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Component-based models are widely used for embedded systems. The models consist of components with input and output ports
linked to each other. However, mismatched links or assumptions among components may cause many failures, especially for large
scale models. Binding semantic knowledge into models can enable domain-specific checking and help expose modeling errors in
the early stage. Ontology is known as the formalization of semantic knowledge. In this paper we propose an ontology-driven tool for
static correctness checking of domain-specific errors. two kinds of important static checking, semantic type and domain-restrcted
rules, are fulfilled in a unified framework.We first propose a formal way to precisely describe the checking requirements by ontology
and then separately check them by a lattice-based constraint solver and a description logic reasoner. Compared with other static
checking methods, the ontology-based method we proposed is model-externally configurable and thus flexible and adaptable to
the changes of requirements. The case study demonstrates the effectiveness of our method.

1. Introduction

Embedded systems are usually reactive systems composed of
software, hardware, and networks. Interacting with physical
environment increases the complexity of these systems and
makes the development a difficult task [1]. Component-based
models are widely used to develop embedded systems [2].
The models are composed of hierarchical components with
input and output ports linked to each other. Components are
atomic or composite functional units that execute concur-
rently. Typical developing tools for embedded systems such
as Simulink [3], Ptolemy II [4], and SCADE [5] all support
this design philosophy.

In a component model of embedded systems, compo-
nents communicate with each other via links on ports. The
links among ports must be correct. Mismatched links or
assumptions among components could result in failures,
especially for large scale models. As a result, the designed
models need to be verified as correct, ensuring the satisfiabil-
ity of requirements. Many works applied traditional formal

methods on models to verify the correctness. Chen et al.
[6] presented a translation mechanism from a Metropolis
design to a Promela description. They took the SPIN model
checker to verify the design of embedded systems at multiple
levels of abstraction. Rockwell Collins built a set of tools
[7] translating Simulink models into the input formats of
several formal analysis tools, which enabled the analysis
of Simulink and SCADE Suite models with many model
checkers and theorem provers, including NuSMV, ACL2, and
PVS. However, the mismatched links among components
can usually be found by static checking methods. Besides,
the rules to be verified are closely related to a specific
application domain and may probably change as time goes
on. In this paper, we developed a tool called OntCheck
which is driven by ontology to improve model engineering
techniques. Ontology is a formal, explicit specification of
a shared conceptualization [8]. It can capture the semantic
concepts of specific domains, keep consistency of concepts,
and elicit specifications. Most of the applications of ontology
stay in using it to generate specifications in requirements
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Figure 2: The overall framework of OntCheck.

engineering [9–11]. We take a further step in using ontology
to drive the static correctness checking of component-based
models. Compared with implementing the static checking
straightforward in code, the advantage that the ontology-
based method can bring is its model external configurability
and thus its flexibility and adaptability to the changes of
requirements.

OntCheck is a static checking tool for component-based
models aiming at the mismatched links among components.
Just like a front end of a compiler which checks whether
a program is correctly written in terms of the syntax and
semantics of programming language, we would like to check
whether a model is correctly designed in terms of semantic
type compatibility and domain rules. To illustrate the key idea,
consider two snippet models shown in Figure 1.

The left part shows two components linked through
ports. We need to ensure that such composition complies
with the designer’s intent. In a physical dimension domain
which contains the concepts acceleration, speed, time, and
position, a Divide component may produce a signal with the
meaning acceleration or speed based on different input data.
An Integrator component may produce the speed signal when
receiving an acceleration signal or produce the position signal
when receiving a speed signal. A mismatched error happens
when Integrator requires speed, butDivide offers acceleration.

This is out of control of typical type systems, where both
ports are declared as the same basic type double. With a
domain-specific semantic type system,we can check this kind
of linking compatibility.

The right part shows the links among three composite
components. According to the architecture constraints of
the domain, Scheduler can only link to MainController. The
connection between Scheduler andChecker is forbidden.That
is to say, only the MainController component can react to
commands from the Scheduler component, and Checker is
only used to ensure that the environment constraints are
satisfied for specific commands. This is a domain-restricted
rule imposed by domain experts. These kinds of rules are
often neglected during model development, since they are
often common-sense by domain experts but stay unknown
by model designers. A model is prone to hazard if it violates
the requested domain rules.

These two types of requirements cover a majority part of
design errors in models. In this paper, we propose OntCheck
as a novel tool that takes ontology to drive the static correct-
ness checking for component-based models. We focus on the
checking of these two semantic errors. Figure 2 illustrates the
overall framework ofOntCheck.The information of semantic
types and domain rules are modeled into a formal ontology,
and annotations are then used to connect model elements
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with their semantic concepts. After that, we check semantic
type compatibility with a lattice-based constraint solver and
use a description logic reasoner to check domain rules. In this
way we can check the inconsistency between the model and
the original design intention.

The rest of our paper is organized as follows. We first
describe the method to build an ontology containing both
semantic types and domain rules in Section 2. We then
introduce the methods of semantic type compatibility and
domain rule checking in Sections 3 and 4, respectively.
Section 5 presents the design of the OntCheck tool. A case
study is also presented to demonstrate the effectiveness of the
approach. In Section 6, we summarize our work and discuss
future works.

2. Description of Semantic Types and Domain
Rules with Ontology

As a formal representation of domain knowledge, ontology
is an abstract description of concepts and their relationships
in the real world. Some ontologies have been brought out
for requirements engineering, such as the ontology system
in [9], the enterprise information ontology in [10], and the
metamodel in [11]. However, they all lack a formal definition
to support ontology-based checking.

OWL is a description logic-based ontology language. Its
core elements are class, individual, object property, and data
property [12]. It contains three species: OWL-DL, OWL Lite,
and OWL Full. Among them, OWL-DL not only supports
maximum expressiveness without losing computational
completeness and decidability of reasoning systems but also
has a rich tool support on construction and consistency
checking. Therefore we take OWL-DL to formally describe
our domain ontology.

Before presenting the formal definition of our ontology,
we need amethodology to guide the construction of ontology
for component-based models. In reality, every concept is
related to a set of attributes. In models, systems are built
hierarchically through atomic or composite components.
Components, especially composite ones, often represent con-
cepts of the system, while signals exchanged among ports
represent specific attributes. This corresponds to the view of
Formal Concept Analysis (FCA) [13]. FCA is a mathematical
modelingmethod based on lattice theory tomodel real world
in a variety of objects and attributes. It starts with a formal
context defined as a triple 𝐾 = (𝐺,𝑀, 𝐼), where 𝐺 is a set
of objects, 𝑀 is a set of attributes, and 𝐼 is a binary relation
between 𝐺 and𝑀.

We take FCA’s methodology to build our ontology. The
domain ontology contains the information of semantic types
and the domain rules. For semantic types, data property of
OWL is used to represent attributes, which denote signals
on ports. As to domain rules, they consist of domain
concepts and relations among them. Concepts can be the
vocabulary for rules. Relations are the detailed constraints.
Class of OWL is used to represent concepts, and object
property is used to represent relations. Moreover, a domain
ontology should be knowledge independent of problem

solutions, so as to be shared and reused in the same domain.
As a result, it needs not to include conceptual instances,
which leaves out individual of OWL at the construction
phase.

Now, we can give a formal definition of our domain
ontology.

Definition 1. A domain ontology is a tuple 𝑂 := (𝑇, ℎ
𝑡
, 𝐶, ℎ
𝑐
,

𝑅), where 𝑇 is a set of semantic type and ℎ
𝑡
is a partial order

relation on 𝑇 with ℎ
𝑡

⊆ 𝑇 × 𝑇. (𝑡
𝑝
, 𝑡
𝑞
) ∈ ℎ

𝑡
means 𝑡

𝑝
is

the superclass of 𝑡
𝑞
. 𝐶 is a set whose elements are concepts.

Similar to ℎ
𝑡
, ℎ
𝑐
is a partial order relation defined on 𝐶.

𝑅 is a domain rule set, whose domain and range are all
elements of 𝐶. 𝑇 and ℎ

𝑡
form data property of OWL, while

𝐶 and ℎ
𝑐
form class in OWL. 𝑅 forms object property of

OWL.

This definition will guide us to construct proper domain
ontology. In the next sections, we will use SHOIN [14], the
description logic behinds OWL-DL, to describe semantic
information for the sake of preciseness and conciseness.

3. The Semantic Type Checking Method

Semantic type checking in OntCheck aims at ensuring the
consistency on the connections among ports as shown on
the left of Figure 1. Each port has a semantic type, and
types at both sides of a link should be compatible. This
technique can expose modeling errors early in the design
phase. It offers similar benefit provided by a typical type
system but is more powerful compared with it. At the same
time, the semantic types in a model are typically rather
domain-specific. The reason is that a different domain has
different data in exchange. Therefore, we need to construct
domain-specific semantic type system within a domain-
specific ontology.

Definition 2. Semantic types are 𝑇 in domain ontology 𝑂,
which is a set of terms describing data exchanged in specific
domain. They have a “is-a” partial order relation defined
on themselves as ℎ

𝑡
in 𝑂. A conversion from subclass

to superclass is compatible while it is not for the other
direction.

In a typical type system, type checking needs to man-
ually declare the types of all the variables first and then
check whether two types in one link are compatible or not.
Instead of this “declare-check” style, we would like to use a
lattice-based constraint solver, which is modified from the
property system proposed in [15], to automatically decide
the compatibilities of all ports’ semantic types with few
manual type declarations. Our method consists of a concept
lattice extracted from the domain ontology, a collection of
constraints associated with ports, and an efficient constraint
solving algorithm. It reduces manually efforts and enhances
correctness.

3.1. Concept Lattice. The concept lattice is the repository for
semantic types. It is a complete lattice, that is, a set 𝑃 and
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a binary partial order relation. A complete lattice requires
every subset of 𝑃 has a unique least upper bound and
a greatest lower bound. A typical type system can also
be expressed in concept lattice [16], as shown on left of
Figure 3, where each node represents a data type, and
the arrows among them represent an ordering relation.
Type 𝛼 is greater than type 𝛽 if there is a path upwards
from 𝛽 to 𝛼, meaning types 𝛼 and 𝛽 are comparable.
If type 𝛼 is greater than type 𝛽, and type 𝛽 is greater
than type 𝛼, that means type 𝛼 is equal to type 𝛽. We
generate a semantic type system like the dimension domain
concept lattice proposed in [15] as shown on right of
Figure 3.

Since we have expressed semantic type information in
domain ontology’s data property, what we need to do is
mapping it to a concept lattice.

A semantic type, speed, for example, is written in SHOIN
as follows:

𝑠𝑝𝑒𝑒𝑑 ⊑ 𝑡𝑜𝑝𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, (1)

where 𝑡𝑜𝑝𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 is a predefined OWL element, that
is, the superdata property of all data properties. The partial
order relation in lattice is expressed through the symbol ⊑
(SubPropertyOf relation). As a result the nodes in concept
lattice can be mapped from each element of data properties,
and the partial order relation can also be extracted.

In this way we can map concept lattice from OWL data
properties. Besides, we need to make sure that the General
least upper bound and anUnknown greatest lower bound are
added.

3.2. Proposing the Constraint Description Language. The the-
ory foundation of the checking method is the unique least
fixed point solution for a monotonic function defined on a
finite complete lattice [17]. All the functions are expressed in
a set of inequalities.They represent semantic type constraints
for components. Terms in inequalities are ports’ semantic
types. Manually specified ports will become constants while
the others will be variables. Concept lattice is the source of
variable assignments and the limit bound of reasoning. A
unique least fixed point solution is a satisfied assignment
to variables for all inequalities, which can be solved by
algorithm 𝐷 [17] when it is satisfiable. If there is not a
satisfied assignment, it means we have error links that
cause inconsistent inequalities. More details can be found in
[15].

We design a Constraint Description Language (CDL)
for model designers to write constraints of components.
Constraints are converted into inequalities for later checking
procedure. The abstract syntax of CDL is shown in Figure 4.
Wedirectly use port name to denote type of port in order to be
compact.The expression includesEqualExp for equalities and
GreaterExp to define inequalities. EqualExpwill be translated
into two inequalities. GreaterExp has a function term to han-
dle multiconditions in inequality. Considering the features
of multiple conditions, we take ternary conditional operator
“?:,” borrowed from programming languages, to express it.
We also need a Conflict term to ensure the completeness and
accuracy.

To illustrate the constraints, we use the components
shown in Figure 5 with the dimension concept lattice as an
example.
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Constraints = Exp∗
Exp = Port (EqualExp |GreaterExp) SEMICOLON
EqualExp = EQUAL Port
GreaterExp = GREATER (Port |FunctionTerm)
FunctionTerm = LPARENT (FunctionExp COLON )∗

Otherwise RPAREN
FunctionExp = Condition HOOK SemanticType
Condition = ConditionAtom ((AND |OR) ConditionAtom)?
ConditionAtom = Port EQUAL SemanticType |

LPARENT Condition RPAREN
SemanticType = STRING Port = STRING Otherwise = CONFLICT
AND = && OR = ||LPARENT = ( RPARENT = )
EQUAL = == GREATER = > = HOOK =?
SEMICOLON =; COLON =:

Figure 4: The Abstract Syntax of CDL.

Output

Divide
×

÷

Multiply
Plus

Minus

Subtract

Output

Divide

+

−
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For the Subtract component on the left of Figure 5, all
values have the same semantic type.Therefore, the constraints
are four inequalities:

𝑝𝑙𝑢𝑠 >= 𝑚𝑖𝑛𝑢𝑠,

𝑚𝑖𝑛𝑢𝑠 >= 𝑝𝑙𝑢𝑠,

𝑝𝑙𝑢𝑠 >= 𝑜𝑢𝑡𝑝𝑢𝑡,

𝑜𝑢𝑡𝑝𝑢𝑡 >= 𝑝𝑙𝑢𝑠.

(2)

Using EqualExp (“==”), we can write these constraints as

𝑝𝑙𝑢𝑠 == 𝑚𝑖𝑛𝑢𝑠,

𝑝𝑙𝑢𝑠 == 𝑜𝑢𝑡𝑝𝑢𝑡.

(3)

As to the right component Divide, the type of 𝑜𝑢𝑡𝑝𝑢𝑡

is decided by different combinations of multiply and divide,
based on the physical rules that

𝑠𝑝𝑒𝑒𝑑 ÷ 𝑡𝑖𝑚𝑒 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛,

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ÷ 𝑡𝑖𝑚𝑒 = 𝑠𝑝𝑒𝑒𝑑,

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ÷ 𝑠𝑝𝑒𝑒𝑑 = 𝑡𝑖𝑚𝑒,

𝑠𝑝𝑒𝑒𝑑 ÷ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑖𝑚𝑒.

(4)

As a result, we have inequality 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑓(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦, 𝑑𝑖V𝑖𝑑𝑒),
which reads as the semantic type of port output will be greater

than or equal the value of 𝑓(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦, 𝑑𝑖V𝑖𝑑𝑒). The function
𝑓 is defined as follows:

𝑓 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦, 𝑑𝑖V𝑖𝑑𝑒)

=

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

𝑈𝑛𝑘𝑛𝑜𝑤𝑛, 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = 𝑈𝑛𝑘𝑛𝑜𝑤𝑛

𝑜𝑟 𝑑𝑖V𝑖𝑑𝑒 = 𝑈𝑛𝑘𝑛𝑜𝑤𝑛,

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = 𝑠𝑝𝑒𝑒𝑑

𝑎𝑛𝑑 𝑑𝑖V𝑖𝑑𝑒 = 𝑡𝑖𝑚𝑒,

𝑠𝑝𝑒𝑒𝑑, 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑎𝑛𝑑 𝑑𝑖V𝑖𝑑𝑒 = 𝑡𝑖𝑚𝑒,

𝑡𝑖𝑚𝑒, 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑎𝑛𝑑 𝑑𝑖V𝑖𝑑𝑒 = 𝑠𝑝𝑒𝑒𝑑,

𝑡𝑖𝑚𝑒, 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = 𝑠𝑝𝑒𝑒𝑑

𝑎𝑛𝑑 𝑑𝑖V𝑖𝑑𝑒 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛,

𝐸𝑟𝑟𝑜𝑟, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)

This is a typical if-else if-else structure that can be
expressed using programming languages’ ternary conditional
operator “?:” which usually has the form

𝑥 = (𝑦 == 0 ? 0 : (𝑧 == 1 ? 1 : −1)) . (6)
Thus, a sample constraint can be written in CDL like this:
𝑜𝑢𝑡𝑝𝑢𝑡

≥(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦==𝑈𝑛𝑘𝑛𝑜𝑤𝑛‖ 𝑑𝑖V𝑖𝑑𝑒==𝑈𝑛𝑘𝑛𝑜𝑤𝑛 ?𝑈𝑛𝑘𝑛𝑜𝑤𝑛 :

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 == 𝑠𝑝𝑒𝑒𝑑&&𝑑𝑖V𝑖𝑑𝑒 == 𝑡𝑖𝑚𝑒 ? 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 :

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 == 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛&&𝑑𝑖V𝑖𝑑𝑒 == 𝑡𝑖𝑚𝑒 ? 𝑠𝑝𝑒𝑒𝑑 :

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 == 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛&&𝑑𝑖V𝑖𝑑𝑒 == 𝑠𝑝𝑒𝑒𝑑 ? 𝑡𝑖𝑚𝑒 :

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 == 𝑠𝑝𝑒𝑒𝑑&&𝑑𝑖V𝑖𝑑𝑒 == 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ? 𝑡𝑖𝑚𝑒 :

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡) .

(7)
As its similarity to general programming language,

designers can easily describe constraints using CDL, based
on domain knowledge.
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3.3. Checking with the Constraint Solver. The checking is
performed through a constraint solver which works on the
defined constraints to ensure the connection compatibility
of components. We firstly use the partial model shown
in Figure 5 to see how constraints can be used to infer
unspecified port types. In the beginning, all unspecified ports
are in typeUnknown, which makes all inequalities satisfiable:

𝑈𝑛𝑘𝑛𝑜𝑤𝑛 >= 𝑈𝑛𝑘𝑛𝑜𝑤𝑛. (8)

If we manually specify the minus port of the Subtract
component as type speed, then the inequality of 𝑝𝑙𝑢𝑠 >=

𝑚𝑖𝑛𝑢𝑠 will be 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 >= 𝑠𝑝𝑒𝑒𝑑, which is unsatisfiable.
Then the type of plus should become

𝑈𝑛𝑘𝑛𝑜𝑤 ⊔ 𝑠𝑝𝑒𝑒𝑑 = 𝑠𝑝𝑒𝑒𝑑. (9)

We handle all the other unsatisfiable inequalities in the
sameway.Theoutput of the Subtract componentwill be speed.
If wemanually specify the type of the divide port of theDivide
component to be time, we can infer the output of Divide
component to be acceleration.

That is the core idea of type inference. With few manual
declarations, we can infer all ports’ types. To efficiently resolve
all the constraints expressed as inequalities, we use algorithm
𝐷
+ in Algorithm 1 modified from the algorithm 𝐷 in [17].

It is a linear time satisfiability determination algorithm.
If all constraints are satisfiable, it can give out a satisfied
assignment to variables for all inequalities. Otherwise we find
errors in the model. The algorithm requires an error state
set 𝐸 as input. This is the Conflict set that denotes reaching
incompatible states. In line 1, it builds the inequality set 𝐶

from two sources: the constraints on each components and
the constraint 𝑠𝑒𝑛𝑑𝑇𝑦𝑝𝑒 ≤ 𝑟𝑒𝑐𝑒𝑖V𝑒𝑇𝑦𝑝𝑒 on every link to
guarantee lossless information transfer (pointed out in [16]).
Thenext step is to divide inequalities into the const set and the
variable set based on the greater term in inequality (manual
declaration will be const here). In lines 4–6, the algorithm
defines 𝐶𝑙𝑖𝑠𝑡, which is a hash list whose key is a variable
and its corresponding value is inequalities. It initiates all
the unannotated ports variables as Unknown and generates
usList, the set of current unsatisfied inequalities. It then starts
checking iteratively until all inequalities are satisfied. Inside
the iteration, the algorithm first picks the last inequality from
usList, looks for the Least Common Ancestor (LCA [18]) of
the terms in two sides of the inequality, assigns the LCA to
current inequality’s variable, and updates all the inequalities
in Clist indexed by this variable. It is implemented by
removing the satisfiable inequalities from unList and adding
unsatisfiable inequalities to it. The iteration stops until all the
inequalities are satisfied. At last, it checks all inequalities in
𝐶cnst to ensure the inferred assignments satisfying all known
type declarations.

The major difference between the proposed algorithm
𝐷
+ and algorithm 𝐷 is the error state. Algorithm 𝐷 only

judges the happening of an error when the iteration comes
to the lattice’s top—General. However, in practice, some
superdata properties may not be compatible for two or more
subdata properties. Therefore, our method supports user-
defined error states to handle more complicated situations.

4. The Domain Rule Checking Method

The goal of domain rule checking is to express the more
implicit constraints inside a domain, as the example shown
on the right of Figure 1. As the fact that they usually exist
deeply in mind of domain experts as important background
information, they are often neglected bymodel designers and
lead to failures. Therefore, it is important to formally define
domain rules in order to help standardize not only semantic
concepts but also constraints across a development team.
Besides, for being able to define rules in formal, we need to
construct a domain concepts vocabulary.The OWL ontology
contains proper fields for both vocabulary and rules.

Definition 3. Domain rules are built on top of a domain
concepts vocabulary.They are background knowledge widely
existent in different domains, which can be used to maintain
the correctness of model design.

We use class of OWL to represent concepts in domain
as the vocabulary and object property for rules. To check
whether a model is met with domain rules, we annotate
model elements with domain concepts, instantiate them back
into OWL ontology as individuals, and adopt a DL reasoner
to check the consistency. If it becomes corrupt, the model
violates some rules.

4.1. Specifying the Vocabulary. The traditional method to
specify domain vocabulary in software engineering is to take
UML and make a classmodel in the semivisual form with a
classdiagram. Here we choose OWL for two reasons. One
reason is the great overlap of OWL with UML class models.
The other and more important reason is that it has a formal
logic semantics which can be used for formal verification.

Class in OWL defines a group of individuals that belong
together to share properties. Classes can be organized in
hierarchy using the subClassOf relationship. In OWL, there
is a built-in most general class namedThing as the superclass
of all OWLclasses.Class covers terms𝐶 and ℎ

𝑐
inDefinition 1.

Let us see an example. In a gate control system, there are
four devices: the gate, the latch, the lift platform, and the pull-
push unit. Using SHOIN we can get the following statements:

𝐺𝑎𝑡𝑒 ⊑ 𝐷𝑒V𝑖𝑐𝑒,

𝐿𝑎𝑡𝑐ℎ ⊑ 𝐷𝑒V𝑖𝑐𝑒,

𝐿𝑖𝑓𝑡𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 ⊑ 𝐷𝑒V𝑖𝑐𝑒,

𝑃𝑢𝑙𝑙𝑃𝑢𝑠ℎ𝑈𝑛𝑖𝑡 ⊑ 𝐷𝑒V𝑖𝑐𝑒.

(10)

4.2. Rule Categories. Wagner in [19] divides domain rules
into four categories: integrity rules, derivation rules, reaction
rules, and production rules. Integrity rules, also known as
integrity constraints, are used to ensure the definition accu-
racy of concepts and relations. Derivation rules, also called
deduction rules, consist of one ormore conditions and one or
more conclusions in general and can express more complex
restrictions. Reaction rules consist of a mandatory triggering
event term, an optional condition, and a triggered action
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Require: Error States 𝐸
Ensure: Constraint satisfiability
(1) 𝐶 ← ports constraints ⊔ linking constraints
(2) 𝐶cnst ← {𝜏 ≤ 𝐴 ∈ 𝐶 | 𝐴 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡}

(3) 𝐶var ← {𝜏 ≤ 𝐴 ∈ 𝐶 | 𝐴 𝑖𝑠 𝑎 V𝑎𝑟𝑖𝑎𝑏𝑙𝑒}

(4) init hash list Clist[𝛽] for distinct variable 𝛽 in 𝐶

(5) init all un-annotated ports variables as 𝑈𝑛𝑘𝑛𝑜𝑤𝑛

(6) 𝑢𝑠𝐿𝑖𝑠𝑡 = {𝜏 ≤ 𝛽 ∈ 𝐶var | 𝜏 ≤ 𝛽 𝑖𝑠 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑}

(7) while 𝑢𝑠𝐿𝑖𝑠𝑡 ̸= 0 do
(8) 𝜏 ≤ 𝛽 = 𝑙𝑎𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑛 𝑢𝑠𝐿𝑖𝑠𝑡

(9) 𝛽 ← LCA of 𝜏 and 𝛽

(10) if 𝛽 ∈ 𝐸 then
(11) return False
(12) else
(13) 𝑢𝑝𝑑𝑎𝑡𝑒 𝐶𝑙𝑖𝑠𝑡[𝛽]

(14) end if
(15) end while
(16) if 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑖𝑛 𝐶cnst then
(17) False
(18) else
(19) True
(20) end if

Algorithm 1: The algorithm 𝐷
+ of constraint solver.

term or a postcondition, describing the behaviors of model.
Production rules, popular as a widely used technique to
implement “expert system” in the past, consist of a condition
and a produced action, which can be equal to derivation rules
when they implemented the form if-Condition-then-assert-
Conclusion. Since we focus on static analysis of embedded
system model, the rules should emphasize the integrity of
domain concepts. As a result, we consider the integrity rules
in this paper.

Consisting of constraint assertions, integrity rules can be
divided into two categories: link rules and inclusion rules.

4.2.1. Link Rules. Link rules in a model describe the topolog-
ical relations among components. It tells which components
can link to and which are not allowed to link to for each
component. Since OWL is under Open World Assumption
[20] that if some things are not described in OWL, they
can be true facts in reasoning, we need to explicitly define
both the link and notLink object properties with a disjoint
assertion.

A sample link rule is that “a Checker can link to
some GateController, LatchController, LiftPlatformController,
or PullPushController but is not allowed to link to any
Scheduler.” This can be written as follows:

𝑙𝑖𝑛𝑘 ⊑ 𝑡𝑜𝑝𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦,

𝑛𝑜𝑡𝐿𝑖𝑛𝑘 ⊑ 𝑡𝑜𝑝𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦,

𝑙𝑖𝑛𝑘 ⊓ 𝑛𝑜𝑡𝐿𝑖𝑛𝑘 ≡ 0,

𝐶ℎ𝑒𝑐𝑘𝑒𝑟 ⊑ ∃𝑙𝑖𝑛𝑘.𝐺𝑎𝑡𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟,

𝐶ℎ𝑒𝑐𝑘𝑒𝑟 ⊑ ∃𝑙𝑖𝑛𝑘.𝐿𝑎𝑡𝑐ℎ𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟,

𝐶ℎ𝑒𝑐𝑘𝑒𝑟 ⊑ ∃𝑙𝑖𝑛𝑘.𝐿𝑖𝑓𝑡𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟,

𝐶ℎ𝑒𝑐𝑘𝑒𝑟 ⊑ ∃𝑙𝑖𝑛𝑘.𝑃𝑢𝑙𝑙𝑃𝑢𝑠ℎ𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟,

𝐶ℎ𝑒𝑐𝑘𝑒𝑟 ⊑ ∃𝑛𝑜𝑡𝐿𝑖𝑛𝑘.𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟.

(11)

𝑡𝑜𝑝𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 is another predefined element in
OWL that is the superobject property of all object properties.
Besides the descriptions like someValuesFrom (∃), OWL also
supports cardinality restrictions. There are minCardinality,
maxCardinality, and cardinality restrictions.

4.2.2. Inclusion Rules. Inclusion rules in a model describe
the inclusion relations among components. It tells what a
component has inside. Same as link rules, we have disjoint has
and notHas object properties in pair to guide the reasoning of
DL reasoner.We can also use cardinality restrictions to refine
constraints.

A sample inclusion rule that “Device should have a
UpLimit to limit its movement” is written in SHOIN as
follows:

ℎ𝑎𝑠 ⊑ 𝑡𝑜𝑝𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦,

𝑛𝑜𝑡𝐻𝑎𝑠 ⊑ 𝑡𝑜𝑝𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦,

ℎ𝑎𝑠 ⊓ 𝑛𝑜𝑡𝐻𝑎𝑠 ≡ 0,

𝐷𝑒V𝑖𝑐𝑒 ⊑ ∃ℎ𝑎𝑠.𝑈𝑝𝐿𝑖𝑚𝑖𝑡.

(12)
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Figure 6: The ontology of gate control system.

4.3. Checking with the DL Reasoner. With class and object
properties together, we build domain rules in OWL ontology.
To check the consistency of model, we offer a method to
annotate components in model with ontology concepts. We
then use this information to instantiate domain ontology into
a case specific one. At last, the instantiated ontology can be
checked with mature DL reasoners.

The annotation process is a trivial part. For the instantia-
tion, we need to

(1) generate OWL individual from components accord-
ing to their class annotations,

(2) create link and has in individuals based on compo-
nents’ links and hierarchies,

(3) create link/notLink and has/notHas for individuals by
the definition of corresponding class,

(4) set each individual as different using owl : dis-
tinctMembers in order to support cardinality restric-
tions.

We developed the procedure in OntCheck with Jena [21], an
API for ontologymodel, to get an instantiatedOWLontology.
For the checking part, we use Pellet [22]. It is a sound and

complete OWL-DL reasoner that has extensive support for
reasoning with individuals and qualified cardinality restric-
tions, to get the result of consistency checking.

5. Tool Implementation and Case Study

OntCheck is a standalone tool for static correctness checking
on models. We integrate Protégé [23], an OWL ontology
modeling tool, as ontology builder and apply OntCheck
to Ptolemy II [4], a component-based open source mod-
eling design environment oriented to embedded systems.
OntCheck has three main functions. First, it generates a
concept lattice from OWL ontology’s data properties and
supports to define semantic type constraints corresponding
to this lattice on components. Second, it implements the
semantic type constraint solver based on algorithm shown in
Algorithm 1. Third, it supports to annotate components with
domain concepts, produces instantiated ontology using Jena,
and invokes Pellet to check the consistency.

We demonstrate our work through a gate control system.
This is a real system for a palace in Jiangsu Province, China
[24]. The object of this system is to move out a gate from
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Figure 7: The model of gate control system.

the gate repository through sequences of actions under
limitations. The finished OWL ontology built by Protégé is
shown in Figure 6. In this system, signals exchanged between
components are physical for dimension data and runSignal
for command related signals. These are data properties that

will be mapped to concept lattice for semantic type checking
(Figure 6(a)).

The vocabulary for domain rules is built in OWL
Class (Figure 6(b)). The whole model corresponds to the
class System. A Scheduler sends operation commands to



10 Journal of Applied Mathematics

AbsoluteValue

PositionPosition
Position

Position
Position

Position

Position

PositionLimitDistance

Integrator

Speed

Speed

Speed

Unknown

Unknown

U
nk

no
w

n
U

nk
no

w
n

Divide

Divide

1

×

÷

×

÷

Subtract
+

−

TargetPosition

TimeConstant

Constant 2

Constant

Physical

Time

Time

Time

∫Acceleration
Acceleration

(a) The model with semantic type errors

<rdf:Description rdf:about= >

<j.0:link rdf:resource= >

<j.0:notLink rdf:resource= >

</rdf:Description>

<rdf:Description rdf:about= >

<owl:propertyDisjointWith rdf:resource= >

</rdf:Description>

Scheduler

Checker

“checker”

“Scheduler”/

“Scheduler”/

“link”

“notLink”/

(b) The model with domain rule errors

Figure 8: The error models of gate control system.

MainController, and theMainController asksFunctionalCom-
ponents to work one by one. A Checker ensures the satisfac-
tion of movement limits, and it is requested by Functional-
Component for moving permission.There areDevices includ-
ing Latch, LiftPlatform, PushPullUnit, and Gate and their
corresponding controllers. Link rules and inclusion rules
adopted in the real world are described using object property
(Figure 6(c)). The shown link rules mean a ConstraintCheck
can link to some controllers but is not permitted to link
to a Scheduler directly (Figure 6(d)). The shown inclusion
rules represent that a System must have exactly 1 Scheduler,
1 Checker, and at least 1 Device and FunctionalComponent
(Figure 6(e)).

Ptolemy II model of this system is shown on the left
of Figure 7. After writing semantic type constraints for
components by our language CDL, we can use the constraint
solver to verify type correctness. The result of checking is
shown on the right of Figure 7.Wemark all inferred semantic
types in different colors (e.g., the output port of Scheduler is
marked as green, and the type command is shown in label).
If there is a corruption in model, the error link is marked.
As shown on the left of Figure 8, the output of Integrator is
a speed signal but is connected to input of Subtract which
desires a position input. Here we add physical into error set
𝐸 since a speed signal cannot be mixedly used as position.
After assigning the LCA of these two signal, we reach the
incompatible state physical. As for domain rule checking, we
annotate components with corresponding domain concepts
first, instantiate ontology using model information, and
invoke Pellet to check the consistency. When Pellet finds

errors, we parse the error report and mark the related
components like the error link shown on the right of Figure 8.

We can see that, using domain ontology, semantic type
constraints and domain rules can be specified to verify the
correctness of model. It leverages domain knowledge. Since
the OWL ontology is standalone, it is flexible to be modified
and reused, comparing to hard-code rule based checking
tools. For model designers, it is easy to correct the model
based on the error reports.

6. Conclusion and Future Works

Domain knowledge plays an important role in the process of
software development. For component-basedmodel develop-
ment, there exist two types of special requirements, seman-
tic type compatibility and the conformance with domain-
restricted rules. In this paper, we first suggest a formal
approach to precisely describe them in ontology and then
use a constraint solver and a DL reasoner to verify the
correctness of model. Through this approach, we formally
describe semantic knowledge and ensure the design of model
complying with domain-specific requirements.

As to the future work, it is worth to extend SWRL [25]
for the description of rules. It is a rule language combining
OWL and RuleML, which is designed to be used for rule
descriptions but at the price of decidability and practical
implementations. It is also meaningful to investigate the
possibility of using local closed-world assumptions to make
reasoning more efficiently for model elements. Another
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future work is to extend semantic type into a part of
vocabulary for domain rules, making a wider view to express
more domain rules for correctness checking.
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