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This paper proposes a stochastic finite difference approach, based onhomogenous chaos expansion (SFDHC).The said approach can
handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this
approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-
Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used
in converting the original stochastic partial differential equation (PDE) into a set of coupled deterministic partial differential
equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the
method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger’s
equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability
distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with
optimized computational cost.

1. Introduction

Stochastic processes are prevalent in nature. They affect all
physical phenomena both from external and internal sources.
Stochastic excitation and stochastic boundary conditions
are a couple of examples of these external sources, while
internal inherent random material heterogeneity also exists.
To resolve these sources of stochastic inputs, stochastic
differential equation is used for mathematical modeling.
Methods of solution to these models are classified into two,
statistical and nonstatistical. Monte Carlo simulation (MCS)
is one of the most popular among the statistical methods of
solution in use. As for the nonstatistical methodologies, these
include stochastic perturbation method (SPM), stochastic
finite element method (SFEM), and stochastic difference
method (SFDM), the latter of which is the focus of this
paper.

The nonstatistical methods’ expansion process involves
the discretization of input random fields. A projection
scheme is further used resulting in deterministic equations
solved by merely using one of the deterministic methods
of solutions. Among these nonstatistical methods, SFEM is

attracting the most attention. It has been applied to solve a
wide range of problems especially in the field of structure
mechanics (see, e.g., [1, 2]). In contrast, FDM is rarely studied
in the field of stochastic analysis. These rare studies include
Kaminski [3] which introduced a second-order perturbation,
second probabilistic moment analysis in the context of FDM.
This technique uses the perturbation method to expand the
input randomfields andwas applied to time dependent linear
problems with a small range of variability, where the first
two statistical moments of the response were calculated. In
Kamiński’s later works, he introduced a generalized version
of this technique [4] which calculated higher probabilistic
moments for any random dispersion of input variables. Ma
et al. [5] presented a numerical method for a class of forward
backward stochastic differential equations (FBSDEs). Their
method is based on the four step scheme using a Hermite-
spectral method to approximate the solution to the decou-
pling quasilinear PDE on the whole space. Hovanessian and
Chang [6] solved a second-order linear differential equation
representing a series RLC network with step function, sinu-
soidal and stochastic inputs. Soheili et al. [7] later introduced
two explicit finite difference schemes in order to approximate
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the solution of stochastic partial differential equations of Ito
type.

This paper utilizes the homogenous chaos expansion
in the context of finite difference method (SFDHC). In
this technique, the random inputs are discretized using
Karhunen-Loève (KL) expansion, while the response is rep-
resented in terms of homogenous chaos (HC) expansion
then a Galerkin projection scheme is applied to generate a
system of deterministic equations, which can then be solved
using classical deterministic FDM. Enriching other popular
methods like SFEM, the proposed technique can handle
time dependent nonlinear as well as linear problems with
stochastic or deterministic initial and boundary conditions
using less computational cost. Moreover, results are obtained
in the form of a probability distribution function (pdf) of
the response at the grid points where the extreme values
and statistical moments can be easily evaluated, an obvi-
ous improvement over the usual solution representation of
merelymean values and standard deviations. Two illustrative
problems are used to validate the efficiency of the proposed
technique, the first one being linear diffusion equation with
stochastic parameter and the second is the nonlinear Burger’s
equation with stochastic parameter and stochastic initial
and boundary conditions. Both of these illustrative problem
results are compared with MCS results. The comparison
showed close conformity between SFDHC and MCS with
optimized computational cost in favor of SFDHC.

2. Random Field Discretization

When one or more of the physical parameters are modelled
as random fields, it is essential, first, to represent them by
an enumerable set of random variables. Quite a number
of random field discretization techniques were cited in the
literature [1, 8]. However, during the past two decades, KL
and HC expansions have risen as two of the most practical
techniques.

2.1. Karhunen-Loève Expansion. KL expansion is dependent
on the covariance kernel [1]. Let 𝛼(𝑥; 𝜃) be a random process
and 𝐶

𝛼𝛼
(𝑥
1
, 𝑥
2
) be its correlation function. The discretized

version of this field is written as

𝛼 (𝑥; 𝜃) = 𝛼 (𝑥) +

∞

∑

𝑖=1

√𝜆
𝑖
𝑓
𝑖
(𝑥) 𝜉
𝑖
(𝜃) , (1)

where 𝛼(𝑥) denotes the mean value of 𝛼(𝑥; 𝜃), {𝜉
𝑖
(𝜃)}
∞

𝑖=1
is a

set of uncorrelated random variables, and 𝜆
𝑖
and 𝑓

𝑖
(𝑥) are

the eigen values and the eigen functions, respectively. The
said eigen value and eigen function are evaluated by solving
Fredholm integral equation:

∫

𝐷

𝐶
𝛼𝛼

(𝑥
1
, 𝑥
2
) 𝑓
𝑖
(𝑥
1
) 𝑑𝑥
1
= 𝜆
𝑖
𝑓
𝑖
(𝑥
2
) , (2)

where 𝐷 is the spatial domain over which 𝛼(𝑥; 𝜃) is defined,
and 𝑥

1
, 𝑥
2
∈ 𝐷. In the computational implementation of the

expansion, (1) is truncated at the𝑀th term to reach the finite-
dimensional approximation:

𝛼 (𝑥; 𝜃) = 𝛼 (𝑥) +

𝑀

∑

𝑖=1

√𝜆
𝑖
𝑓
𝑖
(𝑥) 𝜉
𝑖
(𝜃) . (3)

2.2. Homogeneous Chaos Expansion. The solution process for
stochastic differential equations is not known a priori, which
means that its covariance function is unknown. KL expansion
is, in this case, inapplicable requiring HC expansion instead.
HC expansion considers a probability space (Ω, 𝜅, 𝑃), where
Ω denotes the space of basic outcomes, 𝜅 is the 𝜎-algebra
associated with Ω, and 𝑃 is a probability measure on 𝜅.
Considering some physical domain 𝐷 ⊂ 𝑅

𝑑

× 𝑇, (𝑑 =

1, 2, or 3), this can be a combination of spatial and temporal
dimensions. A stochastic process (SP) can be seen as a scalar
or vector-valued function 𝑢(𝑥, 𝑡, 𝜃) : 𝐷 × Ω → 𝑅

𝑏, where
𝑥 is an element of the physical space, 𝑡 denotes the time,
and 𝜃 is a point in the sample space Ω. Because of the
infinite-dimensional nature of the probability space, it has to
be discretized by using a finite number of random variables
{𝜉
𝑖
(𝜃)}
𝑛

𝑖=1
, 𝑛 ∈ 𝑁.

HC expansion polynomials are functions in the infinite
set of random variables {𝜉

𝑖
(𝜃)}
𝑖=∞

𝑖=1
and therefore of infinite

dimensions. A finite subset {𝜉
𝜆𝑖
(𝜃)}
𝑖=𝑛

𝑖=1
was chosen to build

these polynomials; hence, the finite-dimensional polynomi-
als of any order 𝑝 will be a subset of the infinite-dimensional
polynomials of the same order.The convergence of the finite-
dimensional polynomials is related to 𝑛 aswell as to the choice
of the subset {𝜉

𝜆𝑖
(𝜃)}
𝑖=𝑛

𝑖=1
; the choice of this subset can be taken

according to K-L expansion of the random process to ensure
the convergence of a polynomial chaos (PC) expansion in the
mean-square sense. As shown in [1, 9, 10], the solution process
can be expressed as a summation of nonlinear functionals
of the set {𝜉

𝑖
(𝜃)}
∞

𝑖=1
multiplied by deterministic constants.

These functionals can be expanded as a set of polynomials
of second-order Gaussian random variables, 𝜉

𝑖
(𝜃) ∈ 𝑁(0, 1),

referred to as polynomial chaos. Hence, the random process,
which represents the random field, can be expressed as

𝑢 (𝜃) = 𝑎
0
Γ
0
+

∞

∑

𝑖
1
=1

𝑎
𝑖
1

Γ
1
(𝜉
𝑖
1
(𝜃))

+

∞

∑

𝑖
1
=1

∞

∑

𝑖
2
=1

𝑎
𝑖
1
𝑖
2

Γ
2
(𝜉
𝑖
1
(𝜃) , 𝜉
𝑖
2
(𝜃)) + ⋅ ⋅ ⋅ ;

(4)

inwhich Γ
𝑛
(𝜉
𝑖
1

(𝜃), . . . , 𝜉
𝑖
𝑛

(𝜃)) is the polynomial chaos of order
𝑛 in the set of variables (𝜉

𝑖
1

(𝜃), . . . , 𝜉
𝑖
𝑛

(𝜃)) given in [10].
Truncating at the 𝑃th order, (4) can be then written as

𝑢 (𝑥, 𝑡, 𝜉
𝑀
(𝜃)) =

𝑃

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡) 𝜓

𝑖
[{𝜉
𝑀
(𝜃)}] (5)

or simply

𝑢 (𝑥, 𝑡, 𝜉) =

𝑃

∑

𝑖=0

𝑢
𝑖
𝜓
𝑖
. (6)
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The total number of these polynomials is (𝑃 + 1), where

𝑃 + 1 =

(𝑀 + 𝑝)!

𝑝! (𝑀)!

. (7)

In (5), 𝑢
𝑖
(𝑥, 𝑡) is a set of deterministic coefficients depen-

dent on both 𝑥 and 𝑡, 𝜓
𝑖
[{𝜉
𝑀
}] is a set polynomials (up to

order 𝑝) in the set of random variables (𝜉
𝑖
1

(𝜃), . . . , 𝜉
𝑖
𝑀

(𝜃)),
and 𝑀 refers to the number of terms in KL expansion. For
example, if 𝑀 = 𝑝 = 2, the set of second-order-second-
degree PC consists of 6 elements; {1, 𝜉

1
, 𝜉
2
, 𝜉
2

1
− 1, 𝜉
1
𝜉
2
, 𝜉
2

2
−

1}. Also, if 𝑀 = 4, 𝑝 = 2, the set of second-order-
fourth-degree PC consists of 15 elements; {1, 𝜉

1
, 𝜉
2
, 𝜉
3
, 𝜉
4
, 𝜉
2

1
−

1, 𝜉
1
𝜉
2
, 𝜉
1
𝜉
3
, 𝜉
1
𝜉
4
, 𝜉
2

2
− 1, 𝜉
2
𝜉
3
, 𝜉
2
𝜉
4
, 𝜉
2

3
− 1, 𝜉
3
𝜉
4
, 𝜉
2

4
− 1}. Also,

𝜓
𝑖
[{𝜉
𝑛
}] have the following orthogonality properties:

⟨𝜓
𝑖
[{𝜉
𝑛
}]⟩ = 1 for 𝑖 = 0 and zero otherwise,

⟨𝜓
𝑖
[{𝜉
𝑛
}] 𝜓
𝑗
[{𝜉
𝑛
}]⟩ = 𝛿

𝑖𝑗
⟨𝜓
2

𝑖
[{𝜉
𝑛
}]⟩ .

(8)

According to the Cameron-Martin theorem [11], for a
fixed value of 𝑥 and 𝑡, this expansion converges to any
𝐿
2
(Ω) functional in the 𝐿

2
(Ω) sense. This implies that

the application of polynomial chaos is restricted to those
stochastic processes with finite second-ordermoments (finite
variance), and this applies tomost physical processes yielding

∫

𝜃∈Ω

|𝑢 (𝑥, 𝑡, 𝜃)|
2

𝑑𝑃 (𝜃) < ∞. (9)

3. A Proposed Stochastic Finite Difference
Approach Based on Homogenous Chaos
Expansion (SDFHC)

In this proposed technique, the involved random parameters
in SDE are expanded using KL expansion, which is truncated
at the 𝑀th term. The response function 𝑢 is, in turn,
expanded using HC expansion since its covariance kernel
is not known a priori. Applying Galerkin projection scheme
throughmultiplying both sides of the resulting equation by𝜓

𝑗

and taking the statistical average yields a deterministic system
of equations in 𝑢

𝑖
(𝑥, 𝑡) which can be solved simply using the

classical deterministic FDM. Consider

Λ (𝑥, 𝑡, 𝜉 (𝜃) ; 𝑢) = 𝑓 (𝑥, 𝑡, 𝜉 (𝜃)) , (10)

where 𝑓(𝑥, 𝑡, 𝜉(𝜃)) is a random external excitation and Λ

is a differential operator involving differentiation in space
and/or time which can be nonlinear and defined on the
product space𝐷×Ω. Also, 𝑢 satisfies the initial and boundary
conditions, deterministic or stochastic, and they are defined
on some section of the boundary 𝜕𝐷

1
∈ 𝜕𝐷. Using (6) to

expand 𝑢 in (10) yields

Λ(𝑥, 𝑡, 𝜉 (𝜃) ;

𝑃

∑

𝑖=0

𝑢
𝑖
𝜓
𝑖
) = 𝑓 (𝑥, 𝑡, 𝜉 (𝜃)) . (11)

Multiply the different orthogonal polynomials of the
finite expansion in (11) and get statistical average results to

⟨Λ(𝑥, 𝑡, 𝜉;

𝑃

∑

𝑖=0

𝑢
𝑖
𝜓
𝑖
) ,𝜓
𝑗
⟩ = ⟨𝑓 (𝑥, 𝑡, 𝜉) , 𝜓

𝑗
⟩ ,

𝑗 = 0, 1, 2, . . . , 𝑃.

(12)

From (12), it should be noted that (𝑃 + 1) set of coupled
equations 𝑢

𝑖
(𝑥, 𝑡) is generated. This most recent step is

actually Galerkin projection in random space.The projection
ensures the orthogonality of the residual to the functional
space spanned by the finite-dimensional basis {𝜓

𝑖
}
𝑖=𝑃

𝑖=0
. As

predicted, a strictly deterministic 𝑢
𝑖
(𝑥, 𝑡)was achieved which

wouldmerely require a classical FDM-based solution in space
and time.The resulting feature is mainly due to the averaging
inherent in the projection, eliminating the randomness of the
systemmodel. It could also be noted that no additional errors,
except for truncation errors, manifest from this step.

For a numerical solution using FDM, the physical domain
𝐷 is covered by a grid of mesh points (𝑥, 𝑡) = (𝑚Δ𝑥, 𝑛Δ𝑡)

where Δ𝑥 and Δ𝑡 are mesh parameters that are relatively
infinitesimal and 𝑚 and 𝑛 are positive integers. The approxi-
mate solution of 𝑢

𝑖
(𝑥, 𝑡) at these mesh points will be denoted

by 𝑢
𝑖

(𝑚,𝑛); provided that the derivatives of 𝑢
𝑖
(𝑥, 𝑡) have been

replaced by finite difference quotients. Moreover, the choice
of both Δ𝑥 and Δ𝑡 must satisfy all necessary conditions of
the deterministic FD scheme like convergence, stability, and
consistency. Once 𝑢

𝑖
(𝑥, 𝑡) is obtained at every point in the

mesh, (6) can be used to get the solution vector where the
mean is given as

⟨𝑢 (𝑥, 𝑡, 𝜉)⟩ = 𝑢
0
(𝑥, 𝑡) , (13)

and the covariance matrix for two points 𝑢 and V is

Cov (𝑢, V) = ⟨(𝑢 − ⟨𝑢⟩) (V − ⟨V⟩)𝑇⟩ , (14a)

and the resulting variance vector of each point is

Var (𝑢 (𝑥, 𝑡, 𝜉)) =
𝑃

∑

𝑖=1

⟨𝜓
2

𝑖
⟩ 𝑢
𝑖

2

(𝑥, 𝑡) . (14b)

4. Illustrative Example I: The Stochastic
Diffusion Equation

In order to validate the efficiency of the proposed SFDHC
technique, stochastic diffusion equation is evaluated under
the effect of random parameter 𝛾(𝑥, 𝜃). The results are then
compared with that obtained fromMCS method.

4.1. Problem Formulation. Consider the diffusion equation
[12] with random parameter 𝛾(𝑥, 𝜃) in the form

𝜕𝑢 (𝑥, 𝑡, 𝜉)

𝜕𝑡

= 𝛾 (𝑥, 𝜃)

𝜕
2

𝑢 (𝑥, 𝑡, 𝜉)

𝜕𝑥
2

, (15)
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where: 𝑥 ∈ [0, 𝐿] and 𝑡 ≥ 0. Also, consider the case of deter-
ministic initial and boundary conditions

𝑢 (0, 𝑡) = 𝑞
1
(𝑡) , 𝑢 (𝐿, 𝑡) = 𝑞

2
(𝑡) , 𝑢 (𝑥, 0) = ℎ (𝑥) .

(16)

Moreover, the random parameter can be written as:

𝛾 (𝑥, 𝜃) = 𝛾 (1 + 𝛼 (𝑥; 𝜃)) , (17)

where 𝛼(𝑥; 𝜃) is SP which expresses the spatial randomness in
the parameter 𝛾(𝑥, 𝜃). Expanding both 𝛼(𝑥; 𝜃) and 𝑢(𝑥, 𝑡, 𝜉)

using (3) and (6), respectively, yields

𝑃

∑

𝑖=0

𝜕𝑢
𝑖

𝜕𝑡

𝜓
𝑖
= 𝛾(1 +

𝑀

∑

𝑖=1

√𝜆
𝑗
𝑓
𝑗
(𝑥) 𝜉
𝑗
)

𝑃

∑

𝑖=0

𝜕
2

𝑢
𝑖

𝜕𝑥
2
𝜓
𝑖
. (18)

Using Galerkin projection scheme and multiplying both
sides of (18) by 𝜓

𝑗
then taking the statistical average yields

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗

𝜕𝑢
𝑗

𝜕𝑡

= 𝛾

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗

𝜕
2

𝑢
𝑗

𝜕𝑥
2
+ 𝛾

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑀

∑

𝑘=1

𝑑
𝑖𝑗𝑘
√𝜆
𝑘
𝑓
𝑘
(𝑥)

𝜕
2

𝑢
𝑗

𝜕𝑥
2
,

(19)

where

𝑏
𝑖𝑗
= ⟨𝜓
𝑖
𝜓
𝑗
⟩ , 𝑑

𝑖𝑗𝑘
= ⟨𝜓
𝑖
𝜓
𝑗
𝜉
𝑘
⟩ . (20)

Replacing the derivatives of 𝑢
𝑖
by their difference quo-

tients at the mesh points leads to

1

Δ𝑡

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
(𝑢
(𝑚,𝑛+1)

𝑗
− 𝑢
(𝑚,𝑛)

𝑗
)

=

𝛾

(Δ𝑥)
2

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
(𝑢
(𝑚+1,𝑛)

𝑗
− 2𝑢
(𝑚,𝑛)

𝑗
+ 𝑢
(𝑚−1,𝑛)

𝑗
)

−

𝛾

(Δ𝑥)
2

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑀

∑

𝑘=1

𝑑
𝑖𝑗𝑘
√𝜆
𝑘
𝑓
𝑘
(𝑥)

× (𝑢
(𝑚+1,𝑛)

𝑗
− 2𝑢
(𝑚,𝑛)

𝑗
+ 𝑢
(𝑚−1,𝑛)

𝑗
) .

(21)

Introducing 𝜇 = 𝛾Δ𝑡(Δ𝑥)
−2 and solving the last equation

for 𝑢
𝑖

(𝑚,𝑛+1) yields

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
𝑢
(𝑚,𝑛+1)

𝑗

=

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
𝑢
(𝑚,𝑛)

𝑗

+ 𝛾𝜇

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
(𝑢
𝑗

(𝑚+1,𝑛)

− 2𝑢
𝑗

(𝑚,𝑛)

+ 𝑢
𝑗

(𝑚−1,𝑛)

)

+ 𝛾𝜇

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑀

∑

𝑘=1

𝑑
𝑖𝑗𝑘
√𝜆
𝑘
𝑓
𝑘
(𝑥)

× (𝑢
(𝑚+1,𝑛)

𝑗
− 2𝑢
(𝑚,𝑛)

𝑗
+ 𝑢
(𝑚−1,𝑛)

𝑗
) ,

(22)

which can be solved using an explicit scheme to find 𝑢
𝑖
(𝑥, 𝑡)

at the different mesh points.

4.2. Numerical Implementation and Results. To implement
the results obtained in (22), consider 𝛼(𝑥; 𝜃) as a second-
order Gaussian SP with exponential covariance kernel given
in [1]

Cov (𝑥
1
, 𝑥
2
) = 𝜎
2 exp(−

󵄨
󵄨
󵄨
󵄨
𝑥
1
− 𝑥
2

󵄨
󵄨
󵄨
󵄨

𝑙
𝑥

) , (23)

where 𝜎 denotes the coefficient of variation (COV) of the
random field (which is constant) and 𝑙

𝑥
is the correlation

length. Assume 𝜎2 = 0.01 and both 𝑙
𝑥
and 𝛾 are unity. Also,

let the initial and boundary conditions be considered as

𝑞
1
(𝑡) = 𝑞

2
(𝑡) = 0, ℎ (𝑥) = sin 𝜋𝑥

𝐿

, (24)

where 𝐿 = 1, 𝑥 ∈ [0, 1], and 𝑡 ∈ [0, 0.04]. Consider also the
mesh parameters Δ𝑥 = 0.1 and Δ𝑡 = 0.004 so that 𝜇 ≤ 1/2,
which is a necessary condition for the convergence of the FD
scheme.This, produces a moderately course mesh of 11 joints
in both 𝑥 and 𝑡 directions, with a total number of unknown
joints NP = 90 (without the boundary ones). The problem
is solved using MCS [13], where 𝛼(𝑥; 𝜃) is expanded using
KL expansion with 𝑀 = 6. A large sample size of 1 × 10

6

is then used to generate the random variables where exact
deterministic solution, given in [12], is evaluated for each
input. This in turn, becomes a benchmark for the proposed
technique.HCof second and fourth degrees, SFD2 and SFD4,
respectively, with order two were employed to derive the
SFDHC’s solution. The same sample size was then used to
generate the HC polynomials.The pdf of the solution process
𝑢 is plotted using MCS on SFD2 and SFD4 for 2 arbitrary
points, point 𝐴 on the midspan at (0.5, 0.024) and 𝐵 near
the boundary at (0.9, 0.036), as shown in Figures 1 and 2,
respectively. The mean and standard deviation (SD) of 𝑢 are
also plotted at an arbitrary time level (𝑡 = 0.04) as shown in
Figures 3 and 4.
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Figure 1: The pdf at point 𝐴 using SFDHC and MCS.
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Figure 2: The pdf at point 𝐵 using SFDHC and MCS.
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Figure 3: The mean at 𝑡 = 0.04 using SFDHC and MCS.

4.3. Error Analysis. The resulting response from the SFDHC
technique, with two degrees of the polynomial chaos (SFD2
and SFD4), andMCS results (incorporating the exact solution
given in [12]) were compared in terms of the maximum
and minimum errors, their locations, and average error.
From this, the relative accuracy of SFDHC technique is then
recorded as shown in Table 1.
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Figure 4: The SD at 𝑡 = 0.04 using SFDHC and MCS.

Note that the average error for the mean value and SD
was calculated through the summation of the errors over all
points and then dividing the sum by the number of points
NP. Table 1 shows good convergence of the SFDHC technique
with increasing the degree of the used polynomials. Evidently,
for SFD2, themean value and SD errors weremaximumat the
midspan, while they were minimum near the boundary. For
SFD4, however, the mean value error has the same positions
as SFD2, while the SD error is minimum around the first and
third quarters. This conclusion is made from this particular
problemwith their corresponding inputs. Generally, from the
insignificant errors recorded, the SFDHC technique exhibits
very high accuracy for calculating the mean value and SD.

5. Illustrative Example II: Stochastic Nonlinear
Burger’s Equation

To illustrate the proposed SFDHC technique on a nonlinear
case, consider stochastic nonlinear Burger’s equation (SBE)
[14]. In addition, let us involve random parameters and
expose them to deterministic or stochastic random excitation
with deterministic or stochastic boundary and initial condi-
tions.

5.1. Problem Formulation. With a random parameter 𝛾(𝑥, 𝜃)
and random excitation 𝑝(𝑥, 𝑡, 𝜃), the nonlinear stochastic
Burger’s equation can then be written as

𝜕𝑢 (𝑥, 𝑡, 𝜉)

𝜕𝑡

+ 𝑢 (𝑥, 𝑡, 𝜉)

𝜕𝑢 (𝑥, 𝑡, 𝜉)

𝜕𝑥

− 𝛾 (𝑥, 𝜃)

𝜕
2

𝑢 (𝑥, 𝑡, 𝜉)

𝜕𝑥
2

= 𝑝 (𝑥, 𝑡, 𝜃) .

(25)

Given that the domain and initial and boundary con-
ditions are consistent with Section 4.2 and the excitation
functions can be written as

𝑝 (𝑥, 𝑡, 𝜃) = 𝑝 (𝑥, 𝑡) (1 + 𝛽 (𝑥; 𝜃)) , (26)

where 𝛽(𝑥; 𝜃) is an SP expressing the spatial randomness
in the excitation function. Also, 𝛽(𝑥; 𝜃) can be expanded
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Table 1: Errors and accuracy for the stochastic diffusion equation.

The mean The standard deviation
Min.

error/location
Max.

error/location
Average

error/accuracy
Min.

error/location
Max.

error/location
Average

error/accuracy

SFD2
0.059% 0.696% 0.317% 0.1412% 11.09% 2.841%

(0.1, 0.004),
(0.9, 0.004)

(0.5, 0.04) 99.683% (0.1, 0.04),
(0.9, 0.04)

(0.5, 0.04) 97.159%

SFD4
0.0035% 0.221% 0.128% 0.0024% 6.3645% 1.393%

(0.1, 0.004),
(0.9, 0.004)

(0.5, 0.04) 99.872% (0.3, 0.024),
(0.7, 0.024)

(0.5, 0.04) 98.607%

using (3) with 𝛾
𝑗
and 𝑔

𝑗
(𝑥) as the eigen values and the eigen

functions, associated with its covariance kernel, respectively.
Expanding 𝑢(𝑥, 𝑡, 𝜉) as in (6) yields

𝑃

∑

𝑖=0

𝜕𝑢
𝑖

𝜕𝑡

𝜓
𝑖
+

𝑃

∑

𝑖=0

𝑢
𝑖
𝜓
𝑖

𝑃

∑

𝑗=0

𝜕𝑢
𝑗

𝜕𝑥

𝜓
𝑗
− 𝛾(1 +

𝑀

∑

𝑖=1

√𝜆
𝑗
𝑓
𝑗
(𝑥) 𝜉
𝑗
)

×

𝑃

∑

𝑖=0

𝜕
2

𝑢
𝑖

𝜕𝑥
2
𝜓
𝑖
= 𝑝 (𝑥, 𝑡) (1 +

𝑀

∑

𝑖=1

√𝛾
𝑖
𝑔
𝑖
(𝑥) 𝜉
𝑖
) .

(27)

Multiplying both sides of (17) by 𝜓
𝑘
and taking the

statistical average yields

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗

𝜕𝑢
𝑗

𝜕𝑡

+

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑃

∑

𝑘=0

𝑐
𝑖𝑗𝑘
𝑢
𝑗

𝜕𝑢
𝑘

𝜕𝑥

− 𝛾

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑀

∑

𝑘=1

𝑑
𝑖𝑗𝑘
√𝜆
𝑘
𝑓
𝑘
(𝑥)

𝜕
2

𝑢
𝑗

𝜕𝑥
2
− 𝛾

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗

𝜕
2

𝑢
𝑗

𝜕𝑥
2

= 𝑝 (𝑥, 𝑡) + 𝑝 (𝑥, 𝑡)

𝑃

∑

𝑖=0

𝑀

∑

𝑗=1

𝑒
𝑖𝑗√

𝛾
𝑗
𝑔
𝑗
(𝑥) ,

(28)

where

𝑐
𝑖𝑗𝑘

= ⟨𝜓
𝑖
𝜓
𝑗
𝜓
𝑘
⟩ , 𝑒

𝑖𝑗
= ⟨𝜓
𝑖
𝜉
𝑗
⟩ . (29)

Replacing the derivatives of 𝑢
𝑖
by their difference quo-

tients and solving the last equation for 𝑢
𝑖

(𝑚,𝑛+1) yields

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
𝑢
𝑗

(𝑚,𝑛+1)

=

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
𝑢
𝑗

(𝑚,𝑛)

−

1

2

Δ𝑥𝜇

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑃

∑

𝑘=0

𝑐
𝑖𝑗𝑘
𝑢
𝑗

(𝑚,𝑛)

(𝑢
𝑘

(𝑚+1,𝑛)

− 𝑢
𝑘

(𝑚−1,𝑛)

)

+ 𝛾𝜇

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑀

∑

𝑘=1

𝑑
𝑖𝑗𝑘
√𝜆
𝑘
𝑓
𝑘
(𝑥)

× (𝑢
𝑗

(𝑚+1,𝑛)

− 2𝑢
𝑗

(𝑚,𝑛)

+ 𝑢
𝑗

(𝑚−1,𝑛)

)

+ 𝛾𝜇

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
(𝑢
𝑗

(𝑚+1,𝑛)

− 2𝑢
𝑗

(𝑚,𝑛)

+ 𝑢
𝑗

(𝑚−1,𝑛)

)

+ Δ𝑡𝑝 (𝑥, 𝑡) + Δ𝑡𝑝 (𝑥, 𝑡)

𝑃

∑

𝑖=0

𝑀

∑

𝑖=𝑗

𝑒
𝑖𝑗√

𝛾
𝑗
𝑔
𝑗
(𝑥) .

(30)

5.2. Numerical Implementation and Results. The proposed
technique will be applied to SBE in two cases: Case 1 using
random parameter and, Case 2 using random initial and
boundary conditions. Both Cases 1 and 2 are treated as
follows.

Case 1. The same data used in Section 4.2 concerning the
domain, the initial and boundary conditions, the mesh
parameters, and 𝛼(𝑥; 𝜃) will be employed here. First, assume
the COV as unity for error analysis and for Figures 5 and
6. Then, some practical values (0.05, 0.10, and 0.20) will be
considered in Figures 7 and 8. Both of SFD2 and SFD4 are
used to solve (30), where the following results are obtained
for points 𝐶(0.5, 0.036) and𝐷(0.9, 0.036).

5.3. Error Analysis. As in Section 4.3, errors and accuracy are
recorded as shown in Table 2.

Although the errors are slightly bigger than the linear
case, the SFDHC technique still exhibits high performance
for nonlinear problems.

Case 2. The proposed SFDHC technique can handle stochas-
tic initial and boundary conditions expressed as

𝑢 (𝑥, 𝑡, 𝜉) =

𝑃
1

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡) 𝜒

𝑖
(𝜉) , (31)

defined on some section of the boundary 𝜕𝐷
1
∈ 𝜕𝐷, where

𝑃
1
≤ 𝑃 and both degree and order of 𝜒

𝑖
are less than or equal
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Table 2: Errors and accuracy for the stochastic Burger’s equation.

The mean The standard deviation
Min.

error/location
Max.

error/location
Average

error/accuracy
Min.

error/location
Max.

error/location
Average

error/accuracy

SFD2 0.059% 0.696% 0.908% 0.1412% 11.09% 4.632%
(0.6, 0.004) (0.1, 0.04) 99.092% (0.9, 0.04) (0.9, 0.004) 95.368%

SFD4 0.0035% 0.221% 0.863% 0.0024% 6.3645% 2.973%
(0.8, 0.028) (0.1, 0.04) 99.137% (0.9, 0.04) (0.4, 0.04) 97.027%
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Figure 5: The pdf at point 𝐶 using SFDHC and MCS.
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Figure 6: The pdf at point𝐷 using SFDHC and MCS.

to those used for𝜓
𝑖
. After executing the same procedure as in

Case 1, it yields

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
𝑢
(𝑚,𝑛+1)

𝑗

=

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
𝑢
(𝑚,𝑛)

𝑗

−

1

2

Δ𝑥𝜇

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑃

∑

𝑘=0

𝑐
𝑖𝑗𝑘
𝑢
(𝑚,𝑛)

𝑗
(𝑢
(𝑚+1,𝑛)

𝑘
− 𝑢
(𝑚−1,𝑛)

𝑘
)

+ 𝛾𝜇

𝑃

∑

𝑖=0

𝑃

∑

𝑗=0

𝑏
𝑖𝑗
(𝑢
(𝑚+1,𝑛)

𝑗
− 2𝑢
(𝑚,𝑛)

𝑗
+ 𝑢
(𝑚−1,𝑛)

𝑗
)

+ Δ𝑡𝑝 (𝑥, 𝑡) .

(32)

As a practical example, assume an initial condition with
the form

𝑢 (𝑥, 0, 𝜉) = 𝑥 (𝐿 − 𝑥) (1 + 𝛼 (𝑥; 𝜃)) (33)

and boundary conditions

𝑢 (0, 𝑡, 𝜉) = 𝛼 (0; 𝜃) , 𝑢 (𝐿, 𝑡, 𝜉) = 𝛼 (𝐿; 𝜃) , (34)

where 𝛼(𝑥; 𝜃) is the same Gaussian SP used in Section 4.2
with COV= 1.Then, 𝑢

0
(𝑥, 0) = 𝑥(𝐿−𝑥), 𝑢

𝑖
(𝑥, 0) = 𝜎√𝜆

𝑖
𝑓
𝑖
(𝑥)

for 1 ≤ 𝑖 ≤ 𝑀, and 𝑢
𝑖
(𝑥, 0) = 0 for 𝑖 > 𝑀. Also, 𝑢

0
(0, 𝑡) =

𝑢
0
(𝐿, 𝑡) = 0, 𝑢

𝑖
(0, 𝑡) = 𝜎√𝜆

𝑖
𝑓
𝑖
(0), 𝑢
𝑖
(𝐿, 𝑡) = 𝜎√𝜆

𝑖
𝑓
𝑖
(𝐿) for

1 ≤ 𝑖 ≤ 𝑀 and 𝑢
𝑖
(0, 𝑡) = 𝑢

𝑖
(𝐿, 𝑡) = 0 for 𝑖 > 𝑀. Both

of SFD4 and SFD2 are used to solve (32) with initial and
boundary conditions given by (33) and (34), respectively. An
MCS solution was provided through expanding the included
stochastic processes using KL expansion then a sample of
size 50,000 random numbers is used to generate the initial
and boundary random values. Consequently, the problem is
solved using FD forward scheme leading to 50,000 values
of the stochastic response at each of the mesh points. A
solution pdf for SFDHC is generated and then plotted for
points𝐶(0.5, 0.036) and𝐷(0.9, 0.036) shown in Figures 9 and
10.

Comparing withMCS, SFD4 shows better approximation
for the response (as expected) since it uses 4 randomvariables
in its expansion, while SFD2 uses only 2.

6. Discussion and Conclusions

As evidenced in this work, the SFDHC technique was
designed to solve a wide range of time dependent nonlinear
as well as linear problems with stochastic or deterministic
initial and boundary conditions and exposed to deterministic
or stochastic excitation. This technique uses HC expan-
sion in compliment with FDM, providing the capacity to
present the analysis result as pdf and not just the statistical
moments of the response. Using two illustrative examples,
as representative of linear and nonlinear problems, the
proposed technique has proven to be highly efficient and
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Figure 7: The pdf at point 𝐶 for different values of COV.
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Figure 8: The pdf at point𝐷 for different values of COV.

0 1 2 3 4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Response values

Th
e p

ro
ba

bi
lit

y 
di

str
ib

ut
io

n 
fu

nc
tio

n

MCS
SFD4
SFD2

−1−2−3

Figure 9: The pdf at point 𝐶 using SFD4 and SFD2.

computationally optimized. Using SFD4, the efficiency of this
technique exceeds 98.6% for both mean and SD evaluations
in the linear problem and exceeds 97% for the nonlinear one.
Moreover, the computation times spent for SFDHC, on a
Core-i3 computer, were 3.08 and 3.91 seconds for linear and
nonlinear problems, respectively, as against 40.19 and 989.82
seconds for MCS, respectively, which means that 7.66% and
0.395% only of the execution time are in favor of SFDHC.
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Figure 10: The pdf at point𝐷 using SFDHC and MCS.

The overwhelming advantages manifested by the proposed
technique open the door for the versatility manifested by
FDM in the deterministic field into the stochastic field. FDM
had shown its versatility in the deterministic field by directly
dealing with time dependent and nonlinear systems through
explicit or implicit schemes. These capabilities of FDM will
be available in the stochastic field by the way of this proposed
technique. The SFDHC technique can handle more compli-
cated nonlinear problems in 2 and 3 dimensions with explicit
or implicit schemes which are available in the FDM literature.
However, the illustrative examples in this paper were one-
dimensional problems and were solved explicitly. Further
research concerning the range of variability of random inputs,
the choice of mesh parameters which satisfy FDM’s essential
conditions, and closed forms for the produced error is highly
recommended and is deemed worthwhile.
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