 𝑤 (0 ≤ 𝑤 ≤ 1) is a nonstochastic and nonnegative
scalar weight.

Note that
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Then, the WME (8) can be rewritten as
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Additionally, by combining the WME and RE, Li and
Yang [17] obtained the WMRE which is defined as
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Now, based on the WME [16] and the AURE [9], we can
define the following weighted mixed almost unbiased ridge
estimator:
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which is according to the way in [17].
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Using (10), (14) can be rewritten as
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From the definition of �̂�WMAURE(𝑤, 𝑘), it can be seen that
�̂�WMAURE(𝑤, 𝑘) is a general estimator, and as special cases of
it, the WME, LS, and AURE can be described as
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It is easy to compute expectation values and covariance
matrices of the LS, WME, WMRE, AURE, andWMAURE as
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where 𝐴 = (𝑆 + 𝑤𝑅
𝑇
𝑊
−1
𝑅)
−1.

In the rest of the sections, we intend to study the
performance of the new estimator over relative estimators
under the quadratic bias and the mean square error matrix
criteria.

3. Quadratic Bias Comparison of Estimators

In this section, quadratic bias comparisons are performed
among the AURE, WMRE, and WMAURE. Let �̂� be the

estimator of 𝛽, then the quadratic bias of �̂� is defined as
QB(�̂�) = Bias(�̂�)𝑇Bias(�̂�), where Bias(�̂�) = 𝐸(�̂�) − 𝛽. Based
on the definition of quadratic bias, we can easily get quadratic
biases of AURE, WMRE, and WMAURE:

QB (�̂�AURE (𝑘)) = Bias(�̂�AURE (𝑘))
𝑇
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3.1. Quadratic Bias Comparison between the AURE and
WMAURE. Here, we focus on the quadratic bias compar-
ison between the AURE and WMAURE. The difference of
quadratic biases can be derived as

Δ
1
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Firstly, we just consider 𝐼 − 𝑆𝐴2𝑆. Note that (𝐼 − 𝑆𝐴2𝑆)𝑇 =
𝐼 − 𝑆𝐴

2
𝑆 and

𝐼 − 𝑆𝐴
2
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−2
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2
𝑆

= 𝑆 (𝑆
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− 𝐴
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It can be seen that 𝐴−2 − 𝑆2 = (𝑆 + 𝑤𝑅𝑇𝑊−1𝑅)2 − 𝑆2 > 0,
namely, 𝐴−2 > 𝑆2. Then we can get

𝑆
−2
− 𝐴
2
> 0. (22)

Thus, we have 𝐼−𝑆𝐴2𝑆 > 0 by (21) and (22).Therefore, we
can derive that Δ

1
= QB(�̂�AURE(𝑘)) −QB(�̂�WMAURE(𝑤, 𝑘)) >

0 and the �̂�WMAURE(𝑤, 𝑘) outperforms the �̂�AURE(𝑘) accord-
ing to the quadratic bias criterion.

Based on the above analysis, we can derive the following
theorem.

Theorem 1. According to the quadratic bias criterion, the
WMAURE performs better than the AURE.
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3.2. Quadratic Bias Comparison between the WMRE and
WMAURE. Similarly, the quadratic bias comparison
between the WMRE and WMAURE will be discussed. The
difference of quadratic biases of both estimators can be
obtained by

Δ
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For 𝑆 = 𝑋
𝑇
𝑋 > 0, there exists an orthogonal matrix 𝑃

such that 𝑆 = 𝑃Λ𝑃
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𝑘
)𝐴
2, 𝑘𝑆−1
𝑘
𝐴
2
(𝐼 − 𝑘𝑆

−1

𝑘
) and

(𝐼 − 𝑘𝑆
−1

𝑘
)
1/2
𝐴
2
(𝐼 − 𝑘𝑆

−1

𝑘
)
1/2, (𝐼 − 𝑘𝑆−1

𝑘
)
1/2
𝑘𝑆
−1

𝑘
𝐴
2
(𝐼 − 𝑘𝑆

−1

𝑘
)
1/2

have same nonzero eigenvalues, respectively, which means
that 𝐴2 − 𝑘2𝑆−1

𝑘
𝐴
2
𝑆
−1

𝑘
> 0.

Therefore, we can derive that Δ
2
= QB(�̂�WMRE(𝑤, 𝑘)) −

QB(�̂�WMAURE(𝑤, 𝑘)) > 0 and the �̂�WMAURE(𝑤, 𝑘) performs
better than the �̂�WMRE(𝑤, 𝑘) under the quadratic bias crite-
rion.

We can get the following theorem.

Theorem 2. According to the quadratic bias criterion, the
WMAURE outperforms the WMRE.

4. Mean Square Error Matrix
Comparisons of Estimators

In this section, We will compare the proposed estimator
with relative estimators under the mean square error matrix
(MSEM) criterion.

For the sake of convenience, we list some lemmas needed
in the following discussions.

Lemma 3. Let𝑀 be a positive definite matrix, namely,𝑀 > 0;
let 𝛼 be a vector, then𝑀−𝛼𝛼

𝑇
≥ 0 if and only if 𝛼𝑇𝑀−1𝛼 ≤ 1.

Proof. See [19].

Lemma 4. Let �̂�
𝑖
= 𝐴
𝑖
𝑦, 𝑖 = 1,2 be two competing homo-

geneous linear estimators of 𝛽. Suppose that 𝐷 = COV(�̂�
1
) −

COV(�̂�
2
) > 0, then MSEM(�̂�

1
) −MSEM(�̂�

2
) ≥ 0 if and only if

𝑑
𝑇

2
(𝐷+𝑑

1
𝑑
𝑇

1
)
−1
𝑑
2
≤ 1, whereMSEM(�̂�

𝑖
), 𝑑
𝑖
denote theMSEM

and bias vector of �̂�
𝑖
, respectively.

Proof. See [20].

Lemma 5. Let two 𝑛 × 𝑛 matrices𝑀 > 0, 𝑁 ≥ 0, then𝑀 >

𝑁 ⇔ 𝜆
1
(𝑁𝑀
−1
) < 1.

Proof. See [18].

Firstly, the MSEM of an estimator �̂� is defined as

MSEM (�̂�) = 𝐸 ((�̂� − 𝛽) (�̂� − 𝛽)
𝑇

)

= COV (�̂�) + Bias (�̂�)Bias(�̂�)
𝑇

.

(25)

For two given estimators �̂�
1
and �̂�

2
, the estimator �̂�

2
is

said to be superior to �̂�
1
under the MSEM criterion if and

only if

𝑀(�̂�
1
, �̂�
2
) = MSEM (�̂�

1
) −MSEM (�̂�

2
) ≥ 0. (26)

The scalar mean square error (MSE) is defined as
MSE(�̂�) = tr(MSEM(�̂�)). It is well known that the MSEM
criterion is superior over the MSE criterion; we just compare
the MSEM of the WMAURE with other relative estimators.

Now, from (18), we can easily obtain the MSEM of the
WME, WMRE, AURE, and WMAURE as follows:

MSEM (�̂�LS) = 𝜎
2
𝑆
−1
, (27)

MSEM (�̂�WME (𝑤)) = 𝜎
2
𝐴(𝑆 + 𝑤

2
𝑅
𝑇
𝑊
−1
𝑅)𝐴, (28)

MSEM (�̂�WMRE (𝑤, 𝑘))

= 𝜎
2
𝐴(𝑇
𝑘
𝑆𝑇
𝑘
+ 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴 + 𝑏

1
𝑏
𝑇

1
,

(29)

MSEM (�̂�AURE (𝑘))

= 𝜎
2
(𝐼 + 𝑘𝑆

−1

𝑘
) 𝑇
𝑘
𝑆
−1
𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) + 𝑏
2
𝑏
𝑇

2
,

(30)

MSEM (�̂�WMAURE (𝑤, 𝑘))

= 𝜎
2
𝐴((𝐼 + 𝑘𝑆

−1

𝑘
) 𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) + 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)

× 𝐴 + 𝑏
3
𝑏
𝑇

3
,

(31)

where 𝑏
1
= 𝐴(𝑇

𝑘
− 𝐼)𝑆𝛽, 𝑏

2
= −𝑘
2
𝑆
−2

𝑘
𝛽 and 𝑏

3
= −𝑘
2
𝐴𝑆
−2

𝑘
𝑆𝛽.

4.1. MSEM Comparison of the WME and WMAURE. To
compare MSEM values between the WMAURE and WME.
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Firstly, from (28) and (31), the difference of MSEM values
between the WME andWMAURE can be gained by

𝑀(�̂�WME (𝑤) , �̂�WMAURE (𝑤, 𝑘))

= MSEM (�̂�WME (𝑤)) −MSEM (�̂�WMAURE (𝑤, 𝑘))

= 𝜎
2
𝐴(𝑆 + 𝑤

2
𝑅
𝑇
𝑊
−1
𝑅)𝐴 − 𝜎

2
𝐴

× ((𝐼+𝑘𝑆
−1

𝑘
) 𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
)+𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴−𝑏

3
𝑏
𝑇

3

= 𝜎
2
𝐴(𝑆 − (𝐼 + 𝑘𝑆

−1

𝑘
) 𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
))𝐴 − 𝑏

3
𝑏
𝑇

3

= 𝜎
2
𝐷
1
− 𝑏
3
𝑏
𝑇

3
,

(32)

where𝐷
1
= 𝐴(𝑆 − (𝐼 + 𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
))𝐴.

Theorem 6. The WMAURE �̂�WMAURE(𝑤, 𝑘) is superior
to the WME �̂�WME(𝑤) under MSEM criterion, namely,
𝑀(�̂�WME(𝑤), �̂�WMAURE(𝑤, 𝑘)) ≥ 0 if and only if 𝑏𝑇

3
𝐷
−1

1
𝑏
3
≤

𝜎
2.

Proof. Note that 𝑆 = 𝑃Λ𝑃𝑇. We can easily compute that 𝑆 −
(𝐼+𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼+𝑘𝑆

−1

𝑘
) = 𝑃Γ

(1)
𝑃
𝑇
= 𝑃 diag(𝜏(1)

1
, . . . , 𝜏

(1)

𝑝
)𝑃
𝑇,

where Γ(1) = Λ−(𝐼+𝑘(Λ+𝑘𝐼)−1)(𝐼+𝑘Λ−1)−1Λ(𝐼+𝑘Λ−1)−1(𝐼+
𝑘(Λ + 𝑘𝐼)

−1
) and

𝜏
(1)

𝑖
= 𝜆
𝑖
− (1 + 𝑘(𝜆

𝑖
+ 𝑘)
−1

) (1 + 𝑘𝜆
−1

𝑖
)
−1

× 𝜆
𝑖
(1 + 𝑘𝜆

−1

𝑖
)
−1

(1 + 𝑘(𝜆
𝑖
+ 𝑘)
−1

)

= 𝜆
𝑖
−
𝜆
𝑖
+ 2𝑘

𝜆
𝑖
+ 𝑘

𝜆
𝑖

𝜆
𝑖
+ 𝑘

𝜆
𝑖

𝜆
𝑖

𝜆
𝑖
+ 𝑘

𝜆
𝑖
+ 2𝑘

𝜆
𝑖
+ 𝑘

=
(𝑘
4
+ 4𝑘
3
𝜆
𝑖
+ 2𝑘
2
𝜆
2

𝑖
) 𝜆
𝑖

(𝜆
𝑖
+ 𝑘)
4

> 0, 𝑖 = 1, . . . , 𝑝,

(33)

which means 𝑆 − (𝐼 + 𝑘𝑆−1
𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) > 0. Observing

that 𝐴 = (𝑆 + 𝑤𝑅
𝑇
𝑊
−1
𝑅)
−1
> 0, we have 𝐷

1
= 𝐴(𝑆 − (𝐼 +

𝑘𝑆
−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
))𝐴 > 0.

Applying Lemma 3, we can get that 𝑀(�̂�WME(𝑤),
�̂�WMAURE(𝑤, 𝑘)) ≥ 0 if and only if 𝑏𝑇

3
𝐷
−1

1
𝑏
3
≤ 𝜎
2.

This completes the proof.

4.2. MSEM Comparison of the WMRE and WMAURE. Sim-
ilarly, we compare MSEM values between the WMAURE
and WMRE. Firstly, from (29) and (31), the difference of
MSEM values between the WMRE and the WMAURE can
be computed by

𝑀(�̂�WMAURE (𝑤, 𝑘) , �̂�WMRE (𝑤, 𝑘))

= MSEM (�̂�WMAURE (𝑤, 𝑘)) −MSEM (�̂�WMRE (𝑤, 𝑘))

= 𝜎
2
𝐴((𝐼 + 𝑘𝑆

−1

𝑘
) 𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) + 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴

+ 𝑏
3
𝑏
𝑇

3
− 𝜎
2
𝐴(𝑇
𝑘
𝑆𝑇
𝑘
+ 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴 − 𝑏

1
𝑏
𝑇

1

= 𝜎
2
𝐴((𝐼 + 𝑘𝑆

−1

𝑘
) 𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) − 𝑇
𝑘
𝑆𝑇
𝑘
)𝐴 − 𝑏

1
𝑏
𝑇

1

= 𝜎
2
𝐷
2
+ 𝑏
3
𝑏
𝑇

3
− 𝑏
1
𝑏
𝑇

1
,

(34)

where𝐷
2
= 𝐴((𝐼 + 𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) − 𝑇
𝑘
𝑆𝑇
𝑘
)𝐴.

Theorem 7. The WMAURE �̂�WMAURE(𝑤, 𝑘) (𝑘 > 0) is
superior to the WMRE �̂�WMRE(𝑤, 𝑘) under MSEM criterion,
namely, 𝑀(�̂�WMAURE(𝑤, 𝑘), �̂�WMRE(𝑤, 𝑘)) < 0 if and only if
𝑏
𝑇

1
(𝜎
2
𝐷
2
+ 𝑏
3
𝑏
𝑇

3
)
−1
𝑏
1
> 1.

Proof. Firstly, we prove (𝐼+𝑘𝑆−1
𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼+𝑘𝑆

−1

𝑘
)−𝑇
𝑘
𝑆𝑇
𝑘
> 0.

Note that 𝑆 = 𝑃Λ𝑃𝑇, we can compute (𝐼+𝑘𝑆−1
𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼+

𝑘𝑆
−1

𝑘
) − 𝑇
𝑘
𝑆𝑇
𝑘
= 𝑃Γ
(2)
𝑃
𝑇
= 𝑃 diag(𝜏(2)

1
, . . . , 𝜏

(2)

𝑝
)𝑃
𝑇, where

Γ
(2)
= (𝐼 + 𝑘(Λ + 𝑘𝐼)

−1
) (1 + 𝑘Λ

−1
)
−1

Λ(1 + 𝑘Λ
−1
)
−1

× (𝐼 + 𝑘(Λ + 𝑘𝐼)
−1
) − (1 + 𝑘Λ

−1
)
−1

Λ(1 + 𝑘Λ
−1
)
−1

,

𝜏
(2)

𝑖
= (1 + 𝑘(𝜆

𝑖
+ 𝑘)
−1

) (1 +
𝑘

𝜆
𝑖

)

−1

𝜆
𝑖
(1 +

𝑘

𝜆
𝑖

)

−1

× (1 + 𝑘(𝜆
𝑖
+ 𝑘)
−1

) − (1 +
𝑘

𝜆
𝑖

)

−1

𝜆
𝑖
(1 +

𝑘

𝜆
𝑖

)

−1

= (1 +
𝑘

𝜆
𝑖

)

−1

𝜆
𝑖
(1 +

𝑘

𝜆
𝑖

)

−1

(
𝜆
𝑖
+ 2𝑘

𝜆
𝑖
+ 𝑘

)

2

> 0,

𝑖 = 1, . . . , 𝑝.

(35)

Thus, we can get (𝐼 + 𝑘𝑆−1
𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) − 𝑇
𝑘
𝑆𝑇
𝑘
> 0.

Observing that 𝐴 > 0, we have 𝐷
2
= 𝐴((𝐼 + 𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 +

𝑘𝑆
−1

𝑘
) − 𝑇
𝑘
𝑆𝑇
𝑘
)𝐴 > 0.

Applying Lemma 4, we can get 𝑀(�̂�WMAURE(𝑤, 𝑘),
�̂�WMRE(𝑤, 𝑘)) < 0 if and only if 𝑏𝑇

1
(𝜎
2
𝐷
2
+ 𝑏
3
𝑏
𝑇

3
)
−1
𝑏
1
> 1.

This completes the proof.

4.3. MSEM Comparison of the AURE and WMAURE. Now,
we compare MSEM values between the WMAURE and
AURE. Firstly, from (30) and (31), the difference of MSEM
values between the AURE andWMAURE can be obtained by

𝑀(�̂�AURE (𝑘) , �̂�WMAURE (𝑤, 𝑘))

= MSEM (�̂�AURE (𝑘)) −MSEM (�̂�WMAURE (𝑤, 𝑘))

= 𝜎
2
(𝐼 + 𝑘𝑆

−1

𝑘
) 𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
)

+ 𝑏
2
𝑏
𝑇

2
− 𝑏
3
𝑏
𝑇

3

− 𝜎
2
𝐴((𝐼 + 𝑘𝑆

−1

𝑘
) 𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) + 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴

= 𝜎
2
𝐷
3
+ 𝑏
2
𝑏
𝑇

2
− 𝑏
3
𝑏
𝑇

3
,

(36)
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where𝐷
3
= (𝐼+𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼+𝑘𝑆

−1

𝑘
)−𝐴((𝐼+𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼+

𝑘𝑆
−1

𝑘
) + 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴.

Theorem 8. When 𝜆
1
(𝐴((𝐼 + 𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) +

𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴((𝐼 + 𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
))
−1
) < 1, the

WMAURE is superior to theAURE in theMSEMsense, namely,
𝑀(�̂�
𝐴𝑈𝑅𝐸

(𝑘), �̂�
𝑊𝑀𝐴𝑈𝑅𝐸

(𝑤, 𝑘)) ≥ 0 if and only if 𝑏𝑇
3
(𝜎
2
𝐷
3
+

𝑏
2
𝑏
𝑇

2
)
−1
𝑏
3
≤ 1.

Proof. Note that (𝐼 + 𝑘𝑆−1
𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) > 0 and 𝐴((𝐼 +

𝑘𝑆
−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) + 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴 > 0. When 𝜆

1
(𝐴((𝐼 +

𝑘𝑆
−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) + 𝑤

2
𝑅
𝑇
𝑊
−1
𝑅)𝐴((𝐼 + 𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 +

𝑘𝑆
−1

𝑘
))
−1
) < 1, we can get that 𝐷

3
> 0 by applying

Lemma 5. Thus, from (36) and applying Lemma 4, we have
𝑀(�̂�AURE(𝑘), �̂�WMAURE(𝑤, 𝑘)) ≥ 0 if and only if 𝑏𝑇

3
(𝜎
2
𝐷
3
+

𝑏
2
𝑏
𝑇

2
)
−1
𝑏
3
≤ 1.

The proof is completed.

4.4. MSEM Comparison of the LS andWMAURE. Finally, we
compareMSEMvalues between the LS andWMAURE. From
(27) and (31), the difference of MSEM values between the LS
and WMAURE can be computed by

𝑀(�̂�LS, �̂�WMAURE (𝑤, 𝑘))

= MSEM (�̂�LS) −MSEM (�̂�WMAURE (𝑤, 𝑘))

= 𝜎
2
𝑆
−1
− 𝜎
2
𝐴((𝐼 + 𝑘𝑆

−1

𝑘
) 𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
)

+ 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴 − 𝑏

3
𝑏
𝑇

3

= 𝜎
2
𝑆
−1
− 𝜎
2
𝐴 + 𝜎

2
𝐴 −MSEM (�̂�WME (𝑤))

+MSEM (�̂�WME (𝑤)) −MSEM (�̂�WMAURE (𝑤, 𝑘))

= (𝜎
2
𝑆
−1
− 𝜎
2
𝐴) + (𝜎

2
𝐴 − 𝜎

2
𝐴(𝑆 + 𝑤

2
𝑅
𝑇
𝑊
−1
𝑅)𝐴)

+ 𝜎
2
𝐷
1
− 𝑏
3
𝑏
𝑇

3
,

(37)

where 𝐴 = (𝑆 + 𝑤𝑅
𝑇
𝑊
−1
𝑅)
−1 and 𝐷

1
= 𝐴(𝑆 − (𝐼 +

𝑘𝑆
−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
))𝐴 > 0 according to Section 4.1.

Firstly, using (9), we can compute that

𝜎
2
𝑆
−1
− 𝜎
2
𝐴 = 𝜎

2
𝑤𝑆
−1
𝑅
𝑇
(𝑊 + 𝑤𝑅𝑆

−1
𝑅
𝑇
)
−1

𝑅𝑆
−1
> 0.

(38)

Moreover, it can be computed that

𝜎
2
𝐴 − 𝜎

2
𝐴(𝑆 + 𝑤

2
𝑅
𝑇
𝑊
−1
𝑅)𝐴

= 𝜎
2
𝐴𝐴
−1
𝐴 − 𝜎

2
𝐴(𝑆 + 𝑤

2
𝑅
𝑇
𝑊
−1
𝑅)𝐴

= 𝜎
2
𝐴(𝑆 + 𝑤𝑅

𝑇
𝑊
−1
𝑅 − 𝑆 − 𝑤

2
𝑅
𝑇
𝑊
−1
𝑅)𝐴

= 𝑤 (1 − 𝑤) 𝜎
2
𝐴(𝑅
𝑇
𝑊
−1
𝑅)𝐴 > 0.

(39)

Therefore, 𝜎2𝑆−1 − 𝜎
2
𝐴((𝐼 + 𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) +

𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴 > 0. Applying Lemma 3, we can get that

𝑀(�̂�LS, �̂�WMAURE(𝑤, 𝑘)) ≥ 0 if and only if 𝑏
𝑇

3
(𝜎
2
𝑆
−1
−𝜎
2
𝐴((𝐼+

𝑘𝑆
−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) + 𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴)𝑏

3
≤ 0.

Based on the above analysis, we can state the following
theorem.

Theorem 9. The WMAURE is superior to the LS according
to the MSEM criterion, namely,𝑀(�̂�LS, �̂�WMAURE(𝑤, 𝑘)) ≥ 0

if and only if 𝑏𝑇
3
(𝜎
2
𝑆
−1
− 𝜎
2
𝐴((𝐼 + 𝑘𝑆

−1

𝑘
)𝑇
𝑘
𝑆𝑇
𝑘
(𝐼 + 𝑘𝑆

−1

𝑘
) +

𝑤
2
𝑅
𝑇
𝑊
−1
𝑅)𝐴)𝑏

3
≤ 0.

5. Selection of Parameters 𝑘 and 𝑤

In this section, we give a method about how to choose
parameters 𝑘 and 𝑤. Firstly, a linear regression model can
be transformed to a canonical form by the orthogonal
transformation. Let 𝑄 be an orthogonal matrix such that
𝑄
𝑇
𝑋
𝑇
𝑋𝑄 = Λ = diag(𝜆

1
, . . . , 𝜆

𝑝
), where 𝜆

𝑖
is the eigenvalue

of 𝑋𝑇𝑋, and �̃� = 𝑋𝑄, �̃� = 𝑄
𝑇
𝛽 = (�̃�

1
, . . . , �̃�

𝑝
)
𝑇. Then, we

get a canonical form of model (1) as

𝑦 = �̃��̃� + 𝜀. (40)

Note that ̂̃𝛽WMAURE(𝑤, 𝑘) = 𝑄
𝑇
�̂�WMAURE(𝑤, 𝑘) and

MSEM(̂̃𝛽WMAURE(𝑤, 𝑘)) = 𝑄
𝑇MSEM(�̂�WMAURE(𝑤, 𝑘))𝑄. It

is supposed that 𝑆 and 𝑅𝑇𝑊−1𝑅 are commutative, then we
have

MSEM(
̂̃
𝛽WMAURE (𝑤, 𝑘))

= 𝜎
2
(Λ+𝑤Ψ)

−1
[(𝐼+𝑘(Λ+𝑘𝐼)

−1
) (Λ+𝑘𝐼)

−1

× Λ
3
(Λ+𝑘𝐼)

−1
(𝐼+𝑘(Λ+𝑘𝐼)

−1
)+𝑤
2
Ψ]

× (Λ + 𝑤Ψ)
−1
+ 𝑘
4
(Λ + 𝑤Ψ)

−1
(Λ + 𝑘𝐼)

−2

× Λ�̃��̃�
𝑇

Λ(Λ + 𝑘𝐼)
−2
(Λ + 𝑤Ψ)

−1
,

(41)

where 𝑄𝑇𝑅𝑇𝑊−1𝑅𝑄 = Ψ = diag(𝜉
1
, . . . , 𝜉

𝑝
).

Optimal values for 𝑘 and𝑤 can be derived byminimizing

𝑔 (𝑤, 𝑘) = tr(MSEM(
̂̃
𝛽WMAURE (𝑤, 𝑘)))

=

𝑝

∑

𝑖=1

𝜎
2
[𝜆
3

𝑖
(𝜆
𝑖
+ 2𝑘)
2

+ 𝑤𝜉
2

𝑖
(𝜆
𝑖
+ 𝑘)
4

] + 𝑘
4
𝜆
2

𝑖
�̃�
2

𝑖

(𝜆
𝑖
+ 𝑤𝜉
𝑖
)
2

(𝜆
𝑖
+ 𝑘)
4

.

(42)
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For a fixed value of𝑤, differentiating 𝑔(𝑤, 𝑘)with respect
to 𝑘 leads to
𝜕𝑔 (𝑤, 𝑘)

𝜕𝑘

=

𝑝

∑

𝑖=1

(( [𝜎
2
[4 (𝜆
𝑖
+2𝑘) 𝜆

3

𝑖
+4𝑤𝜉

2

𝑖
(𝜆
𝑖
+ 𝑘)
3

]+4𝑘
3
𝜆
2

𝑖
�̃�
2

𝑖
]

× (𝜆
𝑖
+𝑘)−4 [𝜎

2
[(𝜆
𝑖
+2𝑘)
2

𝜆
3

𝑖
+𝑤𝜉
2

𝑖
(𝜆
𝑖
+𝑘)
4

]

+𝑘
4
𝜆
2

𝑖
�̃�
2

𝑖
]) ((𝜆

𝑖
+𝑤𝜉
𝑖
)
2

(𝜆
𝑖
+𝑘)
5

)
−1

)

=

𝑝

∑

𝑖=1

4𝑘𝜆
3

𝑖
(𝑘
2
�̃�
2

𝑖
− 2𝜎
2
𝑘 − 𝜎
2
𝜆
𝑖
)

(𝜆
𝑖
+ 𝑤𝜉
𝑖
)
2

(𝜆
𝑖
+ 𝑘)
5

,

(43)

and equating it to zero. Note that 𝑘 > 0 and after
unknown parameters 𝜎2 and �̃� are replaced by their unbiased
estimators, we obtain the optimal estimator of 𝑘 for a fixed 𝑤
value as

�̂� =

�̂�
2
∑
𝑝

𝑖=1
𝜆
3

𝑖
+√�̂�
4
(∑
𝑝

𝑖=1
𝜆3
𝑖
)
2

+�̂�
2
(∑
𝑝

𝑖=1
𝜆4
𝑖
) (∑
𝑝

𝑖=1
𝜆3
𝑖

̂̃
𝛽

2

𝑖
)

∑
𝑝

𝑖=1
𝜆3
𝑖

̂̃
𝛽

2

𝑖

.

(44)

The𝑤 value whichminimizes the function 𝑔(𝑤, 𝑘) can be
found by differentiating 𝑔(𝑤, 𝑘) with respect to 𝑤 when 𝑘 is
fixed
𝜕𝑔 (𝑤, 𝑘)

𝜕𝑤

=

𝑝

∑

𝑖=1

({𝜎
2
𝜉
2

𝑖
(𝜆
𝑖
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4

(𝜆
𝑖
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𝑖
)
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𝜆
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𝑖
(𝜆
𝑖
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+𝑤𝜎
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𝜉
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𝑖
(𝜆
𝑖
+𝑘)
4

+𝑘
4
𝜆
2

𝑖
�̃�
2

𝑖
] }
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𝑖
+𝑤𝜉
𝑖
)
3
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𝑖
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−1
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=
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𝜎
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𝑖
(𝜆
𝑖
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𝜆
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𝑖
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𝑖
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4
𝜆
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𝑖
+ 𝑤𝜉
𝑖
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(𝜆
𝑖
+ 𝑘)
4

)
−1
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(45)

and equating it to zero. After unknown parameters 𝜎2 and �̃�
are replaced by their unbiased estimators, we get the optimal
estimator of 𝑤 for a fixed 𝑘 value as

�̂� =

√∑
𝑝

𝑖=1
ℎ̂
2

2𝑖
+ 8(∑

𝑝

𝑖=1
ℎ̂
1𝑖
)
2

− ∑
𝑝

𝑖=1
ℎ̂
2𝑖

∑
𝑝

𝑖=1
4ℎ̂
1𝑖

,
(46)

where ℎ̂
1𝑖
= �̂�
2
𝜉
2

𝑖
(𝜆
𝑖
+ 𝑘)
4 and ℎ̂

2𝑖
= 2�̂�

2
𝜆
3

𝑖
(𝜆
𝑖
+ 2𝑘)
2
+

2𝑘
4
𝜆
2

𝑖

̂̃
𝛽

2

𝑖
− �̂�
2
𝜉
3

𝑖
(𝜆
𝑖
+ 𝑘)
4.

Table 1: EstimatedQB values of theWMRE,AURE, andWMAURE.

𝑤 = 0.1 𝑤 = 0.4

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

WMRE 16.567 20.217 20.336 1.160 1.413 1.421
AURE 2456.43 3662.01 3706.28 2456.43 3662.01 3706.28
WMAURE 13.166 19.627 19.864 0.922 1.375 1.391

𝑤 = 0.8 𝑤 = 1

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

WMRE 0.296 0.360 0.362 0.190 0.231 0.232
AURE 2456.43 3662.01 3706.28 2456.43 3662.01 3706.28
WMAURE 0.235 0.351 0.355 0.151 0.225 0.228

Table 2: Estimated MSE values of the WME, WMRE, AURE, and
WMAURE.

𝑤 = 0.1 𝑤 = 0.4

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

LS 4912.13 4912.13 4912.13 4912.13 4912.13 4912.13
WME 59.771 59.771 59.771 39.278 39.278 39.278
WMRE 50.321 53.666 53.783 38.616 38.848 38.855
AURE 2663.66 3666.43 3709.16 2663.66 3666.43 3709.16
WMAURE 47.718 53.094 53.323 38.434 38.810 38.826

𝑤 = 0.8 𝑤 = 1

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

LS 4912.13 4912.13 4912.13 4912.13 4912.13 4912.13
WME 38.639 38.639 38.639 38.620 38.620 38.620
WMRE 38.470 38.528 38.530 38.620 38.549 38.550
AURE 2663.66 3666.43 3709.16 2663.66 3666.43 3709.16
WMAURE 38.423 38.519 38.524 38.482 38.543 38.546

6. Numerical Example and Monte
Carlo Simulation

In order to verify our theoretical results, we firstly conduct
an experiment based on a real data set originally due to
Woods et al. [21]. In this experiment, we replace the unknown
parameters 𝛽 and 𝜎2 by their unbiased estimators, which is
according to the way in [17]. The result here and below is
performed with R 2.14.1.

We can easily obtain that the condition number is about
3.66 × 10

7. This information indicates a serious multi-
collinearity among the regression vector. The ordinary least
squares estimator of 𝛽 is

�̂�LS = 𝑆
−1
𝑋
𝑇
𝑦 = (62.4054, 1.5511, 0.5102, 0.1019, −0.1441)

𝑇

(47)

with �̂�2LS = 5.983.
Consider the following stochastic linear restrictions used

in [17]:

𝑟 = 𝑅𝛽 + 𝑒, 𝑅 = (
1 1 1 1 1

0 1 3 1 1
) ,

𝑟 = (
63.9498

2.5648
) , 𝑒 ∼ (0, �̂�

2

LS𝐼2) .

(48)

For the WMRE, AURE, and WMAURE, their quadratic
bias values are given inTable 1 and their estimatedMSEvalues
are obtained in Table 2 by replacing all unknown parameters
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Table 3: Estimated MSE values of the WME, WMRE, AURE, and WMAURE when 𝜌 = 0.8.

𝑤 = 0.1 𝑤 = 0.4

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

LS 0.0898720 0.0898720 0.0898720 0.0898720 0.0898720 0.0898720
WME 0.0889010 0.0889010 0.0889010 0.0867887 0.0867887 0.0867887
WMRE 0.0889032 0.0902973 0.0911375 0.0867896 0.088059 0.0888259
AURE 0.0898720 0.0898718 0.0898717 0.0898720 0.0898718 0.0898717
WMAURE 0.0889010 0.0889008 0.0889007 0.0867887 0.0867885 0.0867884

𝑤 = 0.8 𝑤 = 1

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

LS 0.0898720 0.0898720 0.0898720 0.0898720 0.0898720 0.0898720
WME 0.0854822 0.0854822 0.0854822 0.0853378 0.0853378 0.0853378
WMRE 0.0854817 0.0866088 0.0872931 0.0853367 0.0864015 0.0870495
AURE 0.0898720 0.0898718 0.0898717 0.0898720 0.0898718 0.0898717
WMAURE 0.0854822 0.0854821 0.0854820 0.0853378 0.0853376 0.0853375

Table 4: Estimated MSE values of the WME, WMRE, AURE, and WMAURE when 𝜌 = 0.9.

𝑤 = 0.1 𝑤 = 0.4

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

LS 0.0987050 0.0987050 0.0987050 0.0987050 0.0987050 0.0987050
WME 0.0975363 0.0975363 0.0975363 0.0950143 0.0950143 0.0950143
WMRE 0.0975389 0.0992148 0.1002248 0.0950152 0.0965273 0.0974417
AURE 0.0987050 0.0987047 0.0987046 0.0987050 0.0987047 0.0987398
WMAURE 0.0975363 0.0975361 0.0975359 0.0950143 0.095014 0.0950139

𝑤 = 0.8 𝑤 = 1

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

LS 0.0987050 0.0987050 0.0987050 0.0987050 0.0987050 0.0987050
WME 0.0934738 0.0934738 0.0934738 0.0933053 0.0933053 0.0933053
WMRE 0.0934729 0.0948017 0.0956092 0.0933036 0.0945530 0.0953142
AURE 0.0987050 0.0987047 0.0987398 0.0987050 0.0987047 0.0987398
WMAURE 0.0934738 0.0934736 0.0934735 0.0933053 0.0933050 0.0933049

in the corresponding theoretical MSE expressions by their
least squares estimators.

It can be seen fromTable 1 that theWMAUREhas smaller
quadratic bias values than the WMRE and AURE for every
case, which agrees with our theoretical finding in Section 3.
From Table 2, we can get that MSE values of our proposed
estimator are the smallest among the LS, WME, WMRE,
AURE, and WMAURE when 𝑤 is fixed, which agrees with
our theoretical finding inTheorems 6–9.

To further illustrate the behavior of our proposed esti-
mator, we are to perform a Monte Carlo simulation study
under different levels of multicollinearity. Following the way
in [22, 23], we can get explanatory variables by the following
equations:

𝑥
𝑖𝑗
= (1 − 𝜌

2
)
1/2

𝑧
𝑖𝑗
+ 𝜌𝑧
𝑖,𝑝+1

,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑝,

(49)

where 𝑧
𝑖𝑗
is an independent standard normal pseudorandom

number, and 𝜌 is specified so that the theoretical correlation

between any two explanatory variables is given by 𝜌2. A
dependent variable is generated by

𝑦
𝑖
= 𝛽
1
𝑥
𝑖1
+ 𝛽
2
𝑥
𝑖2
+ 𝛽
3
𝑥
𝑖3
+ 𝛽
4
𝑥
𝑖4
+ 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(50)

where 𝜀
𝑖
is a normal pseudo-random number withmean zero

and variance 𝜎2
𝑖
. In this study, we choose (𝛽

1
, 𝛽
2
, 𝛽
3
, 𝛽
4
)
𝑇
=

(40, 1, 2, 3)
𝑇, 𝑛 = 60, 𝑝 = 4, 𝜎2

𝑖
= 1, and the stochastic

restriction 𝑟 = 𝑅𝛽 + 𝑒, 𝑅 = ( 4 0 −3 1
2 1 2 0

), 𝑒 ∼ 𝑁(0, 0.1𝐼
2
).

Furthermore, we discuss three cases when 𝜌 = 0.8, 0.9, 0.99.
For three different levels of multicollinearity, MSE values

of LS, WME, AURE, WMRE, andWMAURE are obtained in
Tables 3, 4, and 5, respectively. FromTables 3–5, we can derive
the following results.

(1) With the increase of multicollinearity, MSE values
of the LS, WME, WMRE, AURE, and WMAURE
are increasing. And for all cases, the WMAURE has
smaller estimatedMSE values than the LS, AURE, and
WME.



Journal of Applied Mathematics 9

Table 5: Estimated MSE values of the WME, WMRE, AURE, and WMAURE when 𝜌 = 0.99.

𝑤 = 0.1 𝑤 = 0.4

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

LS 0.1376903 0.1376903 0.1376903 0.1376903 0.1376903 0.1376903
WME 0.1354379 0.1354379 0.1354379 0.1307427 0.1307427 0.1307427
WMRE 0.1354425 0.138655 0.1405906 0.130743 0.1335329 0.1352221
AURE 0.1376903 0.1376896 0.1376892 0.1376903 0.1376896 0.1376892
WMAURE 0.1354379 0.1354372 0.1354368 0.1307426 0.130742 0.1307416

𝑤 = 0.8 𝑤 = 1

𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1 𝑘 = 0.01 𝑘 = 0.08 𝑘 = 0.1

LS 0.1376903 0.1376903 0.1376903 0.1376903 0.1376903 0.1376903
WME 0.1280238 0.1280238 0.1280238 0.127739 0.127739 0.127739
WMRE 0.1280196 0.1303649 0.1317949 0.127733 0.1298949 0.1312179
AURE 0.1376903 0.1376896 0.1376892 0.1376903 0.1376896 0.1376892
WMAURE 0.1280238 0.1280231 0.1280228 0.127739 0.1277384 0.127738

(2) The value of 𝑤 is the level of the weight to the sample
information and the prior information; we can see
from three tables that estimated MSE values of the
WME, WMRE, and WMAURE become more and
more smaller when the value of 𝑤 increases. It can
be concluded that we get more exact estimator of the
parameter with more depended prior information.

7. Conclusions

In this paper, we propose the WMAURE based on the WME
[16] and the AURE [9] and discuss some properties of the
new estimator over the relative estimators. In particular, we
prove that theWMAURE has smaller quadratic bias than the
AURE and WMRE and derive that the proposed estimator
is superior to the LS, WME, WMRE, and AURE in the
mean squared error matrix sense under certain conditions.
The optimal values of parameters 𝑘 and 𝑤 are obtained.
Furthermore, we perform a real data example and a Monte
Carlo study to support the finding of our theoretical results.
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