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We consider the existence and multiplicity of solutions for the 𝑝(𝑥)-Kirchhoff-type equations without Ambrosetti-Rabinowitz
condition. Using the Mountain Pass Lemma, the Fountain Theorem, and its dual, the existence of solutions and infinitely many
solutions were obtained, respectively.

1. Introduction

The Kirchhoff equation
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was introduced by Kirchhoff [1] in the study of oscillations
of stretched strings and plates, where 𝜌, 𝜌

0
, ℎ, 𝐸, and 𝐿 are

constants.The stationary analogue of the Kirchhoff equation,
that is, (1), is as follows:

−(𝑎 + 𝑏∫
Ω

|∇𝑢|
2
𝑑𝑥)Δ𝑢 = 𝑓 (𝑥, 𝑢) . (2)

After the excellent work of Lions [2], problem (2) has received
more attention; see [3–10] and references therein.

The 𝑝(𝑥)-Laplace operator arises from various phenom-
ena, for instance, the image restoration [11], the electro-rheo-
logical fluids [12], and the thermoconvective flows of non-
Newtonian fluids [13, 14].The study of the𝑝(𝑥)-Laplace oper-
ator is based on the theory of the generalized Lebesgue space
𝐿
𝑝(𝑥)

(Ω) and the Sobolev space𝑊𝑚,𝑝(𝑥)(Ω), which we called
variable exponent Lebesgue and Sobolev space. We refer the
reader to [15–19] for an overview on the variable exponent
Sobo-lev space, and to [20–29] for the study of the 𝑝(𝑥)-
Laplacian-type equations.

Recently, there has been an increasing interest in studying
the Kirchhoff equation involving the 𝑝(𝑥)-Laplace operator.

Autuori et al. [30, 31] have dealt with the nonstationaryKirch-
hoff-type equation involving the 𝑝(𝑥)-Laplacian of the form
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) = 𝑓 (𝑡, 𝑥, 𝑢) .

(3)

In [32–35], applying variational method and Ambrosetti-
Rabinowitz (AR) condition, Guowei Dai has studied the
existence andmultiplicity of solutions for the𝑝(𝑥)-Kirchhoff-
type equations with Dirichlet or Neumann boundary condi-
tion. In [36], by using (𝑆

+
)mapping theory and theMountain

Pass Lemma, Fan has discussed the nonlocal 𝑝(𝑥)-Laplacian
Dirichlet problem with the nonvariational form

−𝐴 (𝑢) Δ
𝑝(𝑥)

𝑢 = 𝐵 (𝑢) 𝑓 (𝑥, 𝑢) , in Ω,

𝑢 = 0, on 𝜕Ω,

(4)
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and the 𝑝(𝑥)-Kirchhoff-type equation with the variational
form

− 𝑎(∫
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under (AR) condition, where𝐴, 𝐵 are two functionals defined
on𝑊1,𝑝(𝑥)
0

(Ω), and 𝐹(𝑥, 𝑡) = ∫𝑡
0
𝑓(𝑥, 𝑠)𝑑𝑠.

Motivated by the above works, the purpose of this paper
is to study the 𝑝(𝑥)-Kirchhoff-type equation

−(𝑎 + 𝑏∫
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without (AR) condition, where Ω is a smooth bounded
domain in R𝑁, 𝑎, 𝑏 are two positive constants, Δ

𝑝(𝑥)
𝑢 =

div(|∇𝑢(𝑥)|𝑝(𝑥)−2∇𝑢(𝑥)), 𝑝 ∈ 𝐶0,𝛽(Ω) for some 𝛽 ∈ (0, 1), and

1 < 𝑝
−
:= inf
Ω

𝑝 (𝑥) ≤ 𝑝
+
:= sup
Ω

𝑝 (𝑥) < +∞. (7)

By taking the famous Mountain Pass Lemma, the Fountain
Theorem, and its dual, we obtain the existence of solutions
and infinitely many solutions for the 𝑝(𝑥)-Kirchhoff-type
equation (6) under no (AR) condition.

2. Preliminary

We recall in this section some definitions and properties of
variable exponent Lebesgue-Sobolev space. The variable
exponent Lebesgue space 𝐿𝑝(𝑥)(Ω) is defined by

𝐿
𝑝(𝑥)

(Ω)

= {𝑢 : 𝑢 : Ω → R is measurable, ∫
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with the norm

|𝑢|
𝐿
𝑝(𝑥) = |𝑢|𝑝(𝑥) = inf {𝜎 > 0 : ∫

Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝑥 ≤ 1} . (9)

The variable exponent Sobolev space𝑊1,𝑝(𝑥)(Ω) is defined by

𝑊
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(Ω) = {𝑢 ∈ 𝐿
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with the norm

‖𝑢‖
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0
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0
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(Ω). In this paper we
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We refer the reader to [36–38] for the elementary properties
of the space𝑊1,𝑝(𝑥)(Ω).

Proposition 1 (see [38]). Set 𝜌(𝑢) = ∫
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𝑘
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3. Positive Energy Solution

In this section we discuss the existence of weak solutions of
(6). For simplicity we write𝑋 = 𝑊

1,𝑝(𝑥)

0
(Ω).

First, we state the assumptions on 𝑓 as follows.

(𝑓
0
) Let 𝑓 : Ω × R → R be a continuous function,

and there exist positive constants 𝑐
1
, 𝑐
2
such that
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󵄨󵄨󵄨󵄨 ≤ 𝑐1 + 𝑐2|𝑡|
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where 𝛼 ∈ 𝐶(Ω) and 𝑝+ < 𝛼(𝑥) < 𝑝∗(𝑥) for all 𝑥 ∈ Ω;
𝑡𝑓(𝑥, 𝑡) ≥ 0 for all 𝑡 > 0.
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+
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for 𝑥 ∈ Ω, where 𝐹(𝑥, 𝑡) = ∫𝑡

0
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)There exists 𝜃 ≥ 1 such that 𝜃𝐺(𝑥, 𝑡) ≥ 𝐺(𝑥, 𝑠𝑡)

for (𝑥, 𝑡) ∈ Ω ×R and 𝑠 ∈ [0, 1], where

𝐺 (𝑥, 𝑡) = 𝑡𝑓 (𝑥, 𝑡) − 2𝑝
+
𝐹 (𝑥, 𝑡) . (15)
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)There exists 𝛿 > 0, such that 𝐹(𝑥, 𝑡) ≤ 0 for 𝑥 ∈

Ω, |𝑡| < 𝛿.
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(𝑓
4
) Let 𝑓(𝑥, 𝑡) = −𝑓(𝑥, −𝑡) for 𝑥 ∈ Ω and 𝑡 ∈ R.
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𝑞
+

) = 0, uniformly on 𝑥 ∈

Ω, where 𝑞 ∈ 𝐶(Ω) satisfies 1 < 𝑞(𝑥) < 𝑝(𝑥) for 𝑥 ∈

Ω.

Remark 2. Condition (𝑓
2
) was first introduced by Jeanjean

[39] for the case 𝑝(𝑥) = 2. Let 𝑓(𝑥, 𝑡) = 2𝑝
+
|𝑡|
2𝑝
+
−2
𝑡 ln |𝑡|,

then

𝐹 (𝑥, 𝑡) = |𝑡|
2𝑝
+

ln |𝑡| − 1

2𝑝+
|𝑡|
2𝑝
+

, 𝐺 (𝑥, 𝑡) = |𝑡|
2𝑝
+

.

(16)

It is easy to see that the function 𝑓 does not satisfy (AR) con-
dition, but it satisfies (𝑓

1
)–(𝑓
5
) and (𝑓󸀠

3
).

Define 𝐼(𝑢) = 𝐽(𝑢) − Φ(𝑢), where

𝐽 (𝑢) = (𝑎 +
𝑏

2
∫
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𝑑𝑥)∫
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𝑝(𝑥)

𝑑𝑥,

Φ (𝑢) = ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑢.

(17)

Then 𝐼 ∈ 𝐶1(𝑋,R).

Proposition 3 (see [38]). Assume that (𝑓
0
) hold, then the

functional 𝐽 : 𝑋 → R is sequentially weakly lower semicon-
tinuous, Φ : 𝑋 → R is sequentially weakly continuous, and 𝐼
is sequentially weakly lower semicontinuous.

Proposition 4 (see [37]). Assume that (𝑓
0
) hold, and let 𝑢

0
∈

𝑊
1,𝑝(𝑥)

0
(Ω) be a local minimizer (resp., a strictly local mini-

mizer) of 𝐼 in the 𝐶1(Ω) topology. Then 𝑢
0
is a local minimizer

(resp., a strictly localminimizer) of 𝐼 in the𝑊1,𝑝(𝑥)
0

(Ω) topology.

Definition 5. We say that 𝑢 ∈ 𝑋 is a weak solution of (6), if

(𝑎 + 𝑏∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥)∫
Ω

|∇𝑢|
𝑝(𝑥)−2

∇𝑢∇V 𝑑𝑥

= ∫
Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥

(18)

for any V ∈ 𝑋.

Definition 6. Let 𝑋 be a Banach space and 𝐼 ∈ 𝐶
1
(𝑋,R).

Given 𝑐 ∈ R. we say that 𝐼 satisfies the Cerami 𝑐 condition
(we denote by (𝐶)

𝑐
the condition), if

(i) any bounded sequence {𝑢
𝑛
} ⊂ 𝑋 such that 𝐼(𝑢

𝑛
) → 𝑐

and 𝐼󸀠(𝑢
𝑛
) → 0 has a convergent subsequence;

(ii) there exist constants 𝛿, 𝑅, 𝛽 > 0 such that

‖𝑢‖
󵄩󵄩󵄩󵄩󵄩
𝐼
󸀠
(𝑢)

󵄩󵄩󵄩󵄩󵄩
≥ 𝛽, ∀𝑢 ∈ 𝐼

−1
[𝑐 − 𝛿, 𝑐 + 𝛿] , ‖𝑢‖ ≥ 𝑅.

(19)

If 𝐼 ∈ 𝐶1(𝑋,R) satisfies (𝐶)
𝑐
condition for every 𝑐 ∈ R, then

we say that 𝐼 satisfies (𝐶) condition.

Remark 7. Although (PS) condition is stronger than (𝐶)

condition, the Deformation Theorem is still valid under (𝐶)
condition; we see that the Mountain Pass Lemma, the Foun-
tainTheorem, and its dual are true under (𝐶) condition.

Lemma 8. Assume that conditions (𝑓
0
)–(𝑓
2
) hold. Then 𝐼

satisfies (𝐶) condition.

Proof. From [36, Proposition 3.1], 𝐼 satisfies (i) of (𝐶) con-
dition.

Now we check that 𝐼 satisfies (ii) of (𝐶) condition.
Arguing by contradiction, we may assume that, for some 𝑐 ∈
R,

𝐼 (𝑢
𝑛
) 󳨀→ 𝑐,

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 󳨀→ ∞,

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝐼
󸀠
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(20)

Then we have

lim
𝑛→∞

{𝑎∫
Ω

(
1

𝑝 (𝑥)
−

1

2𝑝+
) |∇𝑢|

𝑝(𝑥)
𝑑𝑥

+
𝑏

2
∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥

× ∫
Ω

(
1

𝑝 (𝑥)
−

1

𝑝+
) |∇𝑢|

𝑝(𝑥)
𝑑𝑥

+
1

2𝑝+
∫
Ω

𝐺 (𝑥, 𝑢) 𝑑𝑥}

= lim
𝑛→∞

{𝐼 (𝑢
𝑛
) −

1

2𝑝+
⟨𝐼
󸀠
(𝑢
𝑛
) , 𝑢
𝑛
⟩} = 𝑐.

(21)

Let V
𝑛
= 𝑢
𝑛
/‖𝑢
𝑛
‖, then up to a subsequence we may assume

that

V
𝑛
⇀ V in𝑋,

V
𝑛
󳨀→ V in 𝐿

𝛼(𝑥)
(Ω) ,

V
𝑛
(𝑥) 󳨀→ V (𝑥) a.e. 𝑥 ∈ Ω.

(22)

If V = 0, inspired by [13, 14], then we define

𝐼 (𝑡
𝑛
𝑢
𝑛
) = max
𝑡∈[0,1]

𝐼 (𝑡𝑢
𝑛
) . (23)

For any 𝑚 > 1/2𝑝
+, let 𝑤

𝑛
= (2𝑚𝑝

+
)
1/𝑝
−

V
𝑛
. Since 𝑤

𝑛
→ 0

in 𝐿𝛼(𝑥)(Ω) and

|𝐹 (𝑥, 𝑡)| ≤ 𝑐5 + 𝑐6|𝑡|
𝛼(𝑥)

, (24)

by the continuity of 𝐹(𝑥, ⋅), 𝐹(⋅, 𝑤
𝑛
) → 0 in 𝐿1(Ω), thus,

lim
𝑛→0

∫
Ω

𝐹 (⋅, 𝑤
𝑛
) 𝑑𝑥 = 0. (25)
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Then for 𝑛 large enough, (2𝑚𝑝+)1/𝑝
−

/‖𝑢
𝑛
‖ ∈ (0, 1) and

𝐼 (𝑡
𝑛
𝑢
𝑛
) ≥ 𝐼 (𝑤

𝑛
)

= 𝑎∫
Ω

1

𝑝 (𝑥)

󵄨󵄨󵄨󵄨∇𝑤𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+
𝑏

2
(∫
Ω

1

𝑝 (𝑥)

󵄨󵄨󵄨󵄨∇𝑤𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑤
𝑛
) 𝑑𝑥

= 𝑎∫
Ω

1

𝑝 (𝑥)
((2𝑚𝑝

+
)
1/𝑝
−
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨)

𝑝(𝑥)

𝑑𝑥

+
𝑏

2
(∫
Ω

1

𝑝 (𝑥)
((2𝑚𝑝

+
)
1/𝑝
−
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨)

𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑤
𝑛
) 𝑑𝑥

≥
2𝑚𝑎

𝑝+
∫
Ω

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+
2𝑚
2
𝑏

(𝑝+)
2
(∫
Ω

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑤
𝑛
) 𝑑𝑥

≥
2𝑚𝑎

𝑝+
+
2𝑚
2
𝑏

(𝑝+)
2
− ∫
Ω

𝐹 (𝑥, 𝑤
𝑛
) 𝑑𝑥.

(26)

That is, 𝐼(𝑡
𝑛
𝑢
𝑛
) → ∞. From 𝐼(0) = 0 and 𝐼(𝑢

𝑛
) → 𝑐, we

know that 𝑡
𝑛
∈ (0, 1) and

𝑎∫
Ω

󵄨󵄨󵄨󵄨∇𝑡𝑛𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+ 𝑏(∫
Ω

1

𝑝 (𝑥)

󵄨󵄨󵄨󵄨∇𝑡𝑛𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥)∫
Ω

󵄨󵄨󵄨󵄨∇𝑡𝑛𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

− ∫
Ω

𝑓 (𝑥, 𝑡
𝑛
𝑢
𝑛
) 𝑢
𝑛
𝑑𝑥

= ⟨𝐼
󸀠
(𝑡
𝑛
𝑢
𝑛
) , 𝑡
𝑛
𝑢
𝑛
⟩ = 𝑡
𝑛

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑡𝑛

𝐼 (𝑡𝑢
𝑛
) = 0.

(27)

Therefore, from (𝑓
2
), we have

𝑎∫
Ω

(
1

𝑝 (𝑥)
−

1

2𝑝+
)
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+
𝑏

2
∫
Ω

1

𝑝 (𝑥)

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

× ∫
Ω

(
1

𝑝 (𝑥)
−

1

𝑝+
)
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+
1

2𝑝+
∫
Ω

𝐺 (𝑥, 𝑢
𝑛
) 𝑑𝑥

≥ 𝑎∫
Ω

(
1

𝑝 (𝑥)
−

1

2𝑝+
)
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+
𝑏

2
∫
Ω

1

𝑝 (𝑥)

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

× ∫
Ω

(
1

𝑝 (𝑥)
−

1

𝑝+
)
󵄨󵄨󵄨󵄨∇𝑢𝑛

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+
1

2𝑝+
∫
Ω

𝐺 (𝑥, 𝑡
𝑛
𝑢
𝑛
)

𝜃
𝑑𝑥

≥
𝑎

𝜃
∫
Ω

(
1

𝑝 (𝑥)
−

1

2𝑝+
) 𝑡
𝑝(𝑥)

𝑛

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+
𝑏

2𝜃
∫
Ω

1

𝑝 (𝑥)
𝑡
𝑝(𝑥)

𝑛

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

× ∫
Ω

(
1

𝑝 (𝑥)
−

1

𝑝+
) 𝑡
𝑝(𝑥)

𝑛

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+
1

2𝑝+
∫
Ω

𝐺 (𝑥, 𝑡
𝑛
𝑢
𝑛
)

𝜃
𝑑𝑥

=
1

𝜃
(𝐼 (𝑡
𝑛
𝑢
𝑛
) −

1

2𝑝+
⟨𝐼
󸀠
(𝑡
𝑛
𝑢
𝑛
) , 𝑡
𝑛
𝑢
𝑛
⟩)

=
1

𝜃
𝐼 (𝑡
𝑛
𝑢
𝑛
) → ∞.

(28)

This contradicts (21).
If V ̸= 0, from (20), when ‖𝑢

𝑛
‖ ≥ 1,

𝑎

𝑝−
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩
𝑝
+

+
𝑏

2(𝑝−)
2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
2𝑝
+

− (𝑐 + 𝑜 (1)) ≥ ∫
Ω

𝐹 (𝑥, 𝑢
𝑛
) 𝑑𝑥.

(29)

Then from (𝑓
1
) we have

𝑎

𝑝−

1

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
𝑝
+
+

𝑏

2(𝑝−)
2
−
𝑐 + 𝑜 (1)

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
2𝑝
+

≥ ∫
Ω

𝐹 (𝑥, 𝑢
𝑛
)

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
2𝑝
+
𝑑𝑥

= (∫
V𝑛 ̸= 0

+∫
V𝑛=0

)
𝐹 (𝑥, 𝑢

𝑛
)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2𝑝
+

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
2𝑝
+

𝑑𝑥

= ∫
V𝑛 ̸= 0

𝐹 (𝑥, 𝑢
𝑛
)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2𝑝
+

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
2𝑝
+

𝑑𝑥.

(30)

For 𝑥 ∈ Θ := {𝑥 ∈ Ω : V(𝑥) ̸= 0}, |𝑢
𝑛
(𝑥)| → +∞. By (𝑓

1
) we

have

𝐹 (𝑥, 𝑢
𝑛
)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝
+

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
𝑝
+

󳨀→ +∞. (31)
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Note that the Lebesgue measure of Θ is positive; using the
Fatou Lemma, we have

∫
V𝑛 ̸= 0

𝐹 (𝑥, 𝑢
𝑛
)

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2𝑝
+

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨
2𝑝
+

𝑑𝑥 󳨀→ +∞. (32)

This contradicts (30).
The technique used in this lemma was first introduced by

[39, 40].

Theorem 9. Assume that conditions (𝑓
0
)–(𝑓
2
) and (𝑓

3
) (or

(𝑓
󸀠

3
)) hold. Then (6) has a nontrivial solution with positive

energy.

Proof. From Lemma 8, 𝐼 satisfies (𝐶) condition. Let us show
that the functional 𝐼 has a Mountain-Pass-type geometry.

Note that 𝐼(0) = 0. By (𝑓
3
), there exists 𝛿 > 0, and for any

𝑢 ∈ 𝑋 with |𝑢|
𝐿
∞
(Ω)

< 𝛿,

𝐼 (𝑢) = 𝑎∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥

+
𝑏

2
(∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
𝑎

𝑝+
‖𝑢‖
𝑝
+

+
𝑏

(𝑝+)
2
‖𝑢‖
2𝑝
+

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 > 0.

(33)

This shows that 0 is a strictly local minimizer of 𝐼 in the𝐶(Ω)
topology, and hence 0 is a strictly local minimizer of 𝐼 in
the 𝐶1(Ω) topology. By [37, Theorem 1.1], 0 is a strictly local
minimizer of 𝐼 in the𝑊1,𝑝(𝑥)

0
(Ω) topology. Thus there exists

𝑟 > 0 such that 𝐼(𝑢) > 0 for every 𝑢 ∈ 𝑋 \ {0} with ‖𝑢‖ ≤ 𝑟.
We claim that inf

‖𝑢‖=𝑟
𝐼(𝑢) > 0. To prove this claim,

arguing by contradiction, assume that there exists a sequence
{𝑢
𝑛
} ⊂ 𝑋 with ‖𝑢

𝑛
‖ = 𝑟 such that 𝐼(𝑢

𝑛
) → 0 as 𝑛 → ∞. We

may assume that 𝑢
𝑛
⇀ 𝑢
0
in𝑋. Since 𝐼 is sequentially weakly

lower semicontinuous, we have that 𝐼(𝑢
0
) = 0, and hence

𝑢
0
= 0. Since Φ is sequentially weakly continuous, then we

have that Φ(𝑢
𝑛
) → Φ(0) = 0, and hence 𝐽(𝑢

𝑛
) = 𝐼(𝑢

𝑛
) +

Φ(𝑢
𝑛
) → 0. It follows from this that𝑢

𝑛
→ 0 in𝑋which con-

tradicts with ‖𝑢
𝑛
‖ = 𝑟.

Let 𝑦 ∈ 𝑋 with 𝑦 > 0 in Ω and ‖𝑦‖ = 1. By (𝑓
0
) and (𝑓

1
),

for 𝑠 ≥ 1 we have

𝐼 (𝑠𝑦) = 𝑎∫
Ω

1

𝑝 (𝑥)

󵄨󵄨󵄨󵄨∇𝑠𝑦
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥

+ 𝑏(∫
Ω

1

𝑝 (𝑥)

󵄨󵄨󵄨󵄨∇𝑠𝑦
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑠𝑦) 𝑑𝑥

≤
𝑎

𝑝−
𝑠
𝑝
+

+
𝑏

(𝑝−)
2
𝑠
2𝑝
+

− 𝑐
1
𝑠
2𝑝
+

∫
Ω

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
2𝑝
+

𝑑𝑥 + 𝑐
2
󳨀→ −∞ as 𝑠 󳨀→ +∞.

(34)
We set 𝑒 = 𝑠𝑦. Then for 𝑠 large, we obtain

‖𝑒‖ > 𝑟, 𝐼 (𝑒) < 0. (35)

Hence by the famousMountain Pass Lemma, problem (6) has
a nontrivial weak solution with positive energy.

4. Infinitely Many Solutions

Since 𝑋 is a reflexive and separable Banach space, then there
exists {𝑒

𝑗
} ⊂ 𝑋 and {𝑒∗

𝑗
} ⊂ 𝑋

∗ such that

𝑋 = span {𝑒
𝑗
: 𝑗 = 1, 2, . . .},

𝑋∗ = span {𝑒∗
𝑗
: 𝑗 = 1, 2, . . .},

⟨𝑒
𝑖
, 𝑒
∗

𝑗
, ⟩ = {

1, 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗.

(36)

For convenience, we write𝑋
𝑗
= span{𝑒

𝑗
},𝑌
𝑘
= ⊕
𝑘

𝑗=1
𝑋
𝑗
,𝑍
𝑘
=

⊕∞
𝑗=𝑘
𝑋
𝑗
.

Lemma 10 (see [21]). If 𝛼 ∈ 𝐶(Ω), 1 < 𝛼(𝑥) < 𝑝∗ for any 𝑥 ∈
Ω, denote

𝛽
𝑘
= sup {|𝑢|𝛼(𝑥) : ‖𝑢‖ = 1, 𝑢 ∈ 𝑍𝑘} . (37)

Then lim
𝑘→+∞

𝛽
𝑘
= 0.

Proposition 11 (Fountain Theorem). Assume that 𝐼 ∈

𝐶
1
(𝑋,R) is an even functional. If, for any 𝑘 ∈ N, there exists

𝜌
𝑘
> 𝑟
𝑘
> 0 such that

(𝐴
1
) 𝑎
𝑘
= max

𝑢∈𝑌𝑘,‖𝑢‖=𝜌𝑘
𝐼(𝑢) ≤ 0,

(𝐴
2
) 𝑏
𝑘
= inf
𝑢∈𝑍𝑘,‖𝑢‖=𝑟𝑘

𝐼(𝑢) → +∞ as 𝑘 → ∞,

(𝐴
3
) 𝐼 satisfies (𝐶)

𝑐
condition for every 𝑐 > 0,

then 𝐼 has an unbounded sequence of critical values.

Proposition 12 (Dual Fountain Theorem). Assume that 𝐼 ∈
𝐶
1
(𝑋,R) is an even functional. If, for any 𝑘 ≥ 𝑘

0
, there exists

𝜌
𝑘
> 𝑟
𝑘
> 0 such that

(𝐵
1
) 𝑎
𝑘
= inf
𝑢∈𝑍𝑘,‖𝑢‖=𝜌𝑘

𝐼(𝑢) ≥ 0,

(𝐵
2
) 𝑏
𝑘
= max

𝑢∈𝑌𝑘,‖𝑢‖=𝑟𝑘
𝐼(𝑢) < 0,

(𝐵
3
) 𝑑
𝑘
= inf
𝑢∈𝑍𝑘 ,‖𝑢‖≤𝜌𝑘

𝐼(𝑢) → 0 as 𝑘 → ∞,

(𝐵
4
) 𝐼 satisfies (𝑐)∗

𝑐
condition for every 𝑐 ∈ [𝑑

𝑘0 ,0
],

then 𝐼 has a sequence of negative critical values con-
verging to 0.

Theorem 13. Assume that the conditions (𝑓󸀠
0
), (𝑓
1
)–(𝑓
4
) hold.

Then (6) has infinitely many solutions {𝑢
𝑘
} such that 𝐼(𝑢

𝑘
) →

∞ as 𝑘 → ∞.

Proof. By conditions (𝑓󸀠
0
), (𝑓
1
), and (𝑓

3
), for any 𝜀 > 0, there

exists 𝐶
𝜀
such that

𝐹 (𝑥, 𝑢) ≥ 𝐶
𝜀|𝑢|
2𝑝
+

− 𝜀|𝑢|
𝑝
+

, ∀ (𝑥, 𝑢) ∈ Ω ×R. (38)
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For 𝑢 ∈ 𝑌
𝑘
, when ‖𝑢‖ > 1,

𝐼 (𝑢) = 𝑎∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥

+
𝑏

2
(∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≤
𝑎

𝑝−
‖𝑢‖
𝑝
+

+
𝑏

2(𝑝−)
2
‖𝑢‖
2𝑝
+

− 𝐶
𝜀|𝑢|
2𝑝
+

2𝑝
+ + 𝜀|𝑢|

𝑝
+

𝑝
+ 󳨀→ −∞ as ‖𝑢‖ 󳨀→ +∞.

(39)

Then for some 𝜌
𝑘
> 0 large enough,

𝑎
𝑘
:= max
𝑢∈𝑌𝑘,‖𝑢‖=𝜌𝑘

𝐼 (𝑢) ≤ 0. (40)

On the other hand, by (𝑓󸀠
0
) and (𝑓

3
), there exists 𝐶

𝜀
> 0 such

that

|𝐹 (𝑥, 𝑢)| ≤ 𝜀|𝑢|
𝑝
+

+ 𝐶
𝜀|𝑢|
𝛼(𝑥)

, ∀ (𝑥, 𝑢) ∈ Ω ×R. (41)

Let 𝛽
𝑘
:= sup

𝑢∈𝑍𝑘,‖𝑢‖=𝜌𝑘
|𝑢|
𝛼
− . From Lemma 10, 𝛽

𝑘
→ 0 as

𝑘 → ∞. For 𝑢 ∈ 𝑍
𝑘
, when ‖𝑢‖ ≤ 1 and 𝜀 small enough,

𝐼 (𝑢) = 𝑎∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥

+
𝑏

2
(∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
𝑎

𝑝+
‖𝑢‖
𝑝
−

+
𝑏

2(𝑝+)
2
‖𝑢‖
2𝑝
−

− 𝐶
𝜀|𝑢|
𝛼
−

𝛼
− − 𝜀|𝑢|

𝑝
+

𝑝
+

≥
𝑎

2𝑝+
‖𝑢‖
𝑝
−

− 𝑐|𝑢|
𝛼
−

𝛼
−

≥
𝑎

2𝑝+
‖𝑢‖
𝑝
−

− 𝑐𝛽
𝑘‖𝑢‖
𝛼
−

.

(42)

If we choose 𝑟
𝑘
:= (𝑎/4𝑐𝑝

+
𝛽
𝛼

𝑘

−
)
1/(𝛼
−
−𝑝
−
)

→ ∞ as 𝑘 → ∞,
then, for 𝑢 ∈ 𝑍

𝑘
with ‖𝑢‖ = 𝑟

𝑘
,

𝐼 (𝑢) ≥
𝑎

4𝑝+
(

𝑎

4𝑐𝑝+𝛽𝛼
−

𝑘

)

𝑝
−
/(𝛼
−
−𝑝
−
)

:= 𝑏
𝑘
, (43)

which implies that 𝑏
𝑘
:= inf

𝑢∈𝑍𝑘,‖𝑢‖=𝑟𝑘
𝐼(𝑢) ≥ 𝑏

𝑘
→ +∞ as

𝑘 → +∞.

Theorem14. Assume that conditions (𝑓󸀠
0
), (𝑓
1
), (𝑓
2
), (𝑓
4
), and

(𝑓
5
) hold.Then (6) has infinitely many solutions {𝑢

𝑘
} such that

𝐼(𝑢
𝑘
) → 0 as 𝑘 → ∞.

Proof . By conditions (𝑓󸀠
0
), (𝑓
1
), and (𝑓

5
), for any 𝜀 > 0, there

exists 𝐶
𝜀
such that

𝐹 (𝑥, 𝑢) ≥ 𝐶
𝜀|𝑢|
2𝑝
+

− 𝜀|𝑢|
𝑞
+

, ∀ (𝑥, 𝑢) ∈ Ω ×R. (44)

For 𝑢 ∈ 𝑌
𝑘
, when ‖𝑢‖ is large enough,

𝐼 (𝑢) = 𝑎∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥

+
𝑏

2
(∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≤
𝑎

𝑝−
‖𝑢‖
𝑝
+

+
𝑏

(𝑝−)
2
‖𝑢‖
2𝑝
+

− 𝐶
𝜀|𝑢|
2𝑝
+

2𝑝
+ + 𝜀|𝑢|

𝑞
−

𝑞
− 󳨀→ −∞

as ‖𝑢‖ 󳨀→ +∞.

(45)

Then for some 𝑟
𝑘
> 0 large enough,

𝑏
𝑘
:= max
𝑢∈𝑌𝑘,‖𝑢‖=𝑟𝑘

𝐼 (𝑢) < 0. (46)

On the other hand, by (𝑓
5
), there exists 𝐶

𝜀
> 0 such that

|𝐹 (𝑥, 𝑢)| ≤ 𝜀|𝑢|
𝑞
−

+ 𝐶
𝜀|𝑢|
𝛼(𝑥)

, ∀ (𝑥, 𝑢) ∈ Ω ×R. (47)

Let 𝛽
𝑘
:= sup

𝑢∈𝑍𝑘,‖𝑢‖=𝑟𝑘
|𝑢|
𝑞
− , then 𝛽

𝑘
→ 0 as 𝑘 → ∞. For

𝑢 ∈ 𝑍
𝑘
, when ‖𝑢‖ and 𝜀 small enough,

𝐼 (𝑢) = 𝑎∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥

+
𝑏

2
(∫
Ω

1

𝑝 (𝑥)
|∇𝑢|
𝑝(𝑥)

𝑑𝑥)

2

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
𝑎

𝑝+
‖𝑢‖
𝑝
+

− 𝑐𝐶
𝜀|𝑢|
𝛼
−

𝛼
− − 𝑐𝜀|𝑢|

𝑞
+

𝑞
+

≥
𝑎

2𝑝+
‖𝑢‖
𝑝
+

− 𝑐|𝑢|
𝑞
+

𝑞
+

≥
𝑎

2𝑝+
‖𝑢‖
𝑝
+

− 𝑐𝛽
𝑞
+

𝑘
‖𝑢‖
𝑞
+

.

(48)

If we choose 𝜌
𝑘
:= (4𝑐𝑝

+
𝛽
𝑞
+

𝑘
/𝑎)
1/(𝑝
+
−𝑞
+
)

→ 0 as 𝑘 → ∞, then,
for 𝑢 ∈ 𝑍

𝑘
with ‖𝑢‖ = 𝜌

𝑘
,

𝐼 (𝑢) ≥ 𝑐𝛽
𝑞
+

𝑘
(
4𝑐𝑝
+
𝛽
𝑞
+

𝑘

𝑎
)

𝑞
+
/(𝑝
+
−𝑞
+
)

:= 𝑎
𝑘
, (49)

which implies that 𝑎
𝑘
:= inf

𝑢∈𝑍𝑘,‖𝑢‖=𝜌𝑘
𝐼(𝑢) ≥ 𝑎

𝑘
→ 0 as 𝑘 →

+∞.
Furthermore, if 𝑢 ∈ 𝑍

𝑘
with ‖𝑢‖ ≤ 𝜌

𝑘
, then

𝐼 (𝑢) ≥ −𝑐𝛽
𝑞
−

𝑘
𝜌
𝑞
−

𝑘
󳨀→ 0 as 𝑘 󳨀→ ∞, (50)

which implies that 𝑑
𝑘
= inf
𝑢∈𝑍𝑘,‖𝑢‖≤𝜌𝑘

𝐼(𝑢) → 0 as 𝑘 → ∞.
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